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Reification

Implementation of b ⇔ γ(. . . ):
When there are search guesses or other constraints on the
reifying 0/1-variable b:

When the variable b gets fixed to 1,
post the constraint γ(. . . ).

When the variable b gets fixed to 0,
post the constraint (¬γ)(. . . ).

When the constraint γ(. . . ) gets subsumed,
post the constraint b = 1.

When the constraint (¬γ)(. . . ) gets subsumed,
post the constraint b = 0.

where (¬γ)(. . . ) denotes the complement of γ(. . . ), not the
code for not γ(. . . ), as CP solvers do not implement not.
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Constraint combination with reification:
With reification, constraints can be arbitrarily combined with
logical connectives: negation (¬), disjunction (∨),
conjunction (&), implication (⇒), and equivalence (⇔).
However, propagation may be very poor!

Example
The composite constraint (γ1 & γ2) ∨ γ3 is modelled as

(b1 ⇔ γ1) & (b2 ⇔ γ2) & (b3 ⇔ γ3)
& (b1 · b2 = b) & (b + b3 ≥ 1)

Hence even the constraints γ1 and γ2 must be reified.
If γ1 is x = y + 1 and γ2 is y = x + 1, then γ1 & γ2 is unsat;
however, b is then not fixed to value 0 by propagation,
as each propagator works individually and there
is no communication through the shared variables x and y ;
hence b3 = 1 is not propagated and γ3 is not forced to hold.
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Remember the warning in Topic 2: Basic Modelling that the
disjunction and negation of constraints (with \/, xor, not,
<-, ->, <->, exists, xorall, if θ thenϕelseψ endif)
in MiniZinc often makes the solving slow?

Example
The MiniZinc disjunctive constraint

constraint x = 0 \/ x = 9;

is flattened for Gecode as follows, with reification:

(b0 ⇔ x = 0) & (b9 ⇔ x = 9) & (b0 + b9 ≥ 1)

But it is logically equivalent to

constraint x in {0,9};

where no reification is involved, and no further propagation.
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Remember the strong warning in Topic 2: Basic Modelling
about a conditional if θ then ϕ1 else ϕ2 endif
or a comprehension, say [i | i in ρ where θ],
in MiniZinc having a test θ that depends on variables?

Example
Consider var 1..9: x and var 1..9: y for

forall(i in 1..9 where i > x)(i > y)

Recall that this is syntactic sugar for

forall([i > y | i in 1..9 where i > x])

This is flattened for Gecode into the equivalent of

forall(i in 1..9)(i > x -> i > y)

that is with a logical implication (->),
hence with a hidden logical disjunction (\/): for each i,
both sub-constraints are reified as both have variables.
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Definition
A primitive constraint is not decomposable.
A global constraint is definable by a logical formula
(usually a conjunction) involving primitive constraints,
but not always in a trivial way.

For domain consistency, all solutions to a constraint need to
be considered: a naı̈ve propagator, first computing all the
solutions and then projecting them onto the domains of the
variables, often takes too much time and space:

Example (already seen in Topic 13: Consistency)
The store {x 7→ {2, . . . ,7} , y 7→ {0,1,2} , z 7→ {−1, . . . ,2}}
has the solutions ⟨3,1,0⟩, ⟨5,0,1⟩, and ⟨6,2,0⟩
to the linear equality constraint x = 3 · y + 5 · z.
Hence the store {x 7→ {3,5,6} , y 7→ {0,1,2} , z 7→ {0,1}}
is domain-consistent. (Continued on slide 18.)
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Globality from a Semantic Point of View

Some constraints cannot be defined by a conjunction of
primitive constraints without introducing more variables:

Example (count([x1, . . . , xn] , v ,≥, ℓ))
At least ℓ variables of [x1, . . . , xn] take the constant value v :

(∀i ∈ 1..n : bi ⇔ xi = v) &
n∑

i=1

bi ≥ ℓ

Some constraints can be defined by a conjunction of
primitive constraints without introducing more variables:

Example (distinct([x1, . . . , xn]))

∀i , j ∈ 1..n where i < j : xi ̸= xj
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Globality from a Propagation Point of View

Some constraints can be defined by a conjunction of
primitive constraints, but it leads to weak propagation:

Example
Consider the store {x1, x2, x3 7→ {4,5}}:

Upon distinct([x1, x2, x3]):
Propagation fails under domain or bounds consistency.
Upon x1 ̸= x2 & x1 ̸= x3 & x2 ̸= x3:
Propagation succeeds, and it is only search that fails.
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Globality from a Propagation Point of View

Some constraints can be defined by a conjunction of
primitive constraints, with strong propagation, but it leads
to propagation with poor time or memory performance:

Example
Upon strictly_increasing([a,b,c,d,a]),
which is rel([a,b,c,d,a],IRT LE)) in Gecode:
Propagation fails.
Upon a < b & b < c & c < d & d < a:
Propagation also fails, but the runtime complexity
depends on the sizes of the domains,
rather than on the number of variables.
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The linear Predicate

Definition
A linear([a1, . . . ,an] , [x1, . . . , xn] ,R,d) constraint, with

[a1, . . . ,an] a sequence of non-zero integer constants,
[x1, . . . , xn] a sequence of integer variables,
R in {<,≤,=, ̸=,≥, >}, and
d an integer constant,

holds iff the linear relation

(
n∑

i=1

ai · xi

)
R d holds.

We now show how to enforce bounds consistency cheaply
on linear equality. For simplicity of notation, we pick n = 2,
giving a1 · x1 + a2 · x2 = d , and rename into a · x + b · y = d .
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BC propagator for a binary linear equality:
Rewrite for x (the handling of y is analogous and omitted):

a · x + b · y = d ⇔ x = (d − b · y) / a

Upper bound on x , starting from store s:

x ≤

max {(d − b · n) / a | n ∈ s(y)}︸ ︷︷ ︸
M


and (analogously, hence further details are omitted):

x ≥ ⌈min {(d − b · n) / a | n ∈ s(y)}⌉

Computing M:

M =

{
max {(d − b · n) | n ∈ s(y)} / a if a > 0
min {(d − b · n) | n ∈ s(y)} / a if a < 0
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BC propagator for a binary linear equality (end):
For a > 0 (the case a < 0 is analogous and omitted):

M = max {(d − b · n) | n ∈ s(y)} / a
= (d −min {b · n | n ∈ s(y)}) / a

=

{
(d − b ·min(s(y))) / a if b > 0
(d − b ·max(s(y))) / a if b < 0

This value can be computed and rounded in constant time,
since the constants min(s(y)) and max(s(y)) can be
queried in constant time and since a,b,d are constants.
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BC propagator for n-ary linear equality, with n ≥ 1:
Iterate until fixpoint, to achieve idempotency if wanted:

propagate for each variable xi .
A speed-up can be obtained by computing two general
expressions once and then adjusting them for each xi :
☞ see § 6.4 of Krzysztof R. Apt, Principles of Constraint
Programming, Cambridge University Press, 2003.

Example (Justification for aiming at idempotency)
Propagate 2 · x = 3 · y for {x 7→ {0, . . . ,8} , y 7→ {0, . . . ,9}}.
Propagating for x gives: {x 7→ {0, . . . ,8} , y 7→ {0, . . . ,9}}
Propagating for y gives: {x 7→ {0, . . . ,8} , y 7→ {0, . . . ,5}}
Four values were deleted from dom(y) without failing to find
supports, but the bound 8 of x is no longer supported!
Propagating for x gives: {x 7→ {0, . . . ,7} , y 7→ {0, . . . ,5}}
Propagating for y gives: {x 7→ {0, . . . ,7} , y 7→ {0, . . . ,4}}
Propagating for x gives: {x 7→ {0, . . . ,6} , y 7→ {0, . . . ,4}}
Propagating for y gives: {x 7→ {0, . . . ,6} , y 7→ {0, . . . ,4}}
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Consistency on n-ary linear constraints:
Linear equality (=): The described propagator enforces
BC(R) in O(n) time per iteration, but enforcing DC
is NP-hard (so it currently takes time exponential in n).

Example (Why BC(R) and not BC(Z / D) for equality?)
Propagate x = 3 · y + 5 · z from the store
{x 7→ {2, . . . ,7} , y 7→ {0,1,2} , z 7→ {0,1}}.
The described bounds(R) propagator gives
{x 7→ {2, . . . ,7} , y 7→ {0,1,2} , z 7→ {0,1}},
while a bounds(Z) or bounds(D) propagator would give
{x 7→ {3, . . . ,6} , y 7→ {0,1,2} , z 7→ {0,1}}.
The described propagator considers real-number supports,
even though the constraint is over integer variables.
Compare with the domain-consistent store on slide 9.

Linear disequality (̸=): BC(·) = DC; O(n) time.
Linear inequality (<,≤,≥, >): BC(R) = DC; O(n) time.
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The channel Predicate

Definition
A channel([x1, . . . , xn] , [ y1, . . . , yn]) constraint holds iff:

∀i , j ∈ 1..n : xi = j ⇔ yj = i

Propagator for domain consistency:
For each i ̸∈ dom(yj): delete j from dom(xi).
For each j ̸∈ dom(xi): delete i from dom(yj).
Post distinct([x1, . . . , xn]) as implied constraint:
if xa = j = xb with a ̸= b, then yj has to take two distinct
values, namely a and b, which is impossible.
Posting also distinct([ y1, . . . , yn]) as implied
constraint would bring no further propagation.
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The Element Predicate

Definition (Van Hentenryck and Carillon, 1988)
An Element([x1, . . . , xn] , i ,e) constraint, where the xj are
variables, i is an integer variable, and e is a variable, holds
if and only if xi = e.

Example
From the store {i 7→ {1,2,3,4} , e 7→ {7,8,9}}, the
constraint Element([6,8,7,8] , i ,e) propagates under DC
to fixpoint {i 7→ {2,3,4} , e 7→ {7,8}}. If the domain of i is
pruned to {2,4} by another constraint or a search guess,
then e 7→ {8} and subsumption are inferred under DC.

Possible definition of Element([x1, . . . , xn] , i ,e):
(i = 1 ⇒ x1 = e) & · · · & (i = n ⇒ xn = e), with
implicative constraints α(· · · ) ⇒ β(· · · ) definable, under
little propagation, by a ⇔ α(· · · ) & b ⇔ β(· · · ) & a ≤ b.
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Propagation on an array of constants:
We insist on domain consistency, as BC would be too weak.
Objective, for Element([x1, . . . , xn] , i ,e) and a store s:

i Keep only k in s(i) such that xk = j for some j in s(e).
e Keep only j in s(e) such that xk = j for some k in s(i).

Naı̈ve DC propagator:
The computed new domains must be ordered sets:

i The new domain of i is s(i) ∩ {k ∈ 1..n | xk ∈ s(e)}.
e The new domain of e is s(e) ∩ {xk | k ∈ s(i)}.

Sources of inefficiency:
This always iterates over the entire array [x1, . . . , xn].
This always requires set intersection.
This always requires sorting the 2nd argument of the
2nd intersection (or performing ordered set insertion).
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Example
Consider the constraint Element([4,5,9,7] , i ,e) and the
store s = {i 7→ {2,3,4} , e 7→ {2,3,4,5,6,7,8}}. Domain
consistency gives the store {i 7→ {2,4} , e 7→ {5,7}}.

Smart DC propagator:
Construct from [4,5,9,7] two ordered doubly-linked lists:

i 1 2 3 4

e 4 5 9 7

i Follow the i-links: if a value is not in s(i), then unlink
the corresponding two nodes from the two lists.

e Follow the e-links: if a value is not in s(e), then unlink
the corresponding two nodes from the two lists.

The lists are sorted and are the new domains of i and e.
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Analysis:

Each unlinking takes constant time.

No set intersection needs to be computed.

Definition
An incremental propagator, instead of throwing away an
internal data structure when at fixpoint, keeps it for its next
invocation: it first repairs that data structure according to
the pruning done by other propagators since its previous
invocation, and then only attempts its own pruning.

Incremental propagation for Element:
• This requires sorting only at the first invocation,

namely of the array (here [4,5,9,7]).
• This always iterates over an array at most as long as

at the previous invocation.
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Deterministic Finite Automaton (DFA)

Example (DFA for regular expression ss(ts)∗|ts(t|ss)∗)

A

B

C

D

E

s

t

s

s

t

s

t

Conventions:
Start state, marked by arc coming in from nowhere: A.
Accepting states, marked by double circles: D and E.
Determinism: There is one outgoing arc per symbol in
alphabet Σ = {s, t}; missing arcs go to a non-accepting
missing state that has self-loops on every symbol in Σ.
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The extensional Predicate

Definition
An extensional([x1, . . . , xn] ,D) constraint holds iff the
values taken by the sequence [x1, . . . , xn] of variables form
a string of the regular language accepted by the DFA D.

Example
The constraint extensional([x1, x2, x3, x4] ,A),
where A is the DFA of the previous slide,
is propagated under domain consistency from the store{

x1 7→ {s, t} , x2 7→ {s, t} , x3 7→ {s, t} , x4 7→ {s, t}
}

to the fixpoint{
x1 7→ {s, t} , x2 7→ {s} , x3 7→ {s, t} , x4 7→ {s, t}

}
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Let us propagate extensional([x1, x2, x3, x4] ,A), where
A is the DFA of two slides ago, from the following store:
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Forward Phase: Build all paths according to the values in
the domains.
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Forward Phase: Build all paths according to the values in
the domains. (B3 & C3 and D4 & E4 can be merged.)
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Backward Phase: Delete all paths not of length 4 or not
ending in a vertex corresponding to an accepting state.
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x2 7→ {s, t}x2 7→ {s}
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Pruning Phase: Delete unsupported values; at fixpoint.
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Pruning Phase: Delete unsupported values; at fixpoint.
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Incremental propagation upon x1 = t to fixpoint.
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Incremental propagation upon x3 = s to subsumption.
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Complexity and Incrementality

Complexity:
The described DC propagator takes O(n · m · q) time and
space for n variables, m values in their domains,
and q states in the DFA.

Incrementality via a stateful propagator:
Keep the graph between propagator invocations.
When the propagator is re-invoked:

1 Delete edges that no longer correspond to the store.
2 Run the pruning phase.

Generalisation:
The described propagator works unchanged for an NFA
(non-deterministic finite automaton): Gecode offers
no syntax for this, but MiniZinc has regular_nfa.
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The distinct Predicate

Definition (Laurière, 1978)
A distinct([x1, . . . , xn]) constraint holds if and only if all
the variables xi take different values.

This is equivalent to n·(n−1)
2 disequality constraints:

∀i , j ∈ 1..n where i < j : xi ̸= xj

Originally, the distinct constraint was just a wrapper for
posting those n·(n−1)

2 disequality constraints. The first
efficient domain-consistency propagators for distinct
were introduced in 1994; one of them is discussed below.
After that, several other efficient propagators have been
proposed to enforce various consistencies.
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Example
Consider the store {x1, x2, x3 7→ {4,5}}
and the constraint distinct([x1, x2, x3]):

Value consistency: Nothing is done to the domains.
Bounds consistency: A failure is detected.
Domain consistency (DC): A failure is detected.

What consistency to use is problem-dependent
and even instance-dependent!

Example (distinct([u, v ,w , x , y , z]))
From the store{

u 7→ {0,1} , v 7→ {1,2} , w 7→ {0,2} ,
x 7→ {1,3} , y 7→ {2,3,4,5} , z 7→ {5,6}

}
the pink values are pruned upon DC.
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Is DC Needed for distinct?

Example (Golomb Rulers)
Design a ruler with n ticks such that:

The distances between any 2 distinct ticks are distinct.
The length of the ruler is minimal.

For n = 6, an optimal ruler is [0,1,4,10,12,17].
This very hard problem has applications in crystallography.

n value consistency domain consistency

7 950 nodes 474 nodes
8 7,622 nodes 3,076 nodes
9 55,930 nodes 16,608 nodes

10 413,922 nodes 97,782 nodes
11 6,330,568 nodes 1,448,666 nodes

Good search-tree reduction: worth looking for a propagator!
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Variable-Value Graph:
Construct a bipartite graph from the current domains:
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Variable-Value Graph:
A (maximum) matching is a (max-size) subset of edges so
that no vertex is incident to two of its edges. Example 1:
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Variable-Value Graph:
A (maximum) matching is a (max-size) subset of edges so
that no vertex is incident to two of its edges. Example 2:
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Variable-Value Graph:
A (maximum) matching is a (max-size) subset of edges so
that no vertex is incident to two of its edges. Example 2:

u 7→ {0, 1}
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A max matching is (here) perfect iff it covers all variables:
it is a solution to the considered distinct(· · · ) constraint.
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Naı̈ve DC propagator:
1 If no perfect matching exists, then fail.
2 Compute all perfect matchings and mark their edges.
3 For every unmarked edge between a variable v and a

value d : prune value d from dom(v).
But there are as many perfect matchings as solutions!

☞ We have not addressed the time issue.

Matching theory to the rescue!
There is a relationship between the edges in a maximum
matching and the edges in all other maximum matchings!

☞ Hence we need only compute one perfect matching!

COCP/M4CO 16 - 38 -



Reification

Global
Constraints

linear

channel

Element

extensional

distinct
Naı̈ve DC
Propagator

Efficient DC
Propagator

Efficient BC
Propagator

Outline

1. Reification

2. Global Constraints

3. linear

4. channel

5. Element

6. extensional

7. distinct
Naı̈ve DC Propagator
Efficient DC Propagator
Efficient BC Propagator

COCP/M4CO 16 - 39 -



Reification

Global
Constraints

linear

channel

Element

extensional

distinct
Naı̈ve DC
Propagator

Efficient DC
Propagator

Efficient BC
Propagator

Efficient DC propagator (Régin, 1994) (Costa, 1994):
Start from a perfect matching, and orient all edges: if in
matching, then from variable to value, else the other way.

u 7→ {0, 1}

v 7→ {1, 2}

w 7→ {0, 2}

x 7→ {1, 3}

y 7→ {2, 3, 4, 5}

z 7→ {5, 6}

u

v

w

x

y

z

0

1

2

3

4

5

6

COCP/M4CO 16 - 40 -



Reification

Global
Constraints

linear

channel

Element

extensional

distinct
Naı̈ve DC
Propagator

Efficient DC
Propagator

Efficient BC
Propagator

Efficient DC propagator (Régin, 1994) (Costa, 1994):
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u 7→ {0, 1}

v 7→ {1, 2}

w 7→ {0, 2}

x 7→ {1, 3}

y 7→ {2, 3, 4, 5}

z 7→ {5, 6}

u

v

w

x

y

z

0

1

2

3

4

5

6

COCP/M4CO 16 - 40 -



Reification

Global
Constraints

linear

channel

Element

extensional

distinct
Naı̈ve DC
Propagator

Efficient DC
Propagator

Efficient BC
Propagator

Efficient DC propagator (Régin, 1994) (Costa, 1994):
Start from all unmatched vertices (necessarily values here)
and mark all arcs on all simple paths: arcs can be flipped.
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Efficient DC propagator (Régin, 1994) (Costa, 1994):
Mark all arcs in all strongly connected components (SCCs):
the variables of an SCC take all the values of that SCC.
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Mark all arcs in all strongly connected components (SCCs):
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Efficient DC propagator (Régin, 1994) (Costa, 1994):
Mark all arcs in all strongly connected components (SCCs):
the variables of an SCC take all the values of that SCC.

g

u 7→ {0, 1}

v 7→ {1, 2}

w 7→ {0, 2}

x 7→ {1, 3}

y 7→ {2, 3, 4, 5}

z 7→ {5, 6}

u

v

w

x

y

z

0

1

2

3

4

5

6

COCP/M4CO 16 - 40 -



Reification

Global
Constraints

linear

channel

Element

extensional

distinct
Naı̈ve DC
Propagator

Efficient DC
Propagator

Efficient BC
Propagator

Efficient DC propagator (Régin, 1994) (Costa, 1994):
Mark all arcs in all strongly connected components (SCCs):
the variables of an SCC take all the values of that SCC.
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Efficient DC propagator (Régin, 1994) (Costa, 1994):
Every arc that is neither in the chosen perfect matching nor
marked is in no perfect matching: prune accordingly.
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Efficient DC propagator (Régin, 1994) (Costa, 1994):
Every arc that is neither in the chosen perfect matching nor
marked is in no perfect matching: prune accordingly.
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Efficient DC propagator (Régin, 1994) (Costa, 1994):
Every arc that is neither in the chosen perfect matching nor
marked is in no perfect matching: prune accordingly.
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Efficient DC propagator (Régin, 1994) (Costa, 1994):
Every arc that is neither in the chosen perfect matching nor
marked is in no perfect matching: prune accordingly.
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Efficient DC propagator (Régin, 1994) (Costa, 1994):
Every arc that is in the chosen perfect matching but
not marked is in every perfect matching: fixed variable.
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Underlying Theorem from Matching Theory

Theorem (Berge, 1970) (Petersen, 1891)
Edge e belongs to some maximum matching if and only if,
for an arbitrarily chosen maximum matching M:

e belongs to a path of an even number of edges that
starts at some node that is not incident to an edge of M
and that alternates between edges in M and edges not
in M;

or e belongs to a cycle of an even number of edges that
alternates between edges in M and edges not in M
(that is, the arc corresponding to e belongs to an SCC).
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Complexity and Incrementality

Complexity:
The described DC propagator takes

O(m ·
√

n) time and O(m · n) space

for n variables and m ≥ n values in their domains.

Incrementality via stateful propagator:
Keep the variable-value graph between invocations.
When the propagator is re-invoked:

1 Delete marks on arcs.
2 Delete arcs that no longer correspond to the store.
3 If an arc of the old perfect matching was deleted,

then first compute a new perfect matching.
4 Mark and prune.
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Is BC Needed for distinct?
Propagation to BC often suffices for distinct.

Example
Propagation to BC suffices to infer unsatisfiability for
distinct([x , y , z]) from the store {x , y , z 7→ {4,5}}.

Efficient BC propagators:
There are BC propagators that take O(n · lg n) time:

Puget @ AAAI 1998
Mehlhorn and Thiel @ CP 2000
López-Ortiz, Quimper, Tromp, van Beek @ IJCAI 2003

The latter two run in O(n) time if sorting can be avoided,
say when there are as many values as variables.
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