Topic 16: Propagators '
(Version of 20th October 2021)

Pierre Flener

Optimisation Group

Department of Information Technology
Uppsala University

Sweden

Course 1DL441:

Combinatorial Optimisation and Constraint Programming,
whose part 1 is Course 1DL451:

Modelling for Combinatorial Optimisation

'Based partly on material by N. Beldiceanu and Ch. Schulte

http://user.it.uu.se/~pierref
http://www.it.uu.se/research/group/optimisation

Outline

UNIVERSITET

1. Reification
Reification
Global 2. Global Constraints
Constraints
linear 3. linear
channel
s 4. channel
extensional
e 5.Element
distinct
i 6. extensional
7.distinct

Naive DC Propagator
Efficient DC Propagator
Efficient BC Propagator

UPPSALA OUtI i ne

UNIVERSITET

1. Reification

Reification

Global
Constraints

linear
channel
Element
extensional

distinct
DC

UPPSALA
UNIVERSITET

Reification

Global
Constraints

linear
channel
Element
extensional

distinct

Reification

Implementation of b < ~(...):
When there are search guesses or other constraints on the
reifying 0/1-variable b:
m When the variable b gets fixed to 1,
post the constraint (. ..).

m When the variable b gets fixed to 0,
post the constraint (—y)(...).

m When the constraint (. ..) gets subsumed,
post the constraint b = 1.

m When the constraint (—v)(...) gets subsumed,
post the constraint b = 0.

where (—7v)(...) denotes the complement of (.. .), not the
code for not 7(...), as CP solvers do not implement not.

_4-

UPPSALA
UNIVERSITET

Reification

Global
Constraints

linear
channel
Element
extensional

distinct

Constraint combination with reification:

With reification, constraints can be arbitrarily combined with
logical connectives: negation (—), disjunction (V),
conjunction (&), implication (=), and equivalence (<).
However, propagation may be very poor!

Example
The composite constraint (1 & ~2) V 73 is modelled as

(b & 71) & (b= 72) & (b3 & 73)
& (by-bo=b) & (b+b3>1)

Hence even the constraints vy and v» must be reified.
lfyyisx=y+1andyisy =x+1,then~y; & 5 is unsat;
however, b is then not fixed to value 0 by propagation,

as each propagator works individually and there

is no communication through the shared variables x and y;
hence bs = 1 is not propagated and 3 is not forced to hold.

_5-

UPPS:
UNIVERSITET

Reification

Global
Constraints

linear
channel
Element
extensional

distinct

Remember the warning in Topic 2: Basic Modelling that the
disjunction and negation of constraints (with \ /, xor, not,
<-,—>,<—> exists, xorall,iffthen¢elser endif)
in MiniZinc often makes the solving slow?

The MiniZinc disjunctive constraint

constraint x = 0 \/ x = 9;
is flattened for Gecode as follows, with reification:
(bp=x=0) & (bg =x=9) & (bp+bg>1)

But it is logically equivalent to
constraint x in {0, 9};

where no reification is involved, and no further propagation.

UPPSALA
UNIVERSITET

Reification

Global
Constraints

linear
channel
Element
extensional

distinct
Ne

E
P
Ef
Py

Remember the strong warning in Topic 2: Basic Modelling
about a conditional if # then ¢y else ¢o endif

or a comprehension,say [i | i in p where 0],

in MiniZinc having a test 6 that depends on variables?

Example

Consider var 1..9: x and var 1..9: y for
forall(i in 1..9 where 1 > x) (1 > vy)
Recall that this is syntactic sugar for
forall([1i >y | 1 in 1..9 where i > x])
This is flattened for Gecode into the equivalent of
forall(i in 1..9) (i > x —> 1 > vy)

that is with a logical implication (->),
hence with a hidden logical disjunction (\/): for each i,
both sub-constraints are reified as both have variables.

_7-

UPPSALA OUtI i ne

UNIVERSITET

Reification

Global 2. Global Constraints

Constraints

linear

channel

Element

extensional

distinct
DC

m A primitive constraint is not decomposable.

m A global constraint is definable by a logical formula
Reification (usually a conjunction) involving primitive constraints,
Global but not always in a trivial way.

Constraints

linear For domain consistency, all solutions to a constraint need to
channel be considered: a naive propagator, first computing all the
Element solutions and then projecting them onto the domains of the
B variables, often takes too much time and space:

UPPSALA
UNIVERSITET

distinct

Example (already seen in Topic 13: Consistency)
The store {x — {2,...,7},y— {0,1,2} ,z— {-1,...,2}}
has the solutions (3,1,0), (5,0,1), and (6,2, 0)

to the linear equality constraint x =3 -y +5- Zz.

Hence the store {x — {3,5,6},y — {0,1,2},z~ {0,1}}
is domain-consistent. (Continued on slide 18.)

-9-

Globality from a Semantic Point of View

UPPSALA
UNIVERSITET

Some constraints cannot be defined by a conjunction of
Reification primitive constraints without introducing more variables:

Global
Constraints

Example (count([x1,...,Xy], Vv, >,{))
At least ¢ variables of [x1, ..., x,] take the constant value v:

linear
channel
Element

n
extensional (VI 6 1n . b[= X, — V) & Z b/ Z g

distinct i
i=1

Some constraints can be defined by a conjunction of
primitive constraints without introducing more variables:

Example (distinct([X1,-..,Xd]))

Vi,je1..n where | <j:X;# X;

-10-

Globality from a Propagation Point of View

UPPSALA
UNIVERSITET

Reification

Global Some constraints can be defined by a conjunction of
s primitive constraints, but it leads to weak propagation:

linear

channel

Example

Element

e Consider the store {xy, xo, X3 — {4,5}}:
distinct = Upon diStinCt([X1 , Xo, Xg]):

Propagation fails under domain or bounds consistency.
m Upon x1 # X2 & X1 # X3 & Xo # X3!

Propagation succeeds, and it is only search that fails.

Globality from a Propagation Point of View

UPPSALA
UNIVERSITET

Reification Some constraints can be defined by a conjunction of
Global primitive constraints, with strong propagation, but it leads
e 10 propagation with poor time or memory performance:

linear

channel

Example

Element

| Upon strictly_increasing([a,b,c,d,al),
which is rel ([a, b, c,d, a], IRT_LE)) in Gecode:
Propagation fails.

mUpona<b & b<c & c<d & d< a:
Propagation also fails, but the runtime complexity
depends on the sizes of the domains,
rather than on the number of variables.

extensional

distinct

UPPSALA OUtI i ne

UNIVERSITET

Reification

Global
Constraints

linear 3_ linear

channel

Element

extensional

distinct

-13-

vl The linear Predicate

UNIVERSITET

Reification 0 .
Global A linear([a1,...,an],[X1,...,Xn], R, d) constraint, with
Constraints 0

- m [ai,...,ap) a sequence of non-zero integer constants,
P B [Xx1,...,Xy] @ sequence of integer variables,

Element mRin{<,<,=#,> >}, and

extensional .
; m d an integer constant,

distinct

n
holds iff the linear relation Z aj-x; | R dholds.

i=1

We now show how to enforce bounds consistency cheaply
on linear equality. For simplicity of notation, we pick n = 2,
giving ay - xy +a>-xo =d,andrenameintoa-x+b-y = d.

-14-

BC propagator for a binary linear equality:
Rewrite for x (the handling of y is analogous and omitted):

ax+b-y=d & x=(d-b-y)/a

il Upper bound on x, starting from store s:

Global
Constraints

linear

channel

x < [max{(db'n)/anes(}’)}
M

Element

extensional

and (analogously, hence further details are omitted):
x> Imin{(d—b-n)/a|nes(y)}]
Computing M:

M= max{(d—b-n)|nes(y)} /a ifa>0
~Imin{(d=b-n)|nes(y)} /a ifa<O0

-15-

A
UNIVERSITET

Reification

Global
Constraints

linear

channel

Element

extensional

distinct
Na

BC propagator for a binary linear equality (end):
For a > 0 (the case a < 0 is analogous and omitted):

M=max{(d—b-n)|nes(y)} /a
=(d—min{b-nines(y)})/a

_J(d—=b-min(s(y))) /a ifb>0
~ 1 (d—b-max(s(y)))/a ifb<0

This value can be computed and rounded in constant time,
since the constants min(s(y)) and max(s(y)) can be
queried in constant time and since a, b, d are constants.

BC propagator for n-ary linear equality, with n > 1:
A Iterate until fixpoint, to achieve idempotency if wanted:

UNIVERSITET

propagate for each variable x;.
A speed-up can be obtained by computing two general
T expressions once and then adjusting them for each x;:
Global = see § 6.4 of Krzysztof R. Apt, Principles of Constraint
jksliell Programming, Cambridge University Press, 2003.

linear

channel

Example (Justification for aiming at idempotency)

Propagate2-x =3y for {x — {0,...,8},y — {0,...,9}}.
Propagating for x gives: {x — {0,...,8}, y — {0,...,9}}
Propagating for y gives: {x — {0,...,8}, y— {0,...,5}}
Four values were deleted from dom(y) without failing to find
supports, but the bound 8 of x is no longer supported!
Propagating for x gives: {x — {0,...,7}, y —{0,...,5}}
Propagating for y gives: {x — {0,...,7}, y — {0,...,4}}
Propagating for x gives: {x — {0,...,6}, y — {0,...,4}}
Propagating for y gives: {x — {0,...,6}, y — {0,...,4}}

Element

extensional

-17-

https://www.cambridge.org/academic/subjects/computer-science/artificial-intelligence-and-natural-language-processing/principles-constraint-programming?format=PB
https://www.cambridge.org/academic/subjects/computer-science/artificial-intelligence-and-natural-language-processing/principles-constraint-programming?format=PB

Reification

Global
Constraints

linear

channel

Element

extensional

Consistency on n-ary linear constraints:
m Linear equality (=): The described propagator enforces
BC(R) in O(n) time per iteration, but enforcing DC
is NP-hard (so it currently takes time exponential in n).

Example (Why BC(RR) and not BC(Z / D) for equality?)
Propagate x = 3 - y + 5 - z from the store

{x—1{2,...,7}, y—{0,1,2}, z+— {0,1}}.

The described bounds(R) propagator gives
{x—{2,...,7}, y—{0,1,2}, z+— {0,1}},

while a bounds(Z) or bounds(D) propagator would give
{x—{3,...,6}, y—{0,1,2}, z+— {0,1}}.

The described propagator considers real-number supports,
even though the constraint is over integer variables.
Compare with the domain-consistent store on slide 9.

m Linear disequality (#): BC(:) = DC; O(n) time.
m Linear inequality (<, <,>,>): BC(R) = DC; O(n) time.

-18-

UPPSALA
UNIVERSITET

Reification

Global
Constraints

linear

channel

Element

extensional

distinct

Outline

4. channel

-19-

The channel Predicate

UPPSALA
UNIVERSITET

s Definition
Reification

- A channel([xy,...,Xn],[V1,-..,Yn]) constraint holds iff:

Constraints

linear vl,l€1nxlzj<:>}/l:I

channel

Element Propagator for domain consistency:

Stenstonst m For each i ¢ dom(y;): delete j from dom(x;).

v m For each j ¢ dom(x;): delete i from dom(y;).

m Post distinct([Xq,...,Xp]) as implied constraint:
if xa = j = xp with a # b, then y; has to take two distinct
values, namely a and b, which is impossible.

m Posting also distinct([y,...,¥n]) as implied
constraint would bring no further propagation.

-20-

UPPSALA OUtI i ne

UNIVERSITET

Reification

Global
Constraints

linear

channel

Element

extensional

5. Element
distinct
DC

-21 -

il The Element Predicate

UNIVERSITET

Definition (Van Hentenryck and Carillon, 1988)

Reification An Element([xy,...,Xp], i, &) constraint, where the x; are
Global - variables, i is an integer variable, and e is a variable, holds
onstraints . .

if and only if x; = e.

linear

channel

Example

Element
s From the store {i — {1,2,3,4}, e— {7,8,9}}, the

isti constraint Element([6,8,7,8],/, €) propagates under DC
to fixpoint {i — {2,3,4}, e— {7,8}}. If the domain of i is
pruned to {2,4} by another constraint or a search guess,
then e — {8} and subsumption are inferred under DC.

Possible definition of Element([X1,..., Xn],/, €):
(i=1=x1=¢€) & --- & (i=n= x,=e), with
implicative constraints a(---) = (- - -) definable, under
little oronaaation. bv 3 & ry(._-z-z_\ & beABl--Y & a< h

UPPSALA
UNIVERSITET

Reification

Global
Constraints

linear

channel

Element
extensional

distinct
N

Propagation on an array of constants:
We insist on domain consistency, as BC would be too weak.
Obijective, for Element([xy,...,Xn], [, €) and a store s:

i Keep only k in s(i) such that x, = j for some j in s(e).
e Keep only j in s(e) such that x, = j for some k in s(/).

Naive DC propagator:
The computed new domains must be ordered sets:

i The new domain of i is s(i)N{k € 1..n | xx € s(e)}.

e The new domain of eis s(e) N {xx | k € s(i)}.
Sources of inefficiency:

m This always iterates over the entire array [x1, ..., Xa].

m This always requires set intersection.

m This always requires sorting the 2nd argument of the
2nd intersection (or performing ordered set insertion).

_23-

A
UNIVERSITET

Example

Consider the constraint Element([4,5,9,7],/, e) and the
store s = {i — {2,3,4}, e— {2,3,4,5,6,7,8}}. Domain
Reification consistency gives the store {i — {2,4}, e — {5,7}}.

Global

Constraints Smart DC propagator:
linear Construct from [4,5,9, 7] two ordered doubly-linked lists:

channel

Element
extensional

distinct
Na

_24-

A
UNIVERSITET

Example

Consider the constraint Element([4,5,9,7],/, e) and the
store s = {i — {2,3,4}, e— {2,3,4,5,6,7,8}}. Domain
Reification consistency gives the store {i — {2,4}, e — {5,7}}.

Global

Constraints Smart DC propagator:
linear Construct from [4,5,9, 7] two ordered doubly-linked lists:

channel

Element
extensional

distinct
Na

i Follow the i-links: if a value is not in s(i), then unlink
the corresponding two nodes from the two lists.

_24-

A
UNIVERSITET

Example

Consider the constraint Element([4,5,9,7],/, e) and the
store s = {i — {2,3,4}, e— {2,3,4,5,6,7,8}}. Domain
Reification consistency gives the store {i — {2,4}, e — {5,7}}.

Global

Constraints Smart DC propagator:
linear Construct from [4,5,9, 7] two ordered doubly-linked lists:

channel

Element
extensional

distinct
Na

i Follow the i-links: if a value is not in s(i), then unlink
the corresponding two nodes from the two lists.

_24-

Example

Consider the constraint Element([4,5,9,7],/,) and the
store s = {i — {2,3,4}, e— {2,3,4,5,6,7,8}}. Domain
consistency gives the store {i — {2,4}, e — {5,7}}.

UPPSALA
UNIVERSITET

Reification

sl Smart DC propagator:

Zinaar Construct from [4,5,9, 7] two ordered doubly-linked lists:

channel

Element
extensional

distinct

i Follow the i-links: if a value is not in s(/), then unlink
the corresponding two nodes from the two lists.

_24-

Example

Consider the constraint Element([4,5,9,7],/,) and the
store s = {i — {2,3,4}, e— {2,3,4,5,6,7,8}}. Domain
consistency gives the store {i — {2,4}, e — {5,7}}.

UPPSALA
UNIVERSITET

Reification

sl Smart DC propagator:

Zinaar Construct from [4,5,9, 7] two ordered doubly-linked lists:

channel

Element
extensional

distinct

i Follow the i-links: if a value is not in s(/), then unlink
the corresponding two nodes from the two lists.

e Follow the e-links: if a value is not in s(e), then unlink
the corresponding two nodes from the two lists.

_24-

Example

Consider the constraint Element([4,5,9,7],/, e) and the
store s = {i — {2,3,4}, e— {2,3,4,5,6,7,8}}. Domain
consistency gives the store {i — {2,4}, e {5,7}}.

UP A
UNIVERSITET

Reification

Global

Constraints Smart DC propagator:
e Construct from [4,5,9, 7] two ordered doubly-linked lists:

channel

Element
extensional

distinct
Na

i Follow the i-links: if a value is not in s(/), then unlink
the corresponding two nodes from the two lists.

e Follow the e-links: if a value is not in s(e), then unlink
the corresponding two nodes from the two lists.

_24-

Consider the constraint Element([4,5,9,7],/, e) and the
store s = {i — {2,3,4}, e— {2,3,4,5,6,7,8}}. Domain
consistency gives the store {i — {2,4}, e {5,7}}.

UPPSALA
UNIVERSITET

Reification

Global

Constraints Smart DC propagator:
e Construct from [4,5,9, 7] two ordered doubly-linked lists:

channel

Element
extensional

distinct

i Follow the i-links: if a value is not in s(/), then unlink
the corresponding two nodes from the two lists.

e Follow the e-links: if a value is not in s(e), then unlink
the corresponding two nodes from the two lists.

The lists are sorted and are the new domains of / and e.

_24-

Analysis:

UPPS:
UNIVERSITET

m Each unlinking takes constant time.

m No set intersection needs to be computed.

P — An incremental propagator, instead of throwing away an
channel internal data structure when at fixpoint, keeps it for its next
Element invocation: it first repairs that data structure according to
SRS the pruning done by other propagators since its previous
distinct invocation, and then only attempts its own pruning.

Reification

Global
Constraints

m Incremental propagation for Element:

® This requires sorting only at the first invocation,
namely of the array (here [4,5,9,7]).

® This always iterates over an array at most as long as
at the previous invocation.

-25-

UPPSALA OUtI i ne

UNIVERSITET

Reification

Global
Constraints

linear
channel

Element

extensional

distinct
DC

6. extensional

-26 -

Deterministic Finite Automaton (DFA)

UPPSALA
UNIVERSITET

Example (DFA for regular expression ss(ts)*|ts(t|ss)*)

Reification

Global
Constraints

linear

channel

Element
extensional

distinct

Conventions:
m Start state, marked by arc coming in from nowhere: A.
m Accepting states, marked by double circles: D and E.

m Determinism: There is one outgoing arc per symbol in
alphabet ¥~ = {s,t}; missing arcs go to a non-accepting
missing state that has self-loops on every symbol in X.

-27-

vl The extensional Predicate

UNIVERSITET

Reification An extensional([xy,...,Xs], D) constraint holds iff the
Global values taken by the sequence [xi, ..., x,] of variables form
a string of the regular language accepted by the DFA D.

linear

channel

Example

extensicnal The constraint extensional([xy, Xo, X3, X4] , A),
distince where A is the DFA of the previous slide,
. is propagated under domain consistency from the store

Element

{ x1{s,1}, xo— {s,t}, x3 = {s, 1}, x4 = {s,t} }
to the fixpoint

{ x1—={s,t}, X2 — {s}, x3 = {s,t}, x4 — {s,1} }

-28 -

Efficient DC Propagator (Pesant, 2004)

¥
UPPSALA
UNIVERSITET

Let us propagate extensional([xy, X2, X3, X4] ,.A), Where
Reification A is the DFA of two slides ago, from the following store:

Global x1 = {s,t} xo— {s,t} xz+—{s,t} x4 — {s,t}

Constraints
linear

channel

Element
extensional

distinct

-29-

Efficient DC Propagator (Pesant, 2004)

UPPSALA
UNIVERSITET

Forward Phase: Build all paths according to the values in
Reification the domains.
Global x1 = {s,t} xo— {s,t} xz+— {s,t} x4 — {s,t}

Constraints

linear
channel
Element

extensional

distinct
Naive DC

-29-

Efficient DC Propagator (Pesant, 2004)

UPPSALA
UNIVERSITET

Forward Phase: Build all paths according to the values in
Reification the domains.
Global x1 = {s,t} xo— {s,t} xz+— {s,t} x4 — {s,t}

Constraints

linear
channel
Element

extensional

distinct
Naive DC

-29-

Efficient DC Propagator (Pesant, 2004)

UPPSALA
UNIVERSITET

Forward Phase: Build all paths according to the values in
Reification the domains.
Global x1 = {s,t} xo— {s,t} xz+— {s,t} x4 — {s,t}

Constraints

linear
channel
Element

extensional

distinct t

Naive DC i

-29-

Efficient DC Propagator (Pesant, 2004)

Forward Phase: Build all paths according to the values in
Reification the domains.
Global x1 = {s,t} xo— {s,t} xz+— {s,t} x4 — {s,t}

Constraints

linear
s /.0 s
channel A
extensional
; t

-29-

Efficient DC Propagator (Pesant, 2004)

Forward Phase: Build all paths according to the values in
Reification the domains.
Global x1 = {s,t} xo— {s,t} xz+— {s,t} x4 — {s,t}

Constraints
linear

channel

Element

extensional

-29-

Efficient DC Propagator (Pesant, 2004)

Forward Phase: Build all paths according to the values in
Reification the domains.

Global x1 = {s,t} xo— {s,t} xz+— {s,t} x4 — {s,t}

Constraints

linear

channel

s@s@t@

Element

-29-

Efficient DC Propagator (Pesant, 2004)

Forward Phase: Build all paths according to the values in
Reification the domains.
Global x1 = {s,t} xo— {s,t} xz+— {s,t} x4 — {s,t}

Constraints

linear S m S m t Q
A0 B1 D2 B3

i S@SQ

-29-

Efficient DC Propagator (Pesant, 2004)

Forward Phase: Build all paths according to the values in
Reification the domains.

Global x1 = {s,t} xo— {s,t} xz+— {s,t} x4 — {s,t}

Constraints

linear S m S m t Q
A0 B1 D2 B3

C1 S®S@

-29-

Efficient DC Propagator (Pesant, 2004)

Forward Phase: Build all paths according to the values in
Reification the domains.

Global x1 = {s,t} xo— {s,t} xz+— {s,t} x4 — {s,t}

Constraints

A0 B1 D2 B3 D4
Element U U U

extensional

-29-

Efficient DC Propagator (Pesant, 2004)

Forward Phase: Build all paths according to the values in
Reification the domains.

Global x1 = {s,t} xo— {s,t} xz+— {s,t} x4 — {s,t}

Constraints

A0 B1 D2 B3 D4
Element U U U

extensional

-29-

Efficient DC Propagator (Pesant, 2004)

Forward Phase: Build all paths according to the values in
Reification the domains.

Global x1 = {s,t} xo— {s,t} xz+— {s,t} x4 — {s,t}

Constraints

A0 B1 D2 B3 D4
Element U U U

)

-29-

Efficient DC Propagator (Pesant, 2004)

g
UPPSALA
UNIVERSITET

Forward Phase: Build all paths according to the values in
Reification the domains. (B3 & C3 and D4 & E4 can be merged.)

Global x1 = {s,t} xo— {s,t} xz+— {s,t} x4~ {s,t}

Constraints

A0 B1 D2 B3 D4
Element U U U

extensional

-29-

Efficient DC Propagator (Pesant, 2004)

Backward Phase: Delete all paths not of length 4 or not
Reification ending in a vertex corresponding to an accepting state.

Global x1 = {s,t} xo— {s,t} xz+—{s,t} x4~ {s,t}

Constraints

S (B (o)t o(ga)_S Q
AO B1 D2 (53)

extensional

-29-

Efficient DC Propagator (Pesant, 2004)

Backward Phase: Delete all paths not of length 4 or not
Reification ending in a vertex corresponding to an accepting state.

Global x1 = {s,t} xo— {s,t} xz+—{s,t} x4~ {s,t}

Constraints

S (B (o)t o(ga)_S Q
AO B1 D2 (53)

extensional

-29-

Efficient DC Propagator (Pesant, 2004)

Pruning Phase: Delete unsupported values; at fixpoint.
Reification

Global x1 = {s,t} xo— {s,t} xz—{s,t} x4 — {s,t}

Constraints

S (a1 (o)t o(ga)_S Q
AO B1 D2 (53)

extensional

-29-

Efficient DC Propagator (Pesant, 2004)

g
UPPSALA
UNIVERSITET

Pruning Phase: Delete unsupported values; at fixpoint.
Reification

Global Xy {S’t} Xo — {S} X3 — {S,t} X4 — {S,t}

Constraints

S (a1 (o)t o(ga)_S Q
AO B1 D2 (53)

extensional

-29-

Efficient DC Propagator (Pesant, 2004)

Incremental propagation upon x; =t to fixpoint.
Reification

Global Xy = {S’t} Xo —> {S} X3 — {S,t} X4 — {S,t}

Constraints

S (B (o)t o(a)_S Q
AO B1 D2 (53)

extensional

-29-

Efficient DC Propagator (Pesant, 2004)

g
UPPSALA
UNIVERSITET

Incremental propagation upon x; =t to fixpoint.
Reification

Global xi—={t} xe—{s} x3—{s,t} xg—{s,t}

Constraints

Channsl AO B1 D2 B3 D4

extensional

-29-

Efficient DC Propagator (Pesant, 2004)

A
UNIVERSITET

Incremental propagation upon x; =t to fixpoint.
Reification

Global xi—={t} xe—{s} x3—{s,t} xg—{s,t}

Constraints

linear
channel
Element

extensional

-29-

Efficient DC Propagator (Pesant, 2004)

A
UNIVERSITET

Incremental propagation upon x3 = s to subsumption.
Reification

Global xi—={t} xe—{s} x3—{s,t} xg—{s,t}

Constraints

linear
channel
Element

extensional

-29-

Efficient DC Propagator (Pesant, 2004)

A
UNIVERSITET

Incremental propagation upon x3 = s to subsumption.
Reification

Global X1 — {t} Xo— {s} xz—{s} xqg— {s,t}

Constraints

linear
channel
Element

extensional

-29-

A
UNIVERSITET

Reification

Global
Constraints

linear
channel

Element

extensional

Efficient DC Propagator (Pesant, 2004)

Incremental propagation upon x3 = s to subsumption.

X — {t}

Xpr> {s} Xz {s}

X4 {S7 t}

-29-

A
UNIVERSITET

Reification

Global
Constraints

linear
channel

Element

extensional

Efficient DC Propagator (Pesant, 2004)

Incremental propagation upon x3 = s to subsumption.

X — {t}

Xpr> {s} Xz {s}

X4 {S}

-29-

UPPSALA
UNIVERSITET

Reification

Global
Constraints

linear

channel

Element

extensional

distinct

Complexity and Incrementality

Complexity:

The described DC propagator takes O(n- m- q) time and
space for n variables, m values in their domains,

and g states in the DFA.

Incrementality via a stateful propagator:
Keep the graph between propagator invocations.
When the propagator is re-invoked:
Delete edges that no longer correspond to the store.

Run the pruning phase.
Generalisation:
The described propagator works unchanged for an NFA

(non-deterministic finite automaton): Gecode offers
no syntax for this, but MiniZinc has regular_nfa.

-30-

Bibliography

[§ Beldiceanu, Nicolas; Carlsson, Mats; Petit, Thierry.

Reification

Global Deriving filtering algorithms from constraint checkers.
Cé"m'“‘s Proceedings of CP 2004, Lecture Notes in Computer
e Science 3258, pages 107 —122. Springer, 2004.
Element @ Pesant, GI”GS

extensional

A regular language membership constraint for finite
sequences of variables.

Proceedings of CP 2004, Lecture Notes in Computer
Science 3258, pages 482 —-495. Springer, 2004.

¥ Hopcroft, John E.; Motwani, Rajeev; Uliman, Jeffrey D.
Intro. to Automata Theory, Languages, & Computation.
Third edition. Addison-Wesley, 2007.

-31-

https://dx.doi.org/10.1007/978-3-540-30201-8_11
https://dx.doi.org/10.1007/978-3-540-30201-8_36
https://dx.doi.org/10.1007/978-3-540-30201-8_36
https://www.pearson.com/us/higher-education/program/Hopcroft-Introduction-to-Automata-Theory-Languages-and-Computation-3rd-Edition/PGM64331.html

il Outline

UNIVERSITET

Reification

Global
Constraints

linear
channel
Element

extensional

7.distinct
Naive DC Propagator
Efficient DC Propagator
Efficient BC Propagator

-32-

bl The distinct Predicate

UNIVERSITET

Definition (Lauriere, 1978)

Global A distinct([xq,..., Xp]) constraint holds if and only if all
Constraints the variables x; take different values.

linear

Reification

chennet This is equivalent to w disequality constraints:

Element

extensional . s . .
— Vi,je1..n where i <j:X;# X;
Originally, the distinct constraint was just a wrapper for
posting those w disequality constraints. The first
efficient domain-consistency propagators for distinct
were introduced in 1994; one of them is discussed below.
After that, several other efficient propagators have been
proposed to enforce various consistencies.

-33-

UPPSALA
UNIVERSITET

Reification

Global
Constraints

linear

channel

Element

extensional

Example

Consider the store {xq, X2, X3 — {4,5}}
and the constraint distinct([xq, X2, X3]):

m Value consistency: Nothing is done to the domains.
m Bounds consistency: A failure is detected.
m Domain consistency (DC): A failure is detected.

What consistency to use is problem-dependent
and even instance-dependent!

Example (distinct([u,v,w,x,Yy,2]))
From the store

{ ur—{0,1}, vi—»{1,2}, w— {0,2}, }
x— {1,838}, y—{2,3,4,5}, z— {5,6}

the values are pruned upon DC.

_34-

el |s DC Needed for distinct?

UNIVERSITET

Example (Golomb Rulers)

Reification Design a ruler with n ticks such that:
s m The distances between any 2 distinct ticks are distinct.
RS m The length of the ruler is minimal.

et For n = 6, an optimal ruler is [0, 1,4, 10,12,17].
This very hard problem has applications in crystallography.

Element

extensional

n value consistency domain consistency

7 950 nodes 474 nodes
8 7,622 nodes 3,076 nodes
9 55,930 nodes 16,608 nodes
10 413,922 nodes 97,782 nodes

11 6,330,568 nodes 1,448,666 nodes

Good search-tree reduction: worth looking for a propagator!

-35-

U;’PSALA OUtI i ne

UNIVERSITET

Reification

Global
Constraints

linear
channel
Element
extensional
distinct

Naive DC
Propagator

cient BC

7.distinct
Naive DC Propagator

-36-

UPPSALA
UNIVERSITET

Reification

Global
Constraints

linear
channel
Element
extensional
distinct

Naive DC
Propagator

Variable-Value Graph:
Construct a bipartite graph from the current domains:

u— {0,1}

v {1,2}

w — {0,2}

x— {1,3}

y—{2,3,4,5}

z— {5,6}

-37-

UPPS:
UNIVERSITET

Reification

Global
Constraints

linear
channel
Element

extensional

distinct
Naive DC
P

Variable-Value Graph:

A (maximum) matching is a (max-size) subset of edges so

that no vertex is incident to two of its edges. Example 1:
u— {0,1}

v {1,2}

w— {0,2}

x— {1,3}

y—{2,3,4,5}

z— {5,6}

-37-

UPPS:
UNIVERSITET

Reification

Global
Constraints

linear
channel
Element
extensional

distinct

Variable-Value Graph:

A (maximum) matching is a (max-size) subset of edges so

that no vertex is incident to two of its edges. Example 2:
u— {0,1}

v {1,2}

w— {0,2}

x— {1,3}

y—{2,3,4,5}

z— {5,6}

-37-

UPPS:
UNIVERSITET

Reification

Global
Constraints

linear
channel
Element

extensional

distinct
Naive DC
P

Variable-Value Graph:

A (maximum) matching is a (max-size) subset of edges so

that no vertex is incident to two of its edges. Example 2:
u— {0,1}

v {1,2}

w — {0,2}

x+—{1,3}

y—{2,3,4,5}

z— {5,6}

A max matching is (here) perfect iff it covers all variables:
it is a solution to the considered distinct(---) constraint.
-37-

Fwiestll Naive DC propagator:
If no perfect matching exists, then fail.
Compute all perfect matchings and mark their edges.

clobal For every unmarked edge between a variable v and a
Constraints value d: prune value d from dom(v).

Hiness But there are as many perfect matchings as solutions!

Reification

channel
Element

ppmepeY == \WWe have not addressed the time issue.

distinct
Naive DC
P

Matching theory to the rescue!
There is a relationship between the edges in a maximum
matching and the edges in all other maximum matchings!

1= Hence we need only compute one perfect matching!

-38-

UPPSALA
UNIVERSITET

Reification

Global
Constraints

linear
channel
Element
extensional

distinct

pagatc
Efficient DC
Propagator

Outline

7.distinct

Efficient DC Propagator

-39-

UpPS Efficient DC propagator (Régin, 1994) (Costa, 1994):

UNIVERSITET

Start from a perfect matching, and orient all edges: if in
matching, then from variable to value, else the other way.

u— {0,1}
Reification
Global
Constraints V= {1 , 2}
linear
h. il
channe W H {07 2}
Element
extensional
distinct X = {1 ’ 3}
N
Efficient DC
Propagaior y—{2,3,4,5}

z+— {5,6}

-40-

UpPS Efficient DC propagator (Régin, 1994) (Costa, 1994):

UNIVERSITET

Start from a perfect matching, and orient all edges: if in
matching, then from variable to value, else the other way.

u— {0,1}
Reification
Global
Constraints V= {1 , 2}
linear
h. il
channe W H {07 2}
Element
extensional
distinct X = {1 ’ 3}
N
Efficient DC
Propagaior y—{2,3,4,5}

z+— {5,6}

-40-

ey Efficient DC propagator (Régin, 1994) (Costa, 1994):

UNIVERSITET

Start from all unmatched vertices (necessarily values here)
and mark all arcs on all simple paths: arcs can be flipped.

u— {0,1}
Reification
Global
Constraints V= {1 , 2}
linear
channel

w — {0,2}
Element
extensional
distinct X = {1) 3}
N
Efficient DC
propagtor y — {2,3,4,5}

z— {5,6}

-40-

ey Efficient DC propagator (Régin, 1994) (Costa, 1994):

UNIVERSITET

Start from all unmatched vertices (necessarily values here)
and mark all arcs on all simple paths: arcs can be flipped.

u— {0,1}
Reification
Global
Constraints V= {1 , 2}
linear
channel

w — {0,2}
Element
extensional
distinct X = {1) 3}
N
Efficient DC
propagtor y — {2,3,4,5}

z— {5,6}

-40-

ey Efficient DC propagator (Régin, 1994) (Costa, 1994):

UNIVERSITET

Start from all unmatched vertices (necessarily values here)
and mark all arcs on all simple paths: arcs can be flipped.

u— {0,1}
Reification
Global
Constraints V= {1 , 2}
linear
channel

w — {0,2}
Element
extensional
distinct X = {1) 3}
N
Efficient DC
propagtor y — {2,3,4,5}

z— {5,6}

-40-

ey Efficient DC propagator (Régin, 1994) (Costa, 1994):

UNIVERSITET

Start from all unmatched vertices (necessarily values here)
and mark all arcs on all simple paths: arcs can be flipped.

u— {0,1}
Reification
Global
Constraints V= {1 , 2}
linear
channel

w — {0,2}
Element
extensional
distinct X = {1) 3}
N
Efficient DC
propagtor y — {2,3,4,5}

z— {5,6}

-40-

ey Efficient DC propagator (Régin, 1994) (Costa, 1994):

UNIVERSITET

Start from all unmatched vertices (necessarily values here)
and mark all arcs on all simple paths: arcs can be flipped.

u— {0,1}
Reification
Global
Constraints V= {1 , 2}
linear
channel

w — {0,2}
Element
extensional
distinct X = {1) 3}
N
Efficient DC
propagtor y — {2,3,4,5}

z— {5,6}

-40-

UpPS Efficient DC propagator (Régin, 1994) (Costa, 1994):

UNIVERSITET

Mark all arcs in all strongly connected components (SCCs):
the variables of an SCC take all the values of that SCC.

u— {0,1}
Reification
Global
Constraints V= {1 , 2}
linear
h. il
channe W H {07 2}
Element
extensional
distinct X = {1 ’ 3}
N
Efficient DC
Propagalor y—{2,3,4,5}

z+— {5,6}

-40-

UpPS Efficient DC propagator (Régin, 1994) (Costa, 1994):

UNIVERSITET

Mark all arcs in all strongly connected components (SCCs):
the variables of an SCC take all the values of that SCC.

u— {0,1}
Reification
Global
Constraints V= {1 , 2}
linear
h. il
channe W H {07 2}
Element
extensional
distinct X = {1 ’ 3}
N
Efficient DC
Propagalor y—{2,3,4,5}

z+— {5,6}

-40-

UpPS Efficient DC propagator (Régin, 1994) (Costa, 1994):

UNIVERSITET

Mark all arcs in all strongly connected components (SCCs):
the variables of an SCC take all the values of that SCC.

u— {0,1}
Reification
Global
Constraints V= {1 , 2}
linear
h. il
channe W H {07 2}
Element
extensional
distinct X = {1 ’ 3}
N
Efficient DC
Propagalor y—{2,3,4,5}

z+— {5,6}

-40-

UpPS Efficient DC propagator (Régin, 1994) (Costa, 1994):

UNIVERSITET

Mark all arcs in all strongly connected components (SCCs):
the variables of an SCC take all the values of that SCC.

u— {0,1}
Reification
Global
Constraints V= {1 , 2}
linear
h. il
channe W H {07 2}
Element
extensional
distinct X = {1 ’ 3}
N
Efficient DC
Propagalor y—{2,3,4,5}

z+— {5,6}

-40-

UpPS Efficient DC propagator (Régin, 1994) (Costa, 1994):

UNIVERSITET

Mark all arcs in all strongly connected components (SCCs):
the variables of an SCC take all the values of that SCC.

u— {0,1}
Reification
Global
Constraints V= {1 , 2}
linear
h. il
channe W H {07 2}
Element
extensional
distinct X = {1 ’ 3}
N
Efficient DC
Propagalor y—{2,3,4,5}

z+— {5,6}

-40-

UpPS Efficient DC propagator (Régin, 1994) (Costa, 1994):

UNIVERSITET

Mark all arcs in all strongly connected components (SCCs):
the variables of an SCC take all the values of that SCC.

u— {0,1}
Reification
Global
Constraints V= {1 , 2}
linear
h. il
channe W H {07 2}
Element
extensional
distinct X = {1 ’ 3}
N
Efficient DC
Propagalor y—{2,3,4,5}

z+— {5,6}

-40-

UpPS Efficient DC propagator (Régin, 1994) (Costa, 1994):

UNIVERSITET

Mark all arcs in all strongly connected components (SCCs):
the variables of an SCC take all the values of that SCC.

u— {0,1}
Reification
Global
Constraints V= {1 , 2}
linear
h. il
channe W H {07 2}
Element
extensional
distinct X = {1 ’ 3}
N
Efficient DC
Propagalor y—{2,3,4,5}

z+— {5,6}

-40-

UpPS Efficient DC propagator (Régin, 1994) (Costa, 1994):

Bl Every arc that is neither in the chosen perfect matching nor
marked is in no perfect matching: accordingly.

u—{0,1}

Reification

Global

Constraints V= {1 , 2}

linear

channel W {07 2}

Element

extensional

distinct X = {1 ’ 3}

Fropssior y+—1{2,3,4,5}

z+— {5,6}

-40-

UpPS Efficient DC propagator (Régin, 1994) (Costa, 1994):

Bl Every arc that is neither in the chosen perfect matching nor
marked is in no perfect matching: accordingly.

u—{0,1}

Reification

Global

Constraints V= {1 , 2}

linear

channel W {07 2}

Element

extensional

distinct X = { 73}

Fropssior y+—1{2,3,4,5}

z+— {5,6}

-40-

UpPS Efficient DC propagator (Régin, 1994) (Costa, 1994):

Bl Every arc that is neither in the chosen perfect matching nor
marked is in no perfect matching: accordingly.

u—{0,1}

Reification

Global

Constraints V= {1 , 2}

linear

channel W {07 2}

Element

extensional

distinct X = { 73}

Fropageier vy {2,3,4,5}
z+— {5,6}

-40-

UpPS Efficient DC propagator (Régin, 1994) (Costa, 1994):

B Every arc that is neither in the chosen perfect matching nor
marked is in no perfect matching: accordingly.

u—{0,1}

Reification

Global

Constraints V= {1 , 2}

linear

channel W {07 2}

Element

extensional

distinct X = { 73}

Emig;&? y— { ,3,4, 5}
z+— {5,6}

-40-

UpPS Efficient DC propagator (Régin, 1994) (Costa, 1994):

UNIVERSITET

Every arc that is in the chosen perfect matching but
not marked is in every perfect matching: fixed variable.

u— {0,1}
Reification
Global
Constraints V= {1 , 2}
linear
h. il
channe W H {07 2}
Element
extensional
distinct X = { ’3}
N
Efficient DC
Propagator y — { s 747 5}
z+— {5,6}

-40-

Underlying Theorem from Matching Theory

UP A
UNIVERSITET

Reification

Theorem (Berge, 1970) (Petersen, 1891)

Edge e belongs to some maximum matching if and only fif,
for an arbitrarily chosen maximum matching M:

Element e belongs to a path of an even number of edges that
extensional starts at some node that is not incident to an edge of M
isti and that alternates between edges in M and edges not
in M;
or e belongs to a cycle of an even number of edges that
alternates between edges in M and edges not in M
(that is, the arc corresponding to e belongs to an SCC).

Global
Constraints

linear

channel

_41-

Complexity and Incrementality

A
UNIVERSITET

Complexity:
Reffication The described DC propagator takes

Global .
Constraints O(m . \/ﬁ) time and O(m . n) Space
linear

ShermrA for n variables and m > n values in their domains.

Element

Incrementality via stateful propagator:
Keep the variable-value graph between invocations.
When the propagator is re-invoked:

Delete marks on arcs.
Delete arcs that no longer correspond to the store.

If an arc of the old perfect matching was deleted,
then first compute a new perfect matching.

Mark and prune.

extensional

disti

_42-

U;’PSALA OUtI i ne

UNIVERSITET

Reification

Global

Constraints

linear
channel
Element
extensional

distinct

Efficient BC
Propagator

7.distinct

Efficient BC Propagator

COCP/M4CO 16| 43-

A
UNIVERSITET

Reification

Global
Constraints

linear
channel
Element
extensional

distinct
Na

COCP/M4CO 16

Is BC Needed for distinct?
Propagation to BC often suffices for distinct.

Example

Propagation to BC suffices to infer unsatisfiability for
distinct([x,y, z]) from the store {x,y,z — {4,5}}.

Efficient BC propagators:
There are BC propagators that take O(n - Ig n) time:

m Puget @ AAAI 1998
m Mehlhorn and Thiel @ CP 2000
m Lépez-Ortiz, Quimper, Tromp, van Beek @ IJCAI 2003

The latter two run in O(n) time if sorting can be avoided,
say when there are as many values as variables.

_44 -

Reification

Global
Constraints

linear
channel
Element

extensional

COCP/M4CO 16

Bibliography

B

Régin, Jean-Charles.
A filtering algo. for constraints of difference in CSPs.
AAAI 1994, pages 362—-367, 1994.

Costa, Marie-Christine.
Persistency in maximum cardinality bipartite matchings.
Operations Research Letters, 15(3):143—-149, 1994.

Berge, Claude.
Graphes et Hypergraphes. Dunod, 1970.

Petersen, Julius.
Die Theorie der regularen graphs.
Acta Mathematica, 15(1):193—-220, 1891.

van Hoeve, Willem-Jan.
The Alldifferent Constraint: A Survey.
Extended from the versior;sin ERCIM Workshop 2001.

https://www.aaai.org/Papers/AAAI/1994/AAAI94-055.pdf
https://dx.doi.org/10.1016/0167-6377(94)90049-3
https://dx.doi.org/10.1007/BF02392606
https://www.andrew.cmu.edu/user/vanhoeve/papers/alldiff.pdf

	Reification
	Global Constraints
	linear
	channel
	Element
	extensional
	distinct
	Naïve DC Propagator
	Efficient DC Propagator
	Efficient BC Propagator

