Topic 4: Modelling (for CP and LCG)'
(Version of 23rd October 2023)

Pierre Flener and Gustav Bjérdal

Optimisation Group

Department of Information Technology
Uppsala University

Sweden

Course 1DL442:

Combinatorial Optimisation and Constraint Programming,
whose part 1 is Course 1DL451:

Modelling for Combinatorial Optimisation

"Many thanks to Guido Tack for feedback

https://user.it.uu.se/~pierref
https://www.it.uu.se/katalog/gusbj192
https://www.it.uu.se/research/group/optimisation

UPPS:
UNIVERSITET

Viewpoints &
Dummy Values

Implied
Constraints

Redundant
Variables &

Channelling
Constraints

Pre-
Computation

COCP/M4CO 4

Outline

1. Viewpoints & Dummy Values
2. Implied Constraints
3. Redundant Variables & Channelling Constraints

4. Pre-Computation

U;’PSALA OUtI i ne

UNIVERSITET

Viewpoints &
Dummy Values

1. Viewpoints & Dummy Values

Implied
Constraints

Redundant
Variables &
Channelling
Constraints

Pre-
Computation

COCP/M4CO 4

UPPSALA
UNIVERSITET

Viewpoints & . express problem in terms of

Dummy Values

Implied

Constraints ® parameters,
Redundant
Variables & . . .
Channelling ® decision variables,
Constraints
Pre- .
Computation ® constraints, and
® objective.
: solve using a state-of-the-art solver.

COCP/MACO 4 4.

UPPSALA
UNIVERSITET

Viewpoints &
Dummy Values

Implied
Constraints

Redundant
Variables &
Channelling
Constraints

Pre-
Computation

COCP/M4CO 4

Example (Student Seating Problem)
Given:

@ B nStudents students,
O B nPgms study programmes
L2] .

o B nChairs chairs around nTables tables, and
% B Chairs[t] as the set of chairs of table t,
(4]) find a seating arrangement such that:

(D each table has students of distinct study

o programmes;

[15] (each table has either at least half or none of its

rmaenis = chairs occupied;

Mramieo J g = necudencs a maximum number of student preferences on

Chairs = [1..4,5..8,9..12,13..16, 17..20] . . g
being seated at the same table are satisfied.

What are suitable decision variables for this problem?
-5-

UPPSALA
UNIVERSITET

Viewpoints &
Dummy Values

Implied
Constraints

Redundant
Variables &
Channelling
Constraints

Pre-
Computation

COCP/M4CO 4

A viewpoint is a choice of decision variables.

Example (Student Seating Problem)
Viewpoint 1: Which chair does each student sit on?

% Chair[s] = the chair of student s:
array[l..nStudents] of var 1..nChairs: Chair;
constraint all_different (Chair); % max 1 student per chair

Viewpoint 2: Which student, if any, sits on each chair?

int: dummyS = 0; % Advice: also experiment with nStudents+l

set of int: StudentsAndDummy = 1..nStudents union {dummyS};

% Student[c] = the student, possibly dummy, sitting on chair c:

array[l..nChairs] of var StudentsAndDummy: Student;

constraint global_cardinality_closed(Student, [dummyS]++[i]|i in 1..nStudents],
[nChairs - nStudents] ++ [1 | i in 1..nStudents]);

%$all_different (Student) if nStudents+l..nChairs are dummy students

We revisit this problem at slide 19 and the choice of dummy values
in Topic 5: Symmetry, as well as in Topic 8: Inference & Search in CP & LCG.

Let us see how viewpoints differ when stating constraints.
-6-

UP
UNIVERSITET

Example (Objects, Shapes, and Colours)

There are n objects, s shapes, and c colours, with s > n.
Assign a shape and a colour to each object such that:

Viewpoints & the objects have distinct shapes;

Dummy Values

Implied the numbers of objects of the actually used colours are distinct;
::z:::f other constraints, yielding NP-hardness and actually
Variables & distinguishing the objects from the shapes, are satisfied.
annelling
Constraints
Pre- This problem can be modelled from different viewpoints:

Computation

Which colour, if any, does each shape have?

Which shapes, if any, does each colour have?

Which shape and colour does each object have?
Each viewpoint comes with benefits and drawbacks.

COCP/MACO 4 7.

UPPSALA
UNIVERSITET

Viewpoints &
Dummy Values

Constraints

Redundant
Variables &
Channelling
Constraints

4
2
3
4
Implied 5
6
7
8

Pre-
Computation

COCP/M4CO 4

Example (Objects, Shapes, and Colours)
Viewpoint 1: Which colour, if any, does each shape have?

int: n; % number of objects
int: s; % number of shapes

constraint assert (s >= n,)2

int: c; % number of colours

int: dummyColour = 0; % Advice: also experiment with c+1

set of int: ColoursAndDummy = 1..c union {dummyColour};

% Colour([i] = the colour, possibly dummy, of the object of shape 1i:

array[l..s] of var ColoursAndDummy: Colour;
% There are n objects:
constraint count (Colour,dummyColour) = s - nj;
% The numbers of objects of the actually used colours are distinct:
constraint all_different_except (global_cardinality (Colour,1..c),{0});
The objects have distinct shapes:

implied by lines 6 and 8!

state here the other constraints

solve satisfy;

o°

de oe

So what are the shape and colour of a particular object?!
= Map the objects onto the shapes with non-dummy colour!

-8-

UPPSALA
UNIVERSITET

4

2

Viewpoints & 3

Dummy Values 4

Implied 5

Constraints 6

Redundant 7

Variables & 8
Channelling

Constraints 9

10

Pre- 11
Computation

12

13

14

15

16

COCP/M4CO 4

Example (Objects, Shapes, and Colours)
Viewpoint 2: Which shapes, if any, does each colour have?

int: n; % number of objects
int: s; % number of shapes
constraint assert (s >= n,)8
int: c; % number of colours

o° o

o

Shapes[i] = the set of shapes of colour i:
array[l..c] of var set of 1..s: Shapes;
There are n objects:
implied by line 14 below!
% The numbers of objects of the actually used colours are distinct:

o\

o\°

constraint all_different_except ([card(Shapes[colour]) | colour in 1..c]l,{0});
% The objects have distinct shapes:

constraint n = card(array_union (Shapes));

% ... state here the other constraints

solve satisfy;

Post-process: map the objects onto actually used shapes.
Can we also model this viewpoint without set variables? = Yes, see next slide!

_9-

Example (Objects, Shapes, and Colours)
Viewpoint 2: Which shapes, if any, does each colour have?

UPPSALA
UNIVERSITET

1 int: n; % number of objects
2 int: s; % number of shapes
Viewpoints & 3 constraint assert (s >= n,)2
Dummy Values , ;.. <. 3 pnumber of colours
Implied 5 %
Constraints 6 &
Redundant 7 % NbrObj[i, j] = the number of objects of colour i and shape Jj:
Variables & 8 array[l..c,1..s] of var 0..1: NbrObj;
Channelling o .)
Constraints 9 % There are n objects:
. 10 constraint n = sum(NbrObj);
Cﬁ%pmmmn 11 % The numbers of objects of the actually used colours are distinct:
12 constraint all_different_except ([sum (NbrObj[colour,..]) | colour in 1..c]l,{0});

13 $ The objects have distinct shapes:

14 constraint forall (shape in 1..s) (sum(NbrObj[..,shape]) <=1);
15 $... state here the other constraints

16 solve satisfy;

Which model for viewpoint 2 is clearer or better? == Ask others and try!

COCP/M4CO 4 -10-

UNIVERSITET

Viewpoints &
Dummy Values

Constraints

Redundant
Variables &
Channelling
Constraints 9

4
2
3
4
Implied 5
6
7
8

Pre-
Computation "

COCP/M4CO 4

Example (Objects, Shapes, and Colours)
Viewpoint 3: Which shape and colour does each object have?

int: n; % number of objects
int: s; % number of shapes
constraint assert (s >= n,)8

[

int: c; % number of colours

% Shape[i] = the shape of object i:
array[l..n] of var 1l..s: Shape;
% Colour[i] = the colour of object i:

array[l..n] of var 1l..c: Colour;

% There are n objects:

% implied by lines 6 and 8!

% The numbers of objects of the actually used colours are distinct:
constraint all_different_except (global_cardinality_closed(Colour,1..c),{0});
% The objects have distinct shapes:

constraint all_different (Shape);

% ... state here the other constraints
solve satisfy;

We needed to use two parallel arrays in lines 6 and 8 with the same index set
but different domains in order to mimic records of two decision variables.

S11-

Which viewpoint is better in terms of:

UNIVERSITET m Size of the search space:

* Viewpoint 1: O((c + 1)®), which is independent of n
* Viewpoint 2: O(25°), which is independent of n
Viewpoints & * Viewpoint 3: (’)(Sn . Cn)

Dummy Values

UPPSALA

— Does this actually matter?
Constraints m Ease of formulating the constraints and the objective:
s * |t depends on the unstated other constraints.
ranaling e |deally, we want a viewpoint that allows global constraints to be used.
Pre- m Performance:
Gomputaton * Hard to tell: we have to run experiments!
m Readability:

® Who is going to read the model?
® What is their background?

There are no correct answers here:
we actually need to think about this and run experiments.

COCP/M4CO 4 S12-

Outline

UNIVERSITET

Viewpoints &
Dummy Values

Implied
Constraints

Redundant . .
Variables & 2. Implied Constraints
Channelling

Constraints

Pre-
Computation

COCP/M4CO 4 -13-

UPPS,
UNIVERSITET

Viewpoints &

Dummy Values

Implied
Constraints

Redundant
Variables &
Channelling
Constraints

Pre-
Computation

COCP/M4CO 4

Example (Magic Series of length n: model ()

The element atindex 1 inI = 0.. (n-1) is the number of occurrences of i.
Solutions: Magic=[1,2,1,0] and Magic=[2,0,2,0] for n=4.

0 1 coo m=1

Decision variables: Magic = [ex]ex] - [e1]

Problem Constraint:
forall(i in I) (Magic[i] = sum(j in I) (Magic[j] = 1))
or, logically equivalently but better:
forall(i in I) (Magic[i] = count (Magic,i))
or, logically equivalently and even better:
global_cardinality_closed(Magic, arrayld(I, [i1 | 1 in I]), Magic)
Implied Constraints:
sum (Magic) = n /\ sum(i in I) (i * Magic[i]) = n
Depending on the formulation above of the problem constraint,
the implied constraints accelerate a CP solver up to 100 times for n=150.

_14-

https://user.it.uu.se/~pierref/courses/COCP/models/magicSeries.mzn

UPPSALA
UNIVERSITET

Viewpoints &
Dummy Values

Implied
Constraints

Redundant
Variables &
Channelling
Constraints

Pre-
Computation

COCP/M4CO 4

Definition

An implied constraint, also called a redundant constraint,
is a constraint that logically follows from other constraints.

Benefit:

Solving may be faster, without losing any solutions.

However, not all implied constraints accelerate the solving.

Good practice in MiniZinc:

Flag implied constraints using implied_constraint. This allows backends
to handle them differently, if wanted (see Topic 9: Modelling for CBLS):
predicate implied_constraint (var bool: c) = c; VS
predicate implied_constraint (var bool: c¢) = true;

Example

constraint implied_ constraint (sum(Magic) = n);

In Topic 5: Symmetry,
we see the equally recommended symmetry_breaking_constraint.
-15-

UPPSALA OUtI i ne

UNIVERSITET

Viewpoints &
Dummy Values

Implied
Constraints

Redundant
Variables &
Channelling
Constraints

Pre-

el 3. Redundant Variables & Channelling Constraints

COCP/M4CO 4 6.

Viewpoints &

Dummy Values

Implied
Constraints

Redundant
Variables &
Channelling
Constraints

Pre-
Computation

COCP/M4CO 4

Example (n-queens)

Use both the n? decision variables Queen[r,c] in0..1
and the n decision variables Row[c] in 1. .n.

Definition

A redundant decision variable denotes information already denoted by other
variables: mutual redundancy (same information) vs non-mutual redundancy.

Benefit: Easier modelling, or faster solving, or both.
Careful, the terminology differs: derived parameters vs redundant variables.

Examples (see Topic 6: Case Studies)
m Each Queen|. ., c] slice is mutually redundant with the variable Row [c].
m Best model of Black-Hole Patience: mutual redundancy.

m Models 1 and 3 of Warehouse Location: non-mutual redundancy.
m Sport Scheduling: mutual redundancy.

_17-

: Example (n-queens)
UNIVERSITETD One-way channelling from each decision variable Row [c] to one of
its mutually redundant decision variables of the slice Queen(.., c]:
constraint forall(c in 1..n) (Queen]| ,cl = 1);
Mlievdl \What sets the other decision variables of the slice Queen[..,c]?

Dummy Value

Implied ' ags

Constraints Deflr“tlon

Vaiamees A channelling constraint fixes the value of either some (1-way channelling)
Conemameor all (2-way channelling) decision variables when the values of the decision

Pre- variables they are redundant with are fixed.
Bl This applies to both sets of decision variables.

Examples (see Topic 6: Case Studies)
m Best model of Black-Hole Patience: 2-way channelling.
m Models 1 and 3 of Warehouse Location: 1-way channelling.
m Sport Scheduling: 2-way channelling.

COCP/M4CO 4 -18-

UPPSALA
UNIVERSITET

Viewpoints &
Dummy Values

Implied
Constraints

Redundant
Variables &
Channelling
Constraints

Pre-
Computation

COCP/M4CO 4

a H» W N =

Example (Student Seating, viewpoint 2 revisited)

int: dummyS = 0; % Advice: also experiment with nStudents+1
set of int: StudentsAndDummy = 1..nStudents union {dummyS};
% Student[c] = the student, possibly dummy, sitting on chair c:

array[l..nChairs] of var StudentsAndDummy: Student;
constraint global_cardinality_closed(Student, [dummyS]++[i]|i in 1..nStudents],

[nChairs - nStudents] ++ [1 | i in 1..nStudents]);
int: dummyP = 0; % Advice: also experiment with nPgms+1
set of int: PgmsAndDummy = 1..nPgms union {dummyP};
% Pgm[s] = the given study programme of student s:
array[l..nStudents] of 1..nPgms: Pgm;
% Programme[c] = the programme of the student on chair c:
array[l..nChairs] of var PgmsAndDummy: Programme; % non-mut. red. w/ Student
% l-way channelling from Student to Programme, in case dummyS = 0:
constraint forall(c in 1..nChairs)
(Programme [c] = arrayld(StudentsAndDummy, [dummyP] ++ Pgm) [1);

o

% (1) Each table has students of distinct study programmes:
constraint forall (T in Chairs)
(all_different_except ([Programme[c] | c in T]), {dummyP});

)

. % constraint (2) and objective (3) of slide 5
Note that Student uniquely determines Programme via Pgm, but not
vice-versa: one can also formulate (1) directly with Student via Pgm.

-19-

Outline

UNIVERSITET

Viewpoints &
Dummy Values

Implied
Constraints

Redundant
Variables &
Channelling
Constraints

Pre-
Computation

4. Pre-Computation

COCP/M4CO 4 20-

UPPSALA
UNIVERSITET

Viewpoints &
Dummy Values

Implied
Constraints

Redundant
Variables &
Channelling
Constraints

Pre-
Computation

COCP/M4CO 4

Example (Prize-Pool Division)

Consider a maximisation problem where the objective function is the division
of an unknown prize pool by an unknown number of winners:

array([l..5] of int: Pools = [1000,5000,15000,20000,250007;
var 1..5: x; % index of the actual prize pool within Pools
var 1..500: nbrWinners; % the number of winners

constraint ... x ... nbrWinners ...;

solve maximize Pools[x] div nbrWinners; % implicit: element!

Observation: We should beware of using the div function on decision
variables, because:

m |t yields weak , at least in CP and LCG solvers.
m s takes unnecessary time and memory.
Idea: We can precompute all possible objective values, as derived parameters.

_21-

UPPS:
UNIVERSITET

Viewpoints &
Dummy Values

Implied
Constraints

Redundant
Variables &
Channelling
Constraints

Pre-
Computation

COCP/M4CO 4

o g~ W N

Example (Prize-Pool Division, revisited)

Precompute a 2d array of derived parameters, indexed by 1. .5and 1..500,

for each possible value pair of x and nbrWinners:

array[l..5] of int: Pools = [1000,5000,15000,20000,250007;

var 1..5: x; % index of the actual prize pool within Pools

var 1..500: nbrWinners; % the number of winners

constraint ... x ... nbrWinners ...;

array[l..5,1..500] of int: ObjVval = array2d(l..5, 1..500,
[Pools[p] divn | p in 1..5, n in 1..500]); % div on par!

solve maximize ObjVall[:x, 1; % implicit: 2d-element!

Example (Kakuro Puzzle, reminder from Topic 3: Constraint Predicates)

We precomputed a1l _different_sum (X, o) for |X| € 2..7 and o € 3..35,
Saytable([x,y],[Il,3|3,l|])forall_different_sum([x,y],4)
and table([y,z],[11,212,11]1) forall_different_sum([y,z],3),
because MiniZinc has no al1_different_sum predicate and its definition by
a conjunction of a11_different and sum has too poor

-22-

	Viewpoints & Dummy Values
	Implied Constraints
	Redundant Variables & Channelling Constraints
	Pre-Computation

