
Topic 4: Modelling (for CP and LCG)1

(Version of 23rd October 2023)

Pierre Flener and Gustav Björdal

Optimisation Group
Department of Information Technology

Uppsala University
Sweden

Course 1DL442:
Combinatorial Optimisation and Constraint Programming,

whose part 1 is Course 1DL451:
Modelling for Combinatorial Optimisation

1Many thanks to Guido Tack for feedback

https://user.it.uu.se/~pierref
https://www.it.uu.se/katalog/gusbj192
https://www.it.uu.se/research/group/optimisation

Viewpoints &
Dummy Values

Implied
Constraints

Redundant
Variables &
Channelling
Constraints

Pre-
Computation

Outline

1. Viewpoints & Dummy Values

2. Implied Constraints

3. Redundant Variables & Channelling Constraints

4. Pre-Computation

COCP/M4CO 4 - 2 -

Viewpoints &
Dummy Values

Implied
Constraints

Redundant
Variables &
Channelling
Constraints

Pre-
Computation

Outline

1. Viewpoints & Dummy Values

2. Implied Constraints

3. Redundant Variables & Channelling Constraints

4. Pre-Computation

COCP/M4CO 4 - 3 -

Viewpoints &
Dummy Values

Implied
Constraints

Redundant
Variables &
Channelling
Constraints

Pre-
Computation

Recap

1 Modelling: express problem in terms of

• parameters,

• decision variables,

• constraints, and

• objective.

2 Solving: solve using a state-of-the-art solver.

COCP/M4CO 4 - 4 -

Viewpoints &
Dummy Values

Implied
Constraints

Redundant
Variables &
Channelling
Constraints

Pre-
Computation

Example (Student Seating Problem)

nStudents = 15
nPgms = 3
nChairs = 20 ≥ nStudents
nTables = 5
Chairs = [1..4, 5..8, 9..12, 13..16, 17..20]

Given:
nStudents students,
nPgms study programmes
nChairs chairs around nTables tables, and
Chairs[t] as the set of chairs of table t,

find a seating arrangement such that:
1 each table has students of distinct study

programmes;
2 each table has either at least half or none of its

chairs occupied;
3 a maximum number of student preferences on

being seated at the same table are satisfied.

What are suitable decision variables for this problem?
COCP/M4CO 4 - 5 -

Viewpoints &
Dummy Values

Implied
Constraints

Redundant
Variables &
Channelling
Constraints

Pre-
Computation

A viewpoint is a choice of decision variables.

Example (Student Seating Problem)
Viewpoint 1: Which chair does each student sit on?

1 % Chair[s] = the chair of student s:
2 array[1..nStudents] of var 1..nChairs: Chair;
3 constraint all_different(Chair); % max 1 student per chair

Viewpoint 2: Which student, if any, sits on each chair?
1 int: dummyS = 0; % Advice: also experiment with nStudents+1
2 set of int: StudentsAndDummy = 1..nStudents union {dummyS};
3 % Student[c] = the student, possibly dummy, sitting on chair c:
4 array[1..nChairs] of var StudentsAndDummy: Student;
5 constraint global_cardinality_closed(Student, [dummyS]++[i|i in 1..nStudents],

[nChairs - nStudents] ++ [1 | i in 1..nStudents]);
%all_different(Student) if nStudents+1..nChairs are dummy students

We revisit this problem at slide 19 and the choice of dummy values
in Topic 5: Symmetry, as well as in Topic 8: Inference & Search in CP & LCG.

Let us see how viewpoints differ when stating constraints.
COCP/M4CO 4 - 6 -

Viewpoints &
Dummy Values

Implied
Constraints

Redundant
Variables &
Channelling
Constraints

Pre-
Computation

Example (Objects, Shapes, and Colours)
There are n objects, s shapes, and c colours, with s ≥ n.
Assign a shape and a colour to each object such that:

1 the objects have distinct shapes;
2 the numbers of objects of the actually used colours are distinct;
3 other constraints, yielding NP-hardness and actually

distinguishing the objects from the shapes, are satisfied.

This problem can be modelled from different viewpoints:
1 Which colour, if any, does each shape have?
2 Which shapes, if any, does each colour have?
3 Which shape and colour does each object have?
4 . . .

Each viewpoint comes with benefits and drawbacks.

COCP/M4CO 4 - 7 -

Viewpoints &
Dummy Values

Implied
Constraints

Redundant
Variables &
Channelling
Constraints

Pre-
Computation

Example (Objects, Shapes, and Colours)
Viewpoint 1: Which colour, if any, does each shape have?

1 int: n; % number of objects
2 int: s; % number of shapes
3 constraint assert(s >= n, "Not enough shapes");
4 int: c; % number of colours
5 int: dummyColour = 0; % Advice: also experiment with c+1
6 set of int: ColoursAndDummy = 1..c union {dummyColour};
7 % Colour[i] = the colour, possibly dummy, of the object of shape i:
8 array[1..s] of var ColoursAndDummy: Colour;
9 % There are n objects:

10 constraint count(Colour,dummyColour) = s - n;
11 % The numbers of objects of the actually used colours are distinct:
12 constraint all_different_except(global_cardinality(Colour,1..c),{0});
13 % The objects have distinct shapes:
14 % implied by lines 6 and 8!
15 % ... state here the other constraints ...
16 solve satisfy;

So what are the shape and colour of a particular object?!
☞ Map the objects onto the shapes with non-dummy colour!

COCP/M4CO 4 - 8 -

Viewpoints &
Dummy Values

Implied
Constraints

Redundant
Variables &
Channelling
Constraints

Pre-
Computation

Example (Objects, Shapes, and Colours)
Viewpoint 2: Which shapes, if any, does each colour have?

1 int: n; % number of objects
2 int: s; % number of shapes
3 constraint assert(s >= n, "Not enough shapes");
4 int: c; % number of colours
5 %
6 %
7 % Shapes[i] = the set of shapes of colour i:
8 array[1..c] of var set of 1..s: Shapes;
9 % There are n objects:

10 % implied by line 14 below!
11 % The numbers of objects of the actually used colours are distinct:
12 constraint all_different_except([card(Shapes[colour]) | colour in 1..c],{0});
13 % The objects have distinct shapes:
14 constraint n = card(array_union(Shapes));
15 % ... state here the other constraints ...
16 solve satisfy;

Post-process: map the objects onto actually used shapes.
Can we also model this viewpoint without set variables? ☞ Yes, see next slide!

COCP/M4CO 4 - 9 -

Viewpoints &
Dummy Values

Implied
Constraints

Redundant
Variables &
Channelling
Constraints

Pre-
Computation

Example (Objects, Shapes, and Colours)
Viewpoint 2: Which shapes, if any, does each colour have?

1 int: n; % number of objects
2 int: s; % number of shapes
3 constraint assert(s >= n, "Not enough shapes");
4 int: c; % number of colours
5 %
6 %
7 % NbrObj[i,j] = the number of objects of colour i and shape j:
8 array[1..c,1..s] of var 0..1: NbrObj;
9 % There are n objects:

10 constraint n = sum(NbrObj);
11 % The numbers of objects of the actually used colours are distinct:
12 constraint all_different_except([sum(NbrObj[colour,..]) | colour in 1..c],{0});
13 % The objects have distinct shapes:
14 constraint forall(shape in 1..s)(sum(NbrObj[..,shape]) <=1);
15 % ... state here the other constraints ...
16 solve satisfy;

Which model for viewpoint 2 is clearer or better? ☞ Ask others and try!

COCP/M4CO 4 - 10 -

Viewpoints &
Dummy Values

Implied
Constraints

Redundant
Variables &
Channelling
Constraints

Pre-
Computation

Example (Objects, Shapes, and Colours)
Viewpoint 3: Which shape and colour does each object have?

1 int: n; % number of objects
2 int: s; % number of shapes
3 constraint assert(s >= n, "Not enough shapes");
4 int: c; % number of colours
5 % Shape[i] = the shape of object i:
6 array[1..n] of var 1..s: Shape;
7 % Colour[i] = the colour of object i:
8 array[1..n] of var 1..c: Colour;
9 % There are n objects:

10 % implied by lines 6 and 8!
11 % The numbers of objects of the actually used colours are distinct:
12 constraint all_different_except(global_cardinality_closed(Colour,1..c),{0});
13 % The objects have distinct shapes:
14 constraint all_different(Shape);
15 % ... state here the other constraints ...
16 solve satisfy;

We needed to use two parallel arrays in lines 6 and 8 with the same index set
but different domains in order to mimic records of two decision variables.

COCP/M4CO 4 - 11 -

Viewpoints &
Dummy Values

Implied
Constraints

Redundant
Variables &
Channelling
Constraints

Pre-
Computation

Which viewpoint is better in terms of:
Size of the search space:

• Viewpoint 1: O((c+ 1)s), which is independent of n
• Viewpoint 2: O(2s·c), which is independent of n
• Viewpoint 3: O(sn · cn)

Does this actually matter?
Ease of formulating the constraints and the objective:

• It depends on the unstated other constraints.
• Ideally, we want a viewpoint that allows global constraints to be used.

Performance:
• Hard to tell: we have to run experiments!

Readability:
• Who is going to read the model?
• What is their background?

There are no correct answers here:
we actually need to think about this and run experiments.

COCP/M4CO 4 - 12 -

Viewpoints &
Dummy Values

Implied
Constraints

Redundant
Variables &
Channelling
Constraints

Pre-
Computation

Outline

1. Viewpoints & Dummy Values

2. Implied Constraints

3. Redundant Variables & Channelling Constraints

4. Pre-Computation

COCP/M4CO 4 - 13 -

Viewpoints &
Dummy Values

Implied
Constraints

Redundant
Variables &
Channelling
Constraints

Pre-
Computation

Example (Magic Series of length n: model �)
The element at index i in I = 0..(n-1) is the number of occurrences of i.
Solutions: Magic=[1,2,1,0] and Magic=[2,0,2,0] for n=4.

Decision variables: Magic =
0 1 · · · n-1
∈ I ∈ I · · · ∈ I

Problem Constraint:
forall(i in I)(Magic[i] = sum(j in I)(Magic[j] = i))

or, logically equivalently but better:
forall(i in I)(Magic[i] = count(Magic,i))

or, logically equivalently and even better:
global_cardinality_closed(Magic, array1d(I, [i | i in I]), Magic)

Implied Constraints:
sum(Magic) = n /\ sum(i in I)(i * Magic[i]) = n

Depending on the formulation above of the problem constraint,
the implied constraints accelerate a CP solver up to 100 times for n=150.

COCP/M4CO 4 - 14 -

https://user.it.uu.se/~pierref/courses/COCP/models/magicSeries.mzn

Viewpoints &
Dummy Values

Implied
Constraints

Redundant
Variables &
Channelling
Constraints

Pre-
Computation

Definition
An implied constraint, also called a redundant constraint,
is a constraint that logically follows from other constraints.

Benefit:
Solving may be faster, without losing any solutions.
However, not all implied constraints accelerate the solving.
Good practice in MiniZinc:
Flag implied constraints using implied_constraint. This allows backends
to handle them differently, if wanted (see Topic 9: Modelling for CBLS):
predicate implied_constraint(var bool: c) = c; vs
predicate implied_constraint(var bool: c) = true;

Example
constraint implied_constraint(sum(Magic) = n);

In Topic 5: Symmetry,
we see the equally recommended symmetry_breaking_constraint.

COCP/M4CO 4 - 15 -

Viewpoints &
Dummy Values

Implied
Constraints

Redundant
Variables &
Channelling
Constraints

Pre-
Computation

Outline

1. Viewpoints & Dummy Values

2. Implied Constraints

3. Redundant Variables & Channelling Constraints

4. Pre-Computation

COCP/M4CO 4 - 16 -

Viewpoints &
Dummy Values

Implied
Constraints

Redundant
Variables &
Channelling
Constraints

Pre-
Computation

Example (n-queens)

Use both the n2 decision variables Queen[r,c] in 0..1
and the n decision variables Row[c] in 1..n.

Definition
A redundant decision variable denotes information already denoted by other
variables: mutual redundancy (same information) vs non-mutual redundancy.

Benefit: Easier modelling, or faster solving, or both.
Careful, the terminology differs: derived parameters vs redundant variables.

Examples (see Topic 6: Case Studies)
Each Queen[..,c] slice is mutually redundant with the variable Row[c].
Best model of Black-Hole Patience: mutual redundancy.
Models 1 and 3 of Warehouse Location: non-mutual redundancy.
Sport Scheduling: mutual redundancy.

COCP/M4CO 4 - 17 -

Viewpoints &
Dummy Values

Implied
Constraints

Redundant
Variables &
Channelling
Constraints

Pre-
Computation

Example (n-queens)
One-way channelling from each decision variable Row[c] to one of
its mutually redundant decision variables of the slice Queen[..,c]:
constraint forall(c in 1..n)(Queen[Row[c],c] = 1);
What sets the other decision variables of the slice Queen[..,c]?

Definition
A channelling constraint fixes the value of either some (1-way channelling)
or all (2-way channelling) decision variables when the values of the decision
variables they are redundant with are fixed.
This applies to both sets of decision variables.

Examples (see Topic 6: Case Studies)
Best model of Black-Hole Patience: 2-way channelling.
Models 1 and 3 of Warehouse Location: 1-way channelling.
Sport Scheduling: 2-way channelling.

COCP/M4CO 4 - 18 -

Viewpoints &
Dummy Values

Implied
Constraints

Redundant
Variables &
Channelling
Constraints

Pre-
Computation

Example (Student Seating, viewpoint 2 revisited)
1 int: dummyS = 0; % Advice: also experiment with nStudents+1
2 set of int: StudentsAndDummy = 1..nStudents union {dummyS};
3 % Student[c] = the student, possibly dummy, sitting on chair c:
4 array[1..nChairs] of var StudentsAndDummy: Student;
5 constraint global_cardinality_closed(Student, [dummyS]++[i|i in 1..nStudents],

[nChairs - nStudents] ++ [1 | i in 1..nStudents]);
6 int: dummyP = 0; % Advice: also experiment with nPgms+1
7 set of int: PgmsAndDummy = 1..nPgms union {dummyP};
8 % Pgm[s] = the given study programme of student s:
9 array[1..nStudents] of 1..nPgms: Pgm;

10 % Programme[c] = the programme of the student on chair c:
11 array[1..nChairs] of var PgmsAndDummy: Programme; % non-mut. red. w/ Student
12 % 1-way channelling from Student to Programme, in case dummyS = 0:
13 constraint forall(c in 1..nChairs)

(Programme[c] = array1d(StudentsAndDummy, [dummyP] ++ Pgm)[Student[c]]);
14 % (1) Each table has students of distinct study programmes:
15 constraint forall(T in Chairs)

(all_different_except([Programme[c] | c in T]), {dummyP});
16 ... % constraint (2) and objective (3) of slide 5

Note that Student uniquely determines Programme via Pgm, but not
vice-versa: one can also formulate (1) directly with Student via Pgm.

COCP/M4CO 4 - 19 -

Viewpoints &
Dummy Values

Implied
Constraints

Redundant
Variables &
Channelling
Constraints

Pre-
Computation

Outline

1. Viewpoints & Dummy Values

2. Implied Constraints

3. Redundant Variables & Channelling Constraints

4. Pre-Computation

COCP/M4CO 4 - 20 -

Viewpoints &
Dummy Values

Implied
Constraints

Redundant
Variables &
Channelling
Constraints

Pre-
Computation

Example (Prize-Pool Division)
Consider a maximisation problem where the objective function is the division
of an unknown prize pool by an unknown number of winners:

1 ...
2 array[1..5] of int: Pools = [1000,5000,15000,20000,25000];
3 var 1..5: x; % index of the actual prize pool within Pools
4 var 1..500: nbrWinners; % the number of winners
5 constraint ... x ... nbrWinners ...;
6 solve maximize Pools[x] div nbrWinners; % implicit: element!

Observation: We should beware of using the div function on decision
variables, because:

It yields weak inference, at least in CP and LCG solvers.
Its inference takes unnecessary time and memory.

Idea: We can precompute all possible objective values, as derived parameters.

COCP/M4CO 4 - 21 -

Viewpoints &
Dummy Values

Implied
Constraints

Redundant
Variables &
Channelling
Constraints

Pre-
Computation

Example (Prize-Pool Division, revisited)
Precompute a 2d array of derived parameters, indexed by 1..5 and 1..500,
for each possible value pair of x and nbrWinners:

2 array[1..5] of int: Pools = [1000,5000,15000,20000,25000];
3 var 1..5: x; % index of the actual prize pool within Pools
4 var 1..500: nbrWinners; % the number of winners
5 constraint ... x ... nbrWinners ...;
6 array[1..5,1..500] of int: ObjVal = array2d(1..5, 1..500,

[Pools[p] div n | p in 1..5, n in 1..500]); % div on par!
7 solve maximize ObjVal[x,nbrWinners]; % implicit: 2d-element!

Example (Kakuro Puzzle, reminder from Topic 3: Constraint Predicates)
We precomputed all_different_sum(X,σ) for |X | ∈ 2..7 and σ ∈ 3..35,
say table([x,y],[|1,3|3,1|]) for all_different_sum([x,y],4)
and table([y,z],[|1,2|2,1|]) for all_different_sum([y,z],3),
because MiniZinc has no all_different_sum predicate and its definition by
a conjunction of all_different and sum has too poor inference.

COCP/M4CO 4 - 22 -

	Viewpoints & Dummy Values
	Implied Constraints
	Redundant Variables & Channelling Constraints
	Pre-Computation

