Topic 4: Modelling (for CP & LCG)1
(Version of 5th August 2022)

Pierre Flener and Gustav Björdal

Optimisation Group
Department of Information Technology
Uppsala University
Sweden

Course 1DL442:
Combinatorial Optimisation and Constraint Programming,
whose part 1 is Course 1DL451:
Modelling for Combinatorial Optimisation

1Many thanks to Guido Tack for feedback
Outline

1. Viewpoints & Dummy Values

2. Implied Constraints

3. Redundant Variables & Channelling Constraints

4. Pre-Computation
Outline

1. Viewpoints & Dummy Values

2. Implied Constraints

3. Redundant Variables & Channelling Constraints

4. Pre-Computation
Recap

1 Modelling: express problem in terms of

- parameters,
- decision variables,
- constraints, and
- objective.

2 Solving: solve using a state-of-the-art solver.
Example (Student Seating Problem)

Given:

- \(n_{\text{Students}} \) students,
- \(n_{\text{Pgms}} \) study programmes, and
- \(n_{\text{Chairs}} \) chairs around tables,

find a seating arrangement such that:

1. each table has students of distinct study programmes;
2. each table has either at least half its chairs occupied, or none;
3. a maximum number of student preferences on being seated at the same table are satisfied.

What are suitable decision variables for this problem?
A viewpoint is a choice of decision variables.

Example (Student Seating Problem)

Viewpoint 1: Which chair does each student sit on?

1. `% Chair[s] = the chair of student s:`
2. `array[1..nStudents] of var 1..nChairs: Chair;`
3. `constraint all_different(Chair); % max 1 student per chair`

Viewpoint 2: Which student, if any, sits on each chair?

1. `int: dummyS = 0; % Advice: also experiment with nStudents+1`
2. `set of int: StudentsAndDummy = 1..nStudents union {dummyS};`
3. `% Student[c] = the student, possibly dummy, on chair c:`
4. `array[1..nChairs] of var StudentsAndDummy: Student;`
5. `constraint global_cardinality_closed(Student, [dummyS] ++ [i | i in 1..nStudents], [nChairs - nStudents] ++ [1 | i in 1..nStudents]);`
6. `% all_different(Student) if nStudents+1..nChairs are dummy`

We revisit this problem at slide 19 and the choice of dummy values in Topic 5: Symmetry as well as in Topic 8: Inference & Search in CP & LCG.

Let us see how viewpoints differ when stating constraints.
Example (Objects, Shapes, and Colours)

There are n objects, s shapes, and c colours, with $s \geq n$. Assign a shape and a colour to each object such that:

1. the objects have distinct shapes;
2. the numbers of objects of the used colours are distinct;
3. other constraints, yielding NP-hardness and distinguishing objects and shapes, are satisfied.

This problem can be modelled from different viewpoints:

1. Which colour, if any, does each shape have?
2. Which shapes, if any, does each colour have?
3. Which shape and colour does each object have?
4. . . .

Each viewpoint comes with benefits and drawbacks.
Example (Objects, Shapes, and Colours)

Viewpoint 1: Which colour, if any, does each shape have?

1 int: n; % number of objects
2 int: s; % number of shapes
3 constraint assert(s >= n, "Not enough shapes");
4 int: c; % number of colours
5 int: dummyColour = 0; % Advice: also experiment with c+1
6 set of int: ColoursAndDummy = 1..c union {dummyColour};
7 % Colour[i] = colour, possibly dummy, of object of shape i:
8 array[1..s] of var ColoursAndDummy: Colour;
9 % There are n objects:
10 constraint count(Colour,dummyColour) = s - n;
11 % The numbers of objects of the used colours are distinct:
12 constraint all_different_except(global_cardinality(Colour,1..c),{0});
13 % The objects have distinct shapes:
14 % implied by lines 6 and 8!
15 % ... add here the other constraints ...
16 solve satisfy;

So what are the shape and colour of a particular object?!
☞ Map the objects onto the shapes with non-dummy colour!
Example (Objects, Shapes, and Colours)

Viewpoint 2: Which shapes, if any, does each colour have?

1. int: n; % number of objects
2. int: s; % number of shapes
3. constraint assert(s >= n, "Not enough shapes");
4. int: c; % number of colours
5. % Shapes[i] = the set of shapes of colour i:
6. array[1..c] of var set of 1..s: Shapes;
7. % There are n objects:
8. % implied by line 12 below!
9. % The numbers of objects of the used colours are distinct:
10. constraint all_different_except(
 [card(Shapes[colour]) | colour in 1..c], {0});
11. % The objects have distinct shapes:
12. constraint n = card(array_union(Shapes));
13. % ... add here the other constraints ...
14. solve satisfy;

Post-process: map the objects onto actually used shapes. Can we also model this viewpoint without set variables? Yes, see the next slide!
Example (Objects, Shapes, and Colours)

Viewpoint 2: Which shapes, if any, does each colour have?

1. int: n; % number of objects
2. int: s; % number of shapes
3. constraint assert(s >= n, "Not enough shapes");
4. int: c; % number of colours
5. % NbrObj[i,j] = the number of objects of colour i & shape j:
6. array[1..c,1..s] of var 0..1: NbrObj;
7. % There are n objects:
8. constraint n = sum(NbrObj);
9. % The numbers of objects of the used colours are distinct:
10. constraint all_different_except(
 [sum(NbrObj[colour,..]) | colour in 1..c], {0});
11. % The objects have distinct shapes:
12. constraint forall(shape in 1..s)(sum(NbrObj[..,shape])<=1);
13. % ... add here the other constraints ...
14. solve satisfy;

Which model for viewpoint 2 is clearer or better?
☞ Ask and try!
Example (Objects, Shapes, and Colours)

Viewpoint 3: Which shape & colour does each object have?

```
1 int: n; % number of objects
2 int: s; % number of shapes
3 constraint assert(s >= n, "Not enough shapes");
4 int: c; % number of colours
5 array[1..n] of var 1..s: Shape; % Shape[i] = shape of obj. i
6 array[1..n] of var 1..c: Colour; % Colour[i] = colour of i
7 % There are n objects:
8 % implied by lines 5 and 6!
9 % The numbers of objects of the used colours are distinct:
10 constraint all_different_except
11   (global_cardinality_closed(Colour,1..c),{0});
12 % The objects have distinct shapes:
13 constraint all_different(Shape);
14 % ... add here the other constraints ...
15 solve satisfy;
```

We have used two parallel arrays with the same index set but different domains in order to represent pair variables.
Which viewpoint is better in terms of:

- **Size of the search space:**
 - Viewpoint 1: $O((c + 1)^s)$, which is independent of n
 - Viewpoint 2: $O(2^{s\cdot c})$, which is independent of n
 - Viewpoint 3: $O(s^n \cdot c^n)$

Does this actually matter?

- **Ease of formulating the constraints and the objective:**
 - It depends on the unstated other constraints.
 - Ideally, we want a viewpoint that allows global-constraint predicates to be used.

- **Performance:**
 - Hard to tell: we have to run experiments!

- **Readability:**
 - Who is going to read the model?
 - What is their background?

There are no correct answers here: we actually need to think about this and run experiments.
Outline

1. Viewpoints & Dummy Values

2. Implied Constraints

3. Redundant Variables & Channelling Constraints

4. Pre-Computation
Example (The Magic Series Problem)

The element at index \(i \) in \(I = 0..(n-1) \) is the number of occurrences of \(i \). Solution: \(Magic = [1, 2, 1, 0] \) for \(n=4 \).

Variables: \(Magic = \begin{array}{cccc} 0 & 1 & \cdots & n-1 \\ \in I & \in I & \cdots & \in I \end{array} \)

Constraint:

\[
\text{forall}(i \in I)(Magic[i] = \text{sum}(j \in I)(Magic[j]=i))
\]

or, logically equivalently but better:

\[
\text{forall}(i \in I)(\text{count}(Magic, i, Magic[i]))
\]

or, logically equivalently and even better:

\[
\text{global_cardinality_closed}(Magic, \text{array1d}(I, [i | i \in I]), Magic)
\]

Implied Constraint:

\[
\text{sum}(Magic)=n \lor \text{sum}(i \in I)(Magic[i]*i)=n
\]

For \(n=80 \), using a CP solver: only 7 search nodes are explored instead of 302; the solving is 1,000 times faster.
An implied constraint, also called a redundant constraint, is a constraint that logically follows from other constraints.

Benefit:
Solving may be faster, without losing any solutions. However, not all implied constraints accelerate the solving.

Good practice in MiniZinc:
Flag implied constraints using the `implied_constraint` predicate. This allows backends to handle them differently, if wanted (see Topic 9: Modelling for CBLS):

```plaintext
predicate implied_constraint(var bool: c) = c;  vs  
predicate implied_constraint(var bool: c) = true;
```

Example
```
constraint implied_constraint(sum(Magic) = n);
```

In Topic 5: Symmetry, we see the equally recommended `symmetry_breaking_constraint` predicate.
Outline

1. Viewpoints & Dummy Values

2. Implied Constraints

3. Redundant Variables & Channelling Constraints

4. Pre-Computation
Redundant Decision Variables

Example (n-queens)

Use both the n^2 decision variables $\text{Queen}[r,c]$ in 0..1 and the n decision variables $\text{Row}[c]$ in 1..n.

Definition

A redundant decision variable represents information that is already available via some other decision variables. We distinguish mutual and non-mutual redundancy.

Benefit: Easier modelling, or faster solving, or both.

Examples (see Topic 6: Case Studies)

- Each $\text{Queen}[\ldots,c]$ is mutually redundant with $\text{Row}[c]$.
- Best model of Black-Hole Patience: mutual redundancy
- Models 1 & 3 of Warehouse Location: non-mutual red.
Channelling Constraints

Example (\(n\)-queens)

One-way channelling from the \(n\) decision variables \(\text{Row}[c]\) in \(1..n\) to the \(n^2\) decision variables \(\text{Queen}[r,c]\) in \(0..1\):

\[
\text{constraint } \forall (c \text{ in } 1..n) (\text{Queen}[\text{Row}[c],c] = 1)
\]

Definition

A channelling constraint helps establish the coherence of the value of a variable that is redundant with other variables.

Examples (see Topic 6: Case Studies)

- Best model of Black-Hole Patience: 2-way channelling.
- Models 1 & 3 of Warehouse Location: 1-way vs 2-way.
- Experiment with channelling between the viewpoints for the Objects, Shapes, and Colours problem (slide 7).
Example (Student Seating, viewpoint 2 revisited)

```plaintext
1 int: dummyS = 0; % Advice: also experiment with nStudents+1
2 set of int: StudentsAndDummy = 1..nStudents union {dummyS};
3 % Student[c] = the student, possibly dummy, on chair c:
4 array[1..nChairs] of var StudentsAndDummy: Student;
5 constraint global_cardinality_closed(StudentsAndDummy, [dummyS] ++ [i | i in 1..nStudents],
   [nChairs - nStudents] ++ [1 | i in 1..nStudents]);
6 int: dummyP = 0; % Advice: also experiment with nPgms+1
7 set of int: PgmsAndDummy = 1..nPgms union {dummyP};
8 % Pgm[s] = the given study programme of student s:
9 array[1..nStudents] of 1..nPgms: Pgm;
10 % Programme[c] = the programme of the student on chair c
    (non-mutually redundant with Student):
11 array[1..nChairs] of var PgmsAndDummy: Programme;
12 % 1-way channelling from Student to Programme, for dummyS=0:
13 constraint forall(c in 1..nChairs) (Programme[c] =
   array1d(StudentsAndDummy, [dummyP]++Pgm)[Student[c]]);
14 % (1) Each table has students of distinct study programmes:
15 constraint forall(T in Tables)
   (all_different_except([Programme[c] | c in T]), {dummyP});
16 ... % constraint (2) and objective (3) of slide 5

Note that Student uniquely determines Programme, but
not vice-versa: one can also formulate (1) with Student.
```
Outline

1. Viewpoints & Dummy Values
2. Implied Constraints
3. Redundant Variables & Channelling Constraints
4. Pre-Computation
Example (Prize-Pool Division)

Consider a maximisation problem where the objective function is the division of an unknown prize pool by an unknown number of winners:

```plaintext
1 ... 
2 array[1..5] of int: Pools = [1000,5000,15000,20000,25000]; 
3 var 1..5: x; % index of the actual prize pool within Pools 
4 var 1..500: nbrWinners; % the number of winners 
5 constraint ... x ... nbrWinners ...; 
6 solve maximize Pools[x] div nbrWinners; % implicit: element!
```

Observation: We should beware of using the `div` function on decision variables, because:

- It yields weak *inference*, at least in CP & LCG solvers.
- Its *inference* takes unnecessary time and memory.

Idea: We can pre-compute all possible objective values.
Idea: We can pre-compute all possible objective values.

Example (Prize-Pool Division, revisited)

Pre-compute a 2d array, indexed by 1..5 and 1..500, for each possible value pair of \(x \) and \(\text{nbrWinners} \):

```plaintext
array[1..5] of int: Pools = [1000, 5000, 15000, 20000, 25000];
var 1..5: x; % index of the actual prize pool within Pools
var 1..500: nbrWinners; % the number of winners
constraint ... x ... nbrWinners ...;
array[1..5, 1..500] of int: objVal = array2d(1..5, 1..500, [Pools[p] div n | p in 1..5, n in 1..500]);
solve maximize objVal[x, nbrWinners]; % implicit: 2d-element!
```