Outline

1. Viewpoints & Dummy Values

2. Implied Constraints

3. Redundant Variables & Channelling Constraints

4. Pre-Computation
Outline

1. Viewpoints & Dummy Values

2. Implied Constraints

3. Redundant Variables & Channelling Constraints

4. Pre-Computation
Recap

1. **Modelling**: express problem in terms of
 - parameters,
 - decision variables,
 - constraints, and
 - objective.

2. **Solving**: solve using a state-of-the-art solver.
Example (Student Seating Problem)

Given:

- \(n\text{Students} \) students,
- \(n\text{Pgms} \) study programmes, and
- \(n\text{Chairs} \) chairs around tables,

find a seating arrangement such that:

1. each table has students of distinct study programmes;
2. each table has either at least half its chairs occupied, or none;
3. a maximum number of student preferences on being seated at the same table are satisfied.

What are suitable decision variables for this problem?

Given:

- \(n\text{Students} = 15 \),
- \(n\text{Pgms} = 3 \),
- \(n\text{Chairs} = 20 \geq n\text{Students} \),
- Tables = \([1..4, \ldots, 17..20]\)
A viewpoint is a choice of decision variables.

Example (Student Seating Problem)

Viewpoint 1: Which chair does each student sit on?

1. % Chair[s] = the chair of student s:
2. array[1..nStudents] of var 1..nChairs: Chair;
3. constraint alldifferent(Chair); % max 1 student per chair

Viewpoint 2: Which student, if any, sits on each chair?

1. int: dummyS = 0; % Advice: also experiment with nStudents+1
2. set of int: StudentsAndDummy = 1..nStudents union {dummyS};
3. % Student[c] = the student, possibly dummy, on chair c:
4. array[1..nChairs] of var StudentsAndDummy: Student;
5. constraint global_cardinality_closed(Student,
 [dummyS] ++ [i | i in 1..nStudents],
 [nChairs - nStudents] ++ [1 | i in 1..nStudents]);
 % alldifferent(Student) if nStudents+1..nChairs are dummy

We revisit this problem at slide 19 and the choice of dummy values in Topic 5: Symmetry as well as in Topic 8: Inference & Search in CP & LCG.

Let us see how viewpoints differ when stating constraints.
Example (Objects, Shapes, and Colours)

There are n objects, s shapes, and c colours, with $s \geq n$. Assign a shape and a colour to each object such that:

1. the objects have distinct shapes;
2. the numbers of objects of the used colours are distinct;
3. other constraints, yielding NP-hardness and distinguishing objects and shapes, are satisfied.

This problem can be modelled from different viewpoints:

1. Which colour, if any, does each shape have?
2. Which shapes, if any, does each colour have?
3. Which shape and colour does each object have?
4. . .

Each viewpoint comes with benefits and drawbacks.
Example (Objects, Shapes, and Colours)

Viewpoint 1: Which colour, if any, does each shape have?

```plaintext
1  int: n; % number of objects
2  int: s; % number of shapes
3  constraint assert(s >= n, "Not enough shapes");
4  int: c; % number of colours
5  int: dummyColour = 0; % Advice: also experiment with c+1
6  set of int: ColoursAndDummy = 1..c union {dummyColour};
7  % Colour[i] = colour, possibly dummy, of object of shape i:
8  array[1..s] of var ColoursAndDummy: Colour;
9  % There are n objects:
10  constraint count(Colour, dummyColour) = s - n;
11  % The numbers of objects of the used colours are distinct:
12  constraint
13      alldifferent_except(global_cardinality(Colour,1..c),{0});
14  % The objects have distinct shapes:
15  %  implied by lines 6 and 8!
16  %  ... add here the other constraints ... 
17  solve satisfy;
```

So what are the shape and colour of a particular object?!

Map the objects onto the shapes with non-dummy colour!
Example (Objects, Shapes, and Colours)

Viewpoint 2: Which shapes, if any, does each colour have?

```
1 int: n; % number of objects
2 int: s; % number of shapes
3 constraint assert(s >= n, "Not enough shapes");
4 int: c; % number of colours
5 % Shapes[i] = the set of shapes of colour i:
6 array[1..c] of var set of 1..s: Shapes;
7 % There are n objects:
8 % implied by line 12 below!
9 % The numbers of objects of the used colours are distinct:
10 constraint alldifferent_except(
    [card(Shapes[colour]) | colour in 1..c], {0});
11 % The objects have distinct shapes:
12 constraint n = card(array_union(Shapes));
13 % ... add here the other constraints ... 
14 solve satisfy;
```

Post-process: map the objects onto actually used shapes.
Can we also model this viewpoint without set variables?

➡️ Yes, see the next slide!
Example (Objects, Shapes, and Colours)

Viewpoint 2: Which shapes, if any, does each colour have?

```
1 int: n;  % number of objects
2 int: s;  % number of shapes
3 constraint assert(s >= n, "Not enough shapes");
4 int: c;  % number of colours
5 % NbrObj[i,j] = the number of objects of colour i & shape j:
6 array[1..c,1..s] of var 0..1: NbrObj;
7 % There are n objects:
8 constraint n = sum(NbrObj);
9 % The numbers of objects of the used colours are distinct:
10 constraint alldifferent_except(
    [sum(NbrObj[colour,..]) | colour in 1..c], {0});
11 % The objects have distinct shapes:
12 constraint forall(shape in 1..s)(sum(Nbr Obj[..,shape])<=1);
13 % ... add here the other constraints ...
14 solve satisfy;
```

Which model for viewpoint 2 is clearer or better?

☞ Ask and try!
Example (Objects, Shapes, and Colours)

Viewpoint 3: Which shape & colour does each object have?

1. `int: n; % number of objects`
2. `int: s; % number of shapes`
3. `constraint assert(s >= n, "Not enough shapes");`
4. `int: c; % number of colours`
5. `array[1..n] of var 1..s: Shape; % Shape[i] = shape of obj. i`
6. `array[1..n] of var 1..c: Colour; % Colour[i] = colour of i`
7. `% There are n objects:
8. % implied by lines 5 and 6!`
9. `% The numbers of objects of the used colours are distinct:`
10. `constraint alldifferent_except`
11. ` (global_cardinality_closed(Colour,1..c),{0});`
12. `% The objects have distinct shapes:
13. `constraint alldifferent(Shape);`
14. `% ... add here the other constraints ...`
15. `solve satisfy;`

We have used two **parallel arrays** with the same index set but different domains in order to represent **pair variables**.
Which viewpoint is better in terms of:

- **Size of the search space:**
 - Viewpoint 1: $O((c + 1)^s)$, which is independent of n
 - Viewpoint 2: $O(2^{s \cdot c})$, which is independent of n
 - Viewpoint 3: $O(s^n \cdot c^n)$

Does this actually matter?

- **Ease of formulating the constraints and the objective:**
 - It depends on the unstated other constraints.
 - Ideally, we want a viewpoint that allows global-constraint predicates to be used.

- **Performance:**
 - Hard to tell: we have to run experiments!

- **Readability:**
 - Who is going to read the model?
 - What is their background?

There are no correct answers here: we actually need to think about this and run experiments.
Outline

1. Viewpoints & Dummy Values

2. Implied Constraints

3. Redundant Variables & Channelling Constraints

4. Pre-Computation
Example (The Magic Series Problem)

The element at index $i \in I = 0..(n-1)$ is the number of occurrences of i. Solution: $\text{Magic} = [1,2,1,0]$ for $n=4$.

Variables: $\text{Magic} = \begin{array}{cccc}
0 & 1 & \cdots & n-1 \\
\in I & \in I & \cdots & \in I
\end{array}$

Constraint:

forall ($i \in I$) ($\text{Magic}[i] = \text{sum}(j \in I) (\text{Magic}[j] = i)$)

or, logically equivalently but better:

forall ($i \in I$) (count($\text{Magic}, i, \text{Magic}[i]$))

or, logically equivalently and even better:

global_cardinality_closed($\text{Magic}, I, \text{Magic}$)

Implied Constraint:

$\text{sum}(\text{Magic}) = n \ \land \ \text{sum}(i \in I) (\text{Magic}[i] \ast i) = n$

For $n=80$, using a CP solver: only 7 search nodes are explored instead of 302; the solving is 1,000 times faster.
Definition

An **implied constraint**, also called a **redundant constraint**, is a constraint that logically follows from other constraints.

Benefit:
Solving may be faster, without losing any solutions. However, not all implied constraints accelerate the solving.

Good practice in MiniZinc:
Flag implied constraints using the `implied_constraint` predicate. This allows backends to handle them differently, if wanted (see Topic 9: Modelling for CBLS):

```plaintext
predicate implied_constraint(var bool: c) = c; VS
predicate implied_constraint(var bool: c) = true;
```

Example

```plaintext
constraint implied_constraint(sum(Magic) = n);
```

In Topic 5: Symmetry, we see the equally recommended `symmetry_breaking_constraint` predicate.
Outline

1. Viewpoints & Dummy Values
2. Implied Constraints
3. Redundant Variables & Channelling Constraints
4. Pre-Computation
Redundant Decision Variables

Example (n-queens)

Use both the \(n^2 \) decision variables \(\text{Queen}[r,c] \) in 0..1 and the \(n \) decision variables \(\text{Row}[c] \) in 1..n.

Definition

A redundant decision variable represents information that is already available via some other decision variables. We distinguish mutual and non-mutual redundancy.

Benefit: Easier modelling, or faster solving, or both.

Examples (see Topic 6: Case Studies)

- Each \(\text{Queen}[\ldots, c] \) is mutually redundant with \(\text{Row}[c] \).
- Best model of Black-Hole Patience: mutual redundancy
- Models 1 & 3 of Warehouse Location: non-mutual red.
Channelling Constraints

Example (n-queens)

One-way channelling from the n decision variables Row[c] in 1..n to the n^2 decision variables Queen[r,c] in 0..1:

constraint forall(c in 1..n) (Queen[Row[c],c] = 1)

Definition

A channelling constraint helps establish the coherence of the value of a variable that is redundant with other variables.

Examples (see Topic 6: Case Studies)

- Best model of Black-Hole Patience: 2-way channelling.
- Models 1 & 3 of Warehouse Location: 1-way vs 2-way.
- Experiment with channelling between the viewpoints for the Objects, Shapes, and Colours problem (slide 7).
Example (Student Seating, viewpoint 2 revisited)

1. \(\text{int: dummyS} = 0;\) \% Advice: also experiment with \(n\text{Students}+1\)
2. set of \(\text{int: StudentsAndDummy} = 1..n\text{Students} \cup \{\text{dummyS}\};\)
3. \% \(\text{Student}[c]\) = the student, possibly dummy, on chair \(c:\)
4. array\([1..n\text{Chairs}]\) of var StudentsAndDummy: Student;
5. constraint global_cardinality_closed\(\text{(Student,}\)
 \[\text{dummyS}\] ++ \([i \mid i \in 1..n\text{Students}],\)
 \[n\text{Chairs} - n\text{Students}\] ++ \([1 \mid i \in 1..n\text{Students}]\));
6. \(\text{int: dummyP} = 0;\) \% Advice: also experiment with \(n\text{Pgms}+1\)
7. set of \(\text{int: PgmsAndDummy} = 1..n\text{Pgms} \cup \{\text{dummyP}\};\)
8. \% \(\text{Pgm}[s]\) = the given study programme of student \(s:\)
9. array\([1..n\text{Students}]\) of \(1..n\text{Pgms}: \text{Pgm};\)
10. \% \(\text{Programme}[c]\) = the programme of the student on chair \(c\)
 (non-mutually redundant with \(\text{Student}\));
11. array\([1..n\text{Chairs}]\) of var PgmsAndDummy: Programme;
12. \% 1-way channelling from \(\text{Student}\) to \(\text{Programme}\), for \(\text{dummyS}=0:\)
13. constraint forall\((c \in 1..n\text{Chairs})\) \(\text{(Programme}[c] = \)
 array1d(StudentsAndDummy, [dummyP]++Pgms)[Student[c]]);
14. \% (1) Each table has students of distinct study programmes:
15. constraint forall\((T \in \text{Tables})\)
 \((\text{alldifferent_except}([\text{Programme}[c] \mid c \in T]), \{\text{dummyP}\});\)
16. ... \% constraint (2) and objective (3) of slide 5

Note that \(\text{Student}\) uniquely determines \(\text{Programme}\), but
not vice-versa: one can also formulate (1) with \(\text{Student}\).
Outline

1. Viewpoints & Dummy Values
2. Implied Constraints
3. Redundant Variables & Channelling Constraints
4. Pre-Computation
Example (Prize-Pool Division)

Consider a maximisation problem where the objective function is the division of an unknown prize pool by an unknown number of winners:

```plaintext
1 ... 
2 array[1..5] of int: Pools = [1000,5000,15000,20000,25000];
3 var 1..5: x; % index of the actual prize pool within Pools
4 var 1..500: nbrWinners; % the number of winners
5 constraint ... x ... nbrWinners ...;
6 solve maximize Pools[x] div nbrWinners; % implicit: element!
```

Observation: We should beware of using the `div` function on decision variables, because:

- It yields weak inference, at least in CP & LCG solvers.
- Its inference takes unnecessary time and memory.

Idea: We can pre-compute all possible objective values.
Idea: We can pre-compute all possible objective values.

Example (Prize-Pool Division, revisited)

Pre-compute a 2d array, indexed by 1..5 and 1..500, for each possible value pair of \(x \) and \(\text{nbrWinners} \):

1 ...
2 array[1..5] of int: Pools = [1000, 5000, 15000, 20000, 25000];
3 var 1..5: x; % index of the actual prize pool within Pools
4 var 1..500: nbrWinners; % the number of winners
5 constraint ... x ... nbrWinners ...;
6 array[1..5,1..500] of int: objVal = array2d(1..5,1..500, [Pools[p] div n | p in 1..5, n in 1..500]);
7 solve maximize objVal[x,nbrWinners]; % implicit: 2d-element!