
Combinatorial Optimisation

and Constraint Programming (1DL442)

Uppsala University – Autumn 2023

Assignment 5: The Sum, Element, Table,

and AllDifferent Constraints

Prepared by Pierre Flener and Frej Knutar Lewander

— Deadline: 13:00 on Friday 8 December 2023 —

It is strongly recommended to read the Grading Rules below and the Submission Instructions
at the end of this document even before attempting to tackle its tasks. It is also strongly
recommended to prepare and attend the help sessions, as huge time savings may ensue.

Questions and Grading Rules

Assignment 5 is graded 0..5 and covers Modules 3 to 5 of the MiniCP teaching materials [1].
The tasks are as follows (solo teams or designated sub-teams may choose in Tasks B and C
one of the two problems starred there, but Eternity only if their MiniZinc project was not
Carcassonne), a report being only needed if you take on Task C and possibly also Task D
(those tasks are mandatory for PhD students):

A. Individually: Pass all the Theoretical Questions at INGInious of all those modules.

B. As a team:

• Pass all the unit tests at INGInious for Element1D (Module 3), Element1D-
DomainConsistent (Module 3), Element1DVar (Module 3, the hybrid domain-
bound consistent propagator suffices, but see Task D), StableMatching (*, Mod-
ule 3), StateSparseBitSet (Module 4), TableCT (Module 4), Eternity (*,
Module 4), AllDifferentFWC (Module 5), and AllDifferentDC (Module 5).

• Upload also at Studium all *.java (except the *Test.java) mentioned in the
questions, for a local archive at UU.

C. As a team or designated sub-team: Write a report on the problems Stable Matching (*,
Module 3) and Eternity (*, Module 4):

• Evaluate (in the style of Section D of the MiniZinc demo report) each of the models
under a suitable time-out (of at least 10 minutes per instance) in terms of:

– the number of solutions for Stable Matching and satisfiability for Eternity ;

– the runtime in seconds, with 1 decimal place, to all the solutions for Stable
Matching and to the first solution for Eternity ;

1



– the number of failures;

for all the instances in data/stable matching, and for the instances
data/eternity/brendan/pieces NxN.txt with N in 5..10 for Eternity.

D. As a team or designated sub-team, if you think you pass Task C, then do the following:

• Implement (here, or within Task B, or both) a fully domain-consistent propagator
for Element1DVar (Module 3) and add unit tests. Give a high-level description
and correctness argument for your propagator and tests in the report.

• Mark in the report section for Task C whether this propagator underlies your evalu-
ation of Stable Matching.

• Upload also at Studium your code, to be called Element1DVarDC.java and
Element1DVarDCTest.java there, for a local archive at UU.

If you pass only Tasks A and B, then your score is 3 points. If you pass only Tasks A to C, then
your score is 4 points. If you pass Tasks A to D, then your score is 5 points. In all other cases,
your score is 0 points and there is no grading session. The solution session will be questions &
answers on the Theoretical Questions of Modules 3 to 5.

References

[1] Laurent Michel, Pierre Schaus, and Pascal Van Hentenryck. MiniCP: A lightweight solver
for constraint programming. Mathematical Programming Computation, 13(1):133–184, 2021.
The source code is available at http://minicp.org and the teaching materials are avail-
able at https://www.edx.org/course/constraint-programming.

Submission Instructions

In order to protect yourself against an unnecessary loss of points, use the following to-do list
before submitting:

• There is no demo report, but remember best practice on comments for code and on experi-
mental evaluation from Sections C and D of the MiniZinc demo report (https://user.
it.uu.se/˜pierref/courses/COCP/demoReport) and use your best judgement.

• Write in the report (if you write one) a paragraph, which will not be graded, describing
your experience with this assignment: Which aspects were too difficult or too easy? Which
aspects were interesting or boring? This will help us improve the course in the coming
years.

• Thoroughly proofread, spellcheck, and grammar-check the report, at least once per team-
mate, including the comments in all source code. In case you are curious about technical
writing: the English Style Guide of UU at https://mp.uu.se/en/web/info/stod/
kommunikation-riktlinjer/sprak/eng-skrivregler and the technical-writing
Checklist & Style Manual of the Optimisation group at https://optimisation.
research.it.uu.se/checkList.pdf offer many pieces of advice; common errors
in English usage are discussed at https://brians.wsu.edu/common-errors; in
particular, common errors in English usage by native Swedish speakers are listed at
https://www.crisluengo.net/english-language.

2

http://minicp.org
https://www.edx.org/course/constraint-programming
https://user.it.uu.se/~pierref/courses/COCP/demoReport
https://user.it.uu.se/~pierref/courses/COCP/demoReport
https://mp.uu.se/en/web/info/stod/kommunikation-riktlinjer/sprak/eng-skrivregler
https://mp.uu.se/en/web/info/stod/kommunikation-riktlinjer/sprak/eng-skrivregler
https://optimisation.research.it.uu.se/checkList.pdf
https://optimisation.research.it.uu.se/checkList.pdf
https://brians.wsu.edu/common-errors
https://www.crisluengo.net/english-language


• Produce the report as a single file in PDF format; all other formats will be rejected.

• Remember that when submitting you implicitly certify (a) that your files were produced
solely by your team, except where explicitly stated otherwise and clearly referenced,
(b) that each teammate can individually explain any part starting from the moment of
submitting your files, and (c) that your files are not freely accessible on a public repository.

• Submit (by only one of the teammates) the files (all *.java mentioned in the questions,
except the *Test.java, and possibly a report) without folder structure and without
compression via Studium, whose clock may differ from yours, by the given hard deadline.

3


