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Problem, challenges, and methods

Problem: Solve the time harmonic Maxwell equa- T
tions and find eigenwavenumbers k and eigenfields E — T
of perfectly conducting axially symmetric cavities and IE I
for dielectric objects in vacuum. =
Challenges: Large structures. High accuracy. Find-
ing all eigenmodes. Resolution of singular fields at
sharp edges. Normalization || E||? = 1 of eigenfields.
Methods: ChIE extensions of MFIE and EFIE (no
surface divergence for surface charge densities),
16th-order explicit kernel-split panel-based Fourier—
Nystrom discretization, recursively compressed inverse
preconditioning (RCIP), volume—surface integral for
| E,.||? = 1, robust search for eigenwavenumbers.

Integral equation for eigenproblem

The ChlIE extended MFIE system can be written on modal block operator form as

I — 2K, 2ikS5, —2kSe, | [ 0sn(T) | 0
0 1 Kln IKZn JTn(T) — 0 .
0 lKgn 1 —+ K4n Jgn(’r‘) | _O_
where K, Kln, Ks,,, Ks,, K4, are modal double-layer type integral operators and

Ssn, Sen are single-layer type operators. All operators are weakly singular.

The RCIP idea

(I + K)p = g is difficult to solve on Lipschitz domains. The split K = K* 4+ K° and
the change of variables p = (I + K*)~1p give the simpler compressed preconditioned
equation (I + K°Py,(I + K*)~!'P)p = g, where P is a prolongation operator.
Recursion on nested grids is used for the lossless compression of P, (I + K*)~'P.

One cell elliptic cavity with edges

Eigenfield £, € at k=120.2309391499240 Log, , of estimated absolute error in E, €° Eigenfields of E at k=120.2309391499240

2 2 ol [ &
< i S ° E61
1.5} 1.5} -125 ¢ o Ezt
S * o - - - 16th order
1r 1r -13 & N : S
L %5 S
| 310
0.5 2 0.5 .1 P {135 3 so
@ DN
N Of 0N 0 o N
i r1-14 «© . N
o N
> .
-0.5 {_ -0.5 1 ©
2 L {1455 107}
©
—1 4 -1 £
- 1-15 2
-1.5 15
-6
-2 - . 5 : : . _—15.5 107" S
-2 -1 0 1 2 -2 -1 0 1 2 10
(c) b's (d) b's number of discretization points on y

Left: The azimuthal component of normalized electric field for the 9928th n = 1
eigenmode with eigenwavenumber k = 120.2309391499240 evaluated at 4.9 - 10°
points on a cartesian grid. Object diameter = 75\. Center: logy, of estimated
absolute pointwise error. Right: stable 16th-order convergence with mesh refinement.

Magnification of edge singularity

Eigenfield E at k=31.65910852052012 Eigenfield E at k=31.65910852052012 Log 10 of estimated absolute error in E
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Left and center: zoom of z-component of normalized electric field for the 662nd
n = 0 eigenmode with eigenwavenumber k = 31.65910852052012. The field
diverges in the reentrant corners. Right: log, of estimated absolute pointwise error.
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Left: Object. Center: Azimuthal component of electric field for the n = 1 eigenmode
with eigenwavenumber £k = 110.041232211051 — 0.404177078290i. The
refractive index is T = 1.5. The object diameter is around 46 vacuum wavelengths.
Right: Whispering gallery 7 = 450 mode with eigenwavenumber

k = 258.059066513439, m = 1.5, and object diameter around 108 vacuum
wavelengths. The absolute pointwise error is less than 107! in both field plots.
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Problem, challenges and methods

Problem: Solve the electrostatic transmission problem for an inclusion with Lipschitz
surface I' and permittivity € embedded in a background medium with unit permittivity.
Then compute the polarizability tensor w;;(€) and its spectral measure.

Challenges: High accuracy. Resolution of singular fields at sharp edges and in corners.
Integral operator spectra depend on function spaces considered: L?(T") or energy space.
Methods: Classic integral equation, 16th- and 32nd-order explicit kernel-split
panel-based (Fourier—)Nystrom discretization, recursively compressed inverse
preconditioning (RCIP), fixed-point iteration, Newton's method, homotopy.

Geometries and meshes
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Left: a three times dyadically refined mesh on the surface of a cube. Middle: An axially
symmetric surface I" with a conical point of opening angle o = 57 /36, denoted a
snow cone. Right: A cross section of the snow cone interior for a« = 317 /36.

Integral equation

With standard basis e;, the element w;; of the polarizability tensor of an inclusion is

|V| /(ez . 7) (K —2z) (e - I/)} (r)do(r),

where K, is two times the adjoint of the Neumann—Poincaré operator (double layer
potential), z = x + iy = (e + 1)/(e — 1), and |V| is the volume of the inclusion.

The cube: limit polarizability
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The square: limit polarizability
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Limit values of w(z) as y — 0. The accuracy varies from full machine precision to
about five digits. Sm{w™(x)} of the cube has support for x € (—0.5,0.694526).
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Top row: (a,b) limit values of ws3(2z) and wq1(2) as y — 0~ for a« = 57 /36; (c)
ws3(2z) for a« = 317 /36. Bottom row: imaginary parts with logarithmic scales on the
vertical axes. The spectral measure p;(x), associated with w;;(2), is determined by
pi(x) = —Sm{w,; (x)}/m. The numerical accuracy in (a,b) is such that

f_ll dpi(s) = —2 holds to almost machine precision. Note the infinite number of
poles for wsz(x), * > 0, and @ = 317 /36, of which 275 are located and drawn.
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