
“It’s a Trap!”—How Speculation Invariance Can Be Abused
with Forward Speculative Interference

Pavlos Aimoniotis
Uppsala University

pavlos.aimoniotis@it.uu.se

Christos Sakalis
Uppsala University

christos.sakalis@it.uu.se

Magnus Själander
Norwegian University of Science and Technology

magnus.sjalander@ntnu.no

Stefanos Kaxiras
Uppsala University

stefanos.kaxiras@it.uu.se

Abstract—Side-channel attacks based on speculative execution access
sensitive data and use transmitters to leak such data during wrong-
path execution. Speculative side-channel defenses have been proposed
to prevent such information leakage. In one class of defenses, speculative
instructions are considered unsafe and are delayed until they become
non-speculative.

However, not all speculative instructions are unsafe: Recent work
demonstrates that speculative invariant instructions are independent of
a speculative control-flow path and are guaranteed to eventually execute
and commit, regardless of the outcome of the performed speculation.
Compile time information coupled with run-time mechanisms can then
selectively lift defenses for Speculative Invariant instructions, regaining
some of the performance lost to “delay” defenses.

Unfortunately, speculative invariance can be easily mishandled with
Speculative Interference to leak information using a new side-channel that
we introduce in this paper. Recent work shows that younger speculative
instructions can interfere with older non-speculative instructions that
are bound to commit. This “backward” speculative interference reveals
speculatively accessed secrets through the non-speculative instructions, in
a way that delay-defenses do not cover, rendering them ineffective for
this type of attack.

In our work, we show that the counterpart to backward speculative
interference, i.e., forward speculative interference, enables older speculative
instructions to interfere with younger speculative-invariant (bound-to-
commit) instructions, effectively turning them into transmitters for secret
data accessed during speculation. We demonstrate forward speculative in-
terference on real hardware, by selectively filling the reorder buffer (ROB)
with spurious instructions, pushing speculative-invariant instructions in-
or-out the ROB on demand, based on a speculatively accessed secret.
This reveals the speculatively accessed secret, as the occupancy of the
ROB itself becomes a new speculative side-channel. We also demonstrate
that it is possible to use the x86 ISA REP prefix, which unrolls as a
micro-op loop in the microarchitecture at decode time (before any side-
channel defenses have taken effect), as a method for generating spurious
instructions. We propose several mitigations that range from changing
compile-time decisions for speculative-invariance to run-time mechanisms
that aim to make ROB occupancy operand-independent.

I. INTRODUCTION

Speculative side-channel attacks use speculative execution to gain
access to information that would otherwise be inaccessible. Specu-
latively executed instructions are capable of temporarily bypassing
hardware or software defenses to gain illegal access to data that are
then passed to speculative side-channel instructions, a transmitter
gadget, capable of leaking those sensitive data to the non-speculative
domain. Transmitter gadgets perform an operation that alters the
microarchitectural state of the processors, leading to a data leak. A
receiver observes the changes in the microarchitectural states and is
able to identify leaked data outside of the speculation window.

To tackle this problem several hardware defenses [1], [4], [6],
[8], [10], [11], [12], [15] have been proposed, introducing a variety
of security guarantees. However, defenses also introduce various
levels of complexity and performance overhead. Several hardware
defenses rely on techniques that protect instructions while they are
speculative, and focus on making them invisible. One example is
Delay-on-Miss (DoM) [10]. DoM delays speculative loads that miss

in the L1 cache until they become non-speculative, at which point they
can be executed safely. Another example is InvisiSpec [12]. InvisiSpec
performs speculative loads but keeps the effects of a miss invisible in
the cache hierarchy. When the speculation is verified, changes in the
memory hierarchy are effected with a visible access.

Hardware defenses, such as DoM and InvisiSpec, add significant
performance overhead [10], [12]. For this, Zhao et al. proposed
InvarSpec [16], a framework that detects and lifts the protection
for speculative instructions that become speculation invariant. For
an instruction to be speculative invariant, its data and control
dependencies must be resolved during the speculation window. Such
instructions are eventually going to execute with the same operands,
even if they are temporarily squashed due to misspeculation, and are,
thus, considered safe to execute. Lifting the protection for speculation
invariant instructions enables the visible execution of an instruction
while it is still under speculation, maintaining the “invisible speculative
execution” semantics of defenses such as DoM or InvisiSpec while
recovering significant performance lost to these defenses.

In a related development, Behnia et al. demonstrate that Speculative
Interference [5] can break (under some assumptions) the DoM and
InvisiSpec defenses. Up until now, the transmitter instructions were
considered to be exclusively under speculative execution. With the
introduction of Speculative Interference attacks, this has changed.
In such an attack, the transmitter instructions are placed before
(in program order) the speculation window. Hence, the transmitter
instructions can lie outside the protection of DoM or InvisiSpec
defenses, as these are engaged only for instructions that follow
(in program order) the source-of-speculation instruction(s). Since
Speculative Interference is based on the fact that younger speculative
instructions can influence the timing of older instructions, it can
consequently lead to information leakage even under speculative
defense mechanisms [5].

The key insight of our work is that speculation-invariant instructions
are susceptible to speculative interference from older speculative
instructions: Forward Speculative Interference (FSI). To clearly
differentiate between FSI and the speculative interference from
younger speculative instructions, we refer to the latter as Backward
Speculative Interference (BSI). Using FSI, a new side-channel can
be created by manipulating the inclusion or exclusion of speculation-
invariant instructions in the reorder buffer (ROB). Other forms of
forward interference are also possible and Behnia et al. [5] discuss
how to delay instruction fetch with reservation station (RS) contention,
called GI

RS in [5]. However, GI
RS concerns blocking of instruction

fetch (and the front-end) which affects the I-Cache and is distinctly
different from the ROB-contention interference discussed here that
concerns instruction execution.

We demonstrate FSI with ROB contention on actual processors
(Intel Sandy Bridge) and show how the ROB can be used as a
side-channel. Specifically, we show how, during speculation, we can

1

selectively push in-or-out of the ROB load instructions that are on the—
yet unknown—correct path of execution, leading to side-effects that
remain observable after the speculation has been resolved. These load
instructions would be marked as speculative-invariant by InvarSpec,
therefore the InvarSpec framework is susceptible to such a side-channel
attack as well.

In addition to the attacks, we propose FSI ROB-contention
mitigations from the speculative invariance point-of-view. We propose
two potential mitigations: conservatively considering at compile time
instructions that are susceptible to ROB-contention interference as non-
speculation-invariant and compile-time path balancing to prevent ROB-
contention FSI. Finally, we briefly touch on making ROB contention,
operant-invariant to manage the ROB side-channel in a more general
approach. Evaluation of our proposed mitigations is work in progress
and we aim to report results in a future version of the paper.

II. BACKGROUND

A. Delay-on-Miss

Delay-on-Miss (DoM) is a hardware defense mechanism against
speculative side-channel attacks, focusing on side-channels that abuse
the memory hierarchy [10]. Consecutively, side-channel attacks that
do not focus on the memory hierarchy are outside the scope of DoM
and are not hindered by it.

DoM operates on two fundamental principles. First, DoM delays
transient loads until they become non-speculative. DoM introduces the
concept of speculative shadows to efficiently track the speculative state
of instructions and discover the earliest time instructions become non-
speculative, typically significantly earlier than reaching the commit
stage (becoming head of the reorder buffer).

Second, DoM delays only loads that miss in the cache. Because
reading data into a cache requires complicated interactions with the
rest of the system, it is difficult to hide the side-effects of loads in the
memory hierarchy on a cache miss, as demonstrated in prior solutions
such as InvisiSpec [12] and Ghost Loads [9]. However, a cache hit
requires only small modifications to the cache state (update of the
replacement state etc.), which can be easily deferred for when the
load is non-speculative. Thus, instead of delaying all loads, DoM
allows loads that hit in L1 cache to execute under speculation, while
delaying any side-effects until the load becomes non-speculative.

B. Speculation Invariance: InvarSpec

InvarSpec is not itself a speculative side-channel defense but rather
a framework that detects when a speculative instruction becomes
speculation invariant and upon detection lifts any existing protections
for the instruction [16]. InvarSpec consists of two main parts. The
first part is a compiler technique that after static analysis generates
a safe set (SS) for the instructions. The second part is a hardware
mechanism that at runtime designates an execution-safe point (ESP)
according to the SS.

An example of speculation invariance is shown in Figure 1, where
a (instr3) has a potential data dependence with instr2, and instr2
has a control dependence with instr1. In order for instr3 to become
speculation invariant, it must reach its execution safe point, meaning
both instr1 and instr2 must reach their outcome safe point. Since
instr4 has no data nor control dependencies with any other instruction
(its SS is empty) it can execute immediately.

Each instruction has its safe set (SS) defined by the compiler and
corresponds to the instruction’s control and data dependencies on the
instructions in the set [16].

The SS is used to determine at run-time when an instruction is
ready and safe to execute during speculative execution.

1 if(cond){ // instr1
2 si = load i; // instr2
3 }
4 a = load si; // instr3
5 b = load j; // instr4

(a) Source Code Instr3

Instr2

Instr1 Instr4

Control Dependence

Data Dependence

No Dependence

(b) Instruction dependence graphs

Fig. 1: Dependences related to safe set (SS)

An instruction is considered to be speculation invariant when it
reaches its execution-safe point (ESP). To reach the ESP, the operands
of an instruction must have been finalized. Older instructions that
comply with these rules are said to have reached their outcome-safe
point (OSP), meaning that their final result will not change, no matter
how many future squashes may happen. When everything in the safe
set reaches the outcome-safe point, the instruction itself has reached
the execution-safe point and the speculative side-channel defense
mechanisms can be lifted for the instruction to be executed, even if
the speculation has not be verified.

Figure 2 shows the timeline of an instruction using InvarSpec
framework. As a reminder, an instruction is said to have reached its
ESP when all its operands reach their OSP. Once the instruction is
ready to be executed, even if the speculation has not been resolved,
the defense mechanisms are lifted and the instruction executes.

missprediction
Speculation Window

instr1 instr2 instr3 instr4
ESP?OSP?OSP? ESP

Time

Fig. 2: Speculation Invariant Timeline: For instr3 to be considered
speculation invariant, instr2 and instr1 must reach their OSP. Instr4
has no dependences, and executes immediately under speculation
using InvarSpec framework.

C. Backward Speculative Interference

Speculative Interference attacks [5] are able to break defense
mechanisms similar to DoM and InvisiSpec. Even though speculative
loads are executed invisibly, misspeculated instructions can change
the timing of older instructions that may be outside the protection of
DoM or InvisiSpec as non-speculative instructions. This change can
influence the ordering of memory operations that will be committed,
setting the fundamentals for a possible attack.

The attack consists of three parts:
1) A bound-to-commit instruction —the interference target—

waiting to be executed.
2) A branch predictor that is trained to mispredict, which creates

a speculative window and the opportunity to illegally access
some secret data.

2

3) The secret is used in an interference gadget in such a way that
the interference target is delayed in a secret-dependent manner.

For example, assume that the interference target is a load that takes
X cycles before its operand becomes ready. The interference gadget
can then use the secret value to selectively add contention in the
MSHRs. For example, if the secret is equal to 1, the interference
gadget attempts to fill all MSHR entries before the interference target
is ready to execute. Otherwise, if the secret is equal to 0, no memory
operations are performed by the interference gadget.

Once the interference target becomes ready to execute, if the secret
was 1 it will be further delayed, otherwise, if the secret was 0, it
will be executed unhindered. This difference in behavior can lead to
information leakage as it can affect the order of the interference target
with respect to other loads, and thus affect the cache replacement
state.

III. ROB-CONTENTION: AN FSI ATTACK THAT BREAKS

SPECULATIVE INVARIANCE

Speculation invariance allows (bound-to-commit) speculative in-
structions to be executed without defenses before the speculation is
verified. In this respect, speculation-invariant instructions behave the
same as the corresponding instructions in an unprotected processor.
In this work, we demonstrate our attack on an unprotected processor
and then argue that the same attack can be used to leak information
on a processor that implements InvarSpec.

In Backward Speculative Interference, the interference gadget delays
the execution of the interference target, a bound-to-commit instruction
that is placed prior to the speculation. In Forward Speculative
Interference, the interference gadget instead interferes with a bound-to-
commit speculation-invariant instruction, which is executed while still
under speculation, unprotected by defense mechanisms like DoM [10]
or InvisiSpec [12].

1 interference_target;
2 // mispredict
3 if(cond){
4 interference_gadget;
5 }

(a) Backward

1 // mispredict
2 if(cond){
3 interference_gadget;
4 }
5 interference_target;

(b) Forward

Fig. 3: Speculative Interference Attacks

While FSI can take many forms, in this paper we introduce a novel
side-channel based on manipulating ROB contention. To the best
of our knowledge, this has not been explored previously. The ROB
side-channel can be used to construct new Spectre [7] variants on
unprotected processors, but more importantly, it can break InvarSpec
approaches [16] that selectively lift defenses of instructions under
speculation. Assuming DoM as the underlying defense mechanism—
other defenses, such as InvisiSpec, are similarly susceptible—an FSI
ROB-contention attack consists of three parts:

1) A branch predictor that is trained to follow the attack path.
2) A secret that is read from the cache (allowed in DoM) and

ROB contention, as a function of the secret value, is added.
3) A speculation-invariant target instruction that resides just

after the reconvergence point and that is executed with the
DoM protections lifted. We initialize the speculation-invariant
instruction with an empty safe set, i.e., a set that has no
dependencies and can execute immediately when it becomes
ready.

Depending on the contention-induced delay, and thus on the secret
value, the speculation invariant target instruction will be affected
in terms of when it will be ready to execute. For example, when
the secret is equal to 1, we add extra ROB contention, in the form
of a loop or a long sequence of spurious instructions. As a result,
the ROB is filled with speculative instructions, which prevents the
speculation-invariant target instruction from even entering the ROB and
executing. On the other hand, the path followed when the secret is 0
behaves normally, enabling the speculation-invariant target instruction
to execute when it enters the ROB. Since InvarSpec has lifted the
defenses from the instruction, any side-effects caused by its execution
will remain observable even after the misspeculation has been detected
and squashed, making it possible to infer the secret value outside of
the speculative window.

While the FSI ROB-contention attack shares some similarities with
the GI

RS speculative interference attack, described by Behnia et
al. [5], it is distinctly different in a number of ways: First, in contrast
to GI

RS , ROB-contention manipulates the execution of bound-to-
commit loads (which lie after the reconvergence point) rather than
instruction fetch. As such, ROB-contention directly affects mitigations
such as DoM or InvisiSpec (when combined with InvarSpec) that aim
to protect data caches from leaking information, which is not a concern
with GI

RS : GI
RS uses the instruction cache as a side-channel—ROB-

contention uses the data cache. Second, GI
RS must cause a front-end

stall to work. ROB-contention works as long as a target instruction
is kept just outside the ROB, which does not necessarily mean a
front-end stall. For example, if the target instruction is sufficiently far
from the reconvergence point, the front end will keep fetching and
decoding instructions from the reconvergence point onwards.

Misspredict

if(secret) Measure
Time

delay;

ld instr

hit

miss

ld instr
1 0

Attack Path Correct Path

(a) FSI v1: Depending on the secret,
we influence the execution time of
the speculation-invariant target in-
struction, hence the latency of the
measured instruction.

Misspredict

if(secret) ld A

delay;

ld B

hit

miss

1 0

Attack Path Correct Path

miss

(b) FSI v2: Depending on the secret,
Ld A and Ld B will be placed either
as Ld B, Ld A or Ld A, Ld B in the
cache.

Fig. 4: Two techniques to extract the secret.

Two possible techniques to identify the secret, are shown in Figure 4.
The first technique can be thought-of as a version of the Flush&Reload
attack [13]. It is shown in Figure 4a and is based on testing if data
are cached in the L1 cache or not. To achieve this, we measure the
access time of the speculation-invariant target instruction when the
speculation is finally resolved and the execution continues from the
correct path. While on the misspeculated attack path, whether the
load instruction at the reconvergence point will be executed depends
on which path the speculative execution followed, i.e., it depends on
if secret is 0 or 1. Then, on the correct path, the time it takes to
execute the load will change depending on if the data was loaded
by the attack path, thus making it possible to infer the secret value.
The second technique (Figure 4b), taken from Behnia et al. [5], is

3

similar to the first technique but is instead based on the relative order
of two load instructions, as seen by the cache, which causes visible
changes in the cache replacement state. To do so, we load another
address in the correct path that conflicts with the address loaded by
the speculation-invariant instruction. At a later time, we observe the
cache replacement state to extract the leaked information. We will
discuss both of these techniques, as well as an alternative method (to
loops) for introducing ROB contention in the sections that follow.

A. Measuring Cache Access Time

In this technique (Figure 4a), we measure the access time of the
speculation-invariant target instruction when we access it during the
correct path, once the speculation is verified as incorrect.

The attack starts by ensuring that the address of the speculation-
invariant target instruction is flushed from the cache. If the secret is
equal to 1 then the speculative-invariant target instruction is never
executed along the incorrect path. Once the speculation is resolved and
the correct path is taken a load with the same address as the speculative-
invariant target instruction will miss in the cache and experience a
long delay. If the secret is equal to 0 then the speculative-invariant
target instruction is executed in the incorrect path and the load in the
correct path will hit in the cache and experience a short delay.

B. Observing Replacement State

In this technique (Figure 4b), we focus on the replacement state of
the L1 cache to leak the information.

Behnia, et al. demonstrate a complete attack based on replacement
state [5], but here, for simplicity, we assume a direct-mapped cache
and load addresses that map to the same set.1

Just as with the previous technique (Section III-A), depending on
the secret our goal is to add ROB contention to affect the speculation-
invariant instruction. Once the branch is resolved as incorrect and
continues on the correct path, another load instruction accesses a
different address that conflicts with the speculation-invariant load
instruction on the same cache set.

If the secret is equal to 1, the speculation-invariant load will be
prevented from executing due to ROB contention. The load instruction
from the correct path will be executed first, taking place in the cache
set. After that, the interference target (speculation-invariant load),
will be normally executed, evicting the load of the normal path from
the cache. On the other hand, if the secret is equal to 0 then the
speculation-invariant load will be executed first, and once the branch
is resolved as incorrect, the load from the correct path will evict the
interference target (speculation-invariant load) from the cache.

C. ROB Attack Using REP Instructions

An FSI ROB-contention attack requires filling the ROB with
speculative instructions. While either a tight loop, or a long sequence
of spurious instructions, fit the bill for this purpose, interestingly, one
can achieve the same result with a single static instruction.

In the x86 ISA, REP is a prefix that can be used before string
instructions. It creates a single-instruction loop, with the value stored
in the ECX register acting as the loop counter.

The key property that enables a single REP instruction to affect
ROB contention is that it unrolls as a µop loop in the microarchitecture,
at decode time [2]. ROB occupancy becomes a function of ECX.

According to empirical studies [2], [3], REP-prefixed x86 instruc-
tions expand into a number of µops in the ROB. The following table
lists the µop expansion (ECX==n) in the ROB for two typical REP

1Changes in a cache set or in its replacement state can be easily verified in
a simulated environment, e.g., using gem5.

instructions and for some well-known microarchitectures—similar
expansion takes place for the majority of x86 microarchitectures [2].

Instr./Proc. Haswell Broadwell Skylake IceLake
rep movs 2n 2n 2n 2n
rep lods 5n+12 5n+12 5n+12 5n+12

Furthermore, we ascertain that the REP movs instruction expands
speculatively on a Sandy Bridge microarchitecture. We tested this
scenario by giving ECX various values, after a speculation point,
followed by a REP instruction (as in the code shown in Figure 5). By
timing the code, we observe that the REP instruction, indeed, expands
speculatively into a number of µops that is proportional to ECX.

To mount a ROB attack with REP instructions (Figure 5), we use
the speculatively-accessed secret to update the ECX register, which
then controls the number of µops that are dispatched to the ROB. To
create a large enough repetition factor, we left-shift the secret by, e.g.,
ten places (if the secret is zero, it does not change). This value is
passed to ECX which subsequently drives a REP movs instruction
to selectively flood the ROB with up to 2n µops.

1 if(value){ // mispredict - Attack Path
2

3 secret = secret << 10; // Repetition factor
4

5 // Pass secret to ECX and execute rep
6 asm("movl %0, %%ecx" : : "c" (secret));
7 asm("rep movsb");
8 }
9 else { // Normal Path

10 t1 = __rdtscp(); // Start measuring latency
11 transmitter = probe[0]; // Evaluation
12 t2 = __rdtscp(); // End measuring latency
13 t = t2-t1;
14 }
15

16 transmitter = probe[0]; // Recovergence Point

Fig. 5: Abusing InvarSpec with Forward Speculative Interference
using REP Instruction

IV. ATTACK DEMO AND EXPERIMENTAL RESULTS

We implemented our FSI attack on actual hardware. While DoM
defenses and InvarSpec are not implemented, we can see the effects
of the attack in an unprotected core, which behaves the same as a
protected core with respect to speculative-invariant instructions. We
evaluated our results on an Intel® CoreTM i7-2600K, which is a Sandy
Bridge microarchitecture, running at up to 3.40GHz. The processor
has 4 cores (2 SMT threads per core, for 8 threads in total) and 3
cache levels. Each core has a 32KiB L1 Cache and a 256KiB L2
Cache, and all cores share an 8MiB LLC. Our source code is written
in C, and we measure the timing of a variable assignment to detect
difference in the correct path as shown below.

1 t1 = __rdtscp(); // Start measuring latency
2 transmitter = probe[0]; // Evaluation
3 t2 = __rdtscp(); // End measuring latency
4 t = t2-t1;

The overall structure of the attack demo is illustrated in Figure 6
for two variants: timing loads and determining the order of loads.
We report on the results for the timing-load variant on a real system.
While determining the order of loads can be easily demonstrated in
gem5, on actual systems, this requires detection code (as in Behnia et
al. [5]), which is work in progress. Before we follow the attack path,
all load addresses are flushed from the cache. The branch predictor

4

if(att-path) { //mispredict
 if(secret) //hit
 delay;
}
else { // correct path
 {ld B}
 \or
 {ld A}
}
ld B

secret == 1
{measure load | ld B misses in cache}
{cache position | ld A cached prior to ld B}

secret == 0
{measure time | ld B hits in cache}
{cache position | ld B cached prior to ld A}

1

2

1

1

2

2

A B
time

B A
time

Fig. 6: Attack Demo: (1) measure time Ld B, to see if its in cache
and distinguish the secret. (2) determine in Cache if A or B is cached.
i.e. in a direct mapped cache where A and B maps on the same set,
if secret==1, B will evict A from the cache.

is trained so that it will always mispredict and follow the attack
path. The secret value is already cached in the L1. Depending on
the secret, ROB contention is added, so that ld B will be delayed.
If secret==1, delay from ROB contention will be sufficient for
speculation to be verified before ld B executes. If secret==0, no
delay is applied and ld B is executed as soon as possible.

Cy
cl

es

0

50

100

150

200

250

300

Secret 0

Secret 1

Fig. 7: Attack using for-loop to delay the reconvergence point.

A. Delaying with a for-loop

In this version, we use a for-loop to delay the execution of the
reconvergence point. This is the attack discussed in Section III. The
results are shown in Figure 7. The distribution of all 1000 attempts
per secret is presented, without outliers, in the graph. We show that
an average load is equal to 258 cycles, if the secret is equal to 1, and
73 cycles when the secret is equal to 0.

Cy
cl

es

0

100

200

300

400

500

600

Secret 0

Secret 1

Fig. 8: ROB Attack using REP instruction: All 1000 attempts per
secret

B. Delaying with REP instruction

In this version, we use a REP instruction to delay the execution of
the reconvergence point. This is the attack discussed in Section III-C.
Figure 9 illustrates the average of every 100 attempts. We show, that
when repeating the attack, the results diverge, making it easier to
identify the secret: An average load when secret==0 is 170 cycles.
On the other hand, when secret==1 an average load is 260 cycles.

Cy
cl

es

0

50

100

150

200

250

300

Secret 0

Secret 1

Fig. 9: ROB Attack using REP instruction: Average every 100 attempts

C. Discussion

Our results show that forward speculative interference and ROB-
contention work successfully in actual processors, and constitute a
new side-channel that can be used to construct Spectre-type attacks.
Because the speculation-invariant instructions behave the same as
instructions from the re-convergence path in unprotected processors,
FSI ROB-contention poses a significant threat when we want to lift
defenses for speculation-invariant instructions.

V. FORWARD SPECULATIVE INTERFERENCE MITIGATIONS

In this section, we discuss some possible mitigations for the FSI
ROB-contention side-channel. Evaluation of these mitigations is
currently work-in-progress and results will be presented in future
versions of this paper. We propose mitigations that are specific to
InvarSpec+DoM, but also more general mitigations that can be applied
to unprotected processors.

a) InvarSpec+DoM Specific Mitigations: To protect against FSI
ROB-contention attacks, InvarSpec must be conservative in declaring
instructions as speculation-invariant if they are vulnerable to ROB-
contention. For example, if the compiler can ascertain that the paths to
the reconvergence point can differ in length, it would be prudent not to
call instructions after the reconvergence path as speculation-invariant
and take them off DoM protection. This would include the cases
described in our work: i.e., detecting loops or REP instructions in a
path would automatically make that path suspect for ROB-contention
as a variable-length path. Note that this mitigation can only reduce
the benefit from InvarSpec but cannot introduce any overhead to
a baseline DoM-protected system. However, because in most cases
paths to reconvergence do differ in length, this may lead to a dramatic
reduction in coverage, i.e., the number of instructions that could be
safely called speculation-invariant. One way to improve coverage is for
the compiler to try to “balance” path-length differences (especially if
these are modest) with padding, which may introduce small overheads
in the shorter paths. We shall examine such options in future work.

b) General Mitigations: Another direction to defend against FSI
ROB-contention, independently of InvarSpec and delay defenses, is
to make speculative ROB-filling operand-independent [14]. In other
words, to ensure that the number of µops that enter the ROB cannot
be dependent on speculatively-accessed values. Similar to SDO [14],
ROB-filling itself can be turned into a prediction, which can lead to
a squash if mispredicted.

VI. CONCLUSION

In this work, we present a new side-channel, based on ROB
contention, and a new speculative execution attack (ROB-contention
attack) using this side-channel. The attack is achieved through Forward
Speculative Interference, i.e., speculative instructions interfering with
younger instructions that are bound to commit regardless of the
speculation outcome. For this reason, techniques, such as the InvarSpec
framework, that lift the defenses for such bound-to-commit instruc-
tions, are susceptible to the same attack and can leak speculatively

5

accessed information. We demonstrate the ROB-contention attack on
actual cores and show that, indeed, instructions after the reconvergence
point of a control-speculation can leak information accessed during
the control-speculation. To prevent ROB-contention attacks, assuming
defenses such as DoM, we argue that frameworks that selectively lift
such defenses must take into account Forward Speculative Interference
and change their tactics. We propose a number of mitigations that we
are in the process of evaluating.

ACKNOWLEDGMENTS

This work was supported by Microsoft Research through its EMEA
PhD Scholarship Programme grant no. 2021-020 and by the Swedish
Research Council grants no. 2015-05159 and 2018-05254.

REFERENCES

[1] S. Ainsworth and T. M. Jones, “Muontrap: Preventing cross-domain
spectre-like attacks by capturing speculative state,” in Proceedings of the
International Symposium on Computer Architecture, 2020, pp. 132–144.
[Online]. Available: https://doi.org/10.1109/ISCA45697.2020.00022

[2] F. Anger, “Instruction tables,” May 2021. [Online]. Available:
https://www.agner.org/optimize/instruction tables.pdf

[3] ——, “The microarchitecture of Intel, AMD, and VIA CPUs:
An optimization guide for assembly programmers and compiler
makers,” May 2021. [Online]. Available: https://www.agner.org/optimize/
microarchitecture.pdf

[4] K. Barber, A. Bacha, L. Zhou, Y. Zhang, and R. Teodorescu,
“SpecShield: Shielding Speculative Data from Microarchitectural Covert
Channels,” in Proceedings of the International Conference on Parallel
Architectural and Compilation Techniques, Sep. 2019, pp. 151–164.
[Online]. Available: https://doi.org/10.1109/PACT.2019.00020

[5] M. Behnia, P. Sahu, R. Paccagnella, J. Yu, Z. N. Zhao, X. Zou,
T. Unterluggauer, J. Torrellas, C. Rozas, A. Morrison et al., “Speculative
interference attacks: Breaking invisible speculation schemes,” in
Proceedings of the Architectural Support for Programming Languages
and Operating Systems, Apr. 2021, pp. 1046–1060. [Online]. Available:
https://doi.org/10.1145/3445814.3446708

[6] K. N. Khasawneh, E. M. Koruyeh, C. Song, D. Evtyushkin, D. Ponomarev,
and N. Abu-Ghazaleh, “SafeSpec: Banishing the Spectre of a Meltdown
with Leakage-Free Speculation,” in Proceedings of the ACM/IEEE Design
Automation Conference, Jun. 2019, pp. 1–6.

[7] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre
attacks: Exploiting speculative execution,” in Proceedings of the IEEE
Symposium on Security and Privacy, May 2019, pp. 19–37. [Online].
Available: https://doi.org/10.1109/SP.2019.00002

[8] G. Saileshwar and M. K. Qureshi, “CleanupSpec: An ”undo” approach
to safe speculation,” in Proceedings of the ACM/IEEE International
Symposium on Microarchitecture, 2019, pp. 73–86. [Online]. Available:
http://doi.acm.org/10.1145/3352460.3358314

[9] C. Sakalis, M. Alipour, A. Ros, A. Jimborean, S. Kaxiras,
and M. Själander, “Ghost loads: What is the cost of invisible
speculation?” in Proceedings of the ACM International Conference
on Computing Frontiers, 2019, pp. 153–163. [Online]. Available:
http://doi.acm.org/10.1145/3310273.3321558

[10] C. Sakalis, S. Kaxiras, A. Ros, A. Jimborean, and M. Själander,
“Efficient invisible speculative execution through selective delay and
value prediction,” in Proceedings of the International Symposium
on Computer Architecture, 2019, pp. 723–735. [Online]. Available:
http://doi.acm.org/10.1145/3307650.3322216

[11] M. Taram, A. Venkat, and D. Tullsen, “Context-Sensitive Fencing:
Securing Speculative Execution via Microcode Customization,” in
Proceedings of the Architectural Support for Programming Languages
and Operating Systems, 2019, pp. 395–410. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=3297858.3304060

[12] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. W. Fletcher, and
J. Torrellas, “InvisiSpec: Making speculative execution invisible in
the cache hierarchy,” in Proceedings of the ACM/IEEE International
Symposium on Microarchitecture, Oct. 2018, pp. 428–441. [Online].
Available: https://doi.org/10.1109/MICRO.2018.00042

[13] Y. Yarom and K. Falkner, “FLUSH+ RELOAD: A high
resolution, low noise, l3 cache side-channel attack,” in Proceedings
of the USENIX Security Symposium, 2014, pp. 719–732.
[Online]. Available: https://www.usenix.org/conference/usenixsecurity14/
technical-sessions/presentation/yarom

[14] J. Yu, N. Mantri, J. Torrellas, A. Morrison, and C. W. Fletcher,
“Speculative data-oblivious execution: Mobilizing safe prediction for safe
and efficient speculative execution,” in Proceedings of the International
Symposium on Computer Architecture, 2020, pp. 707–720.

[15] J. Yu, M. Yan, A. Khyzha, A. Morrison, J. Torrellas, and C. W. Fletcher,
“Speculative Taint Tracking (STT): A Comprehensive Protection for
Speculatively Accessed Data,” in Proceedings of the ACM/IEEE
International Symposium on Microarchitecture, 2019, pp. 954–968.
[Online]. Available: http://doi.acm.org/10.1145/3352460.3358274

[16] Z. N. Zhao, H. Ji, M. Yan, J. Yu, C. W. Fletcher, A. Morrison, D. Marinov,
and J. Torrellas, “Speculation invariance (InvarSpec): Faster safe
execution through program analysis,” in Proceedings of the ACM/IEEE
International Symposium on Microarchitecture, 2020, pp. 1138–1152.
[Online]. Available: https://doi.org/10.1109/MICRO50266.2020.00094

6

https://doi.org/10.1109/ISCA45697.2020.00022
https://www.agner.org/optimize/instruction_tables.pdf
https://www.agner.org/optimize/microarchitecture.pdf
https://www.agner.org/optimize/microarchitecture.pdf
https://doi.org/10.1109/PACT.2019.00020
https://doi.org/10.1145/3445814.3446708
https://doi.org/10.1109/SP.2019.00002
http://doi.acm.org/10.1145/3352460.3358314
http://doi.acm.org/10.1145/3310273.3321558
http://doi.acm.org/10.1145/3307650.3322216
http://dl.acm.org/citation.cfm?doid=3297858.3304060
https://doi.org/10.1109/MICRO.2018.00042
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
http://doi.acm.org/10.1145/3352460.3358274
https://doi.org/10.1109/MICRO50266.2020.00094

	Introduction
	Background
	Delay-on-Miss
	Speculation Invariance: InvarSpec
	Backward Speculative Interference

	ROB-contention: an FSI attack that breaks Speculative Invariance
	Measuring Cache Access Time
	Observing Replacement State
	ROB Attack Using REP Instructions

	Attack Demo and Experimental Results
	Delaying with a for-loop
	Delaying with REP instruction
	Discussion

	Forward Speculative Interference Mitigations
	Conclusion
	References

