
Data-Out Instruction-In (DOIN!):
Leveraging Inclusive Caches To Attack

Speculative Delay Schemes
Pavlos Aimoniotis
Uppsala University
Uppsala, Sweden

pavlos.aimoniotis@it.uu.se

Amund Bergland Kvalsvik and Magnus Själander
Norwegian University of Science and Technology (NTNU)

Trondheim, Norway
amund.kvalsvik@ntnu.no and magnus.sjalander@ntnu.no

Stefanos Kaxiras
Uppsala University
Uppsala, Sweden

stefanos.kaxiras@it.uu.se

Abstract—Although the cache has been a known side-channel
for years, it has gained renewed notoriety with the introduction
of speculative side-channel attacks such as Spectre, which were
able to use caches to not just observe a victim, but to leak secrets.
Because the cache continues to be one of the most exploitable
side channels, it is often the primary target to safeguard in
secure speculative execution schemes. One of the simpler secure
speculation approaches is to delay speculative accesses, whose
effect can be observed, until they become non-speculative.
Delay-on-Miss, for example, delays all observable speculative
loads, i.e., loads that miss in the cache, and preserves the
majority of the performance of the baseline (unsafe speculation)
by executing speculative loads that hit in the cache, which were
thought to be unobservable.

However, previous works have failed to consider how instruc-
tion fetching can eject cache lines from the shared, lower-level
caches, and thus from higher cache levels due to inclusivity.
In this work, we show how cache conflicts between instruction
fetch and data accesses can extend previous attacks, and we
present the following new insights: 1) It is possible to use lower-
level caches to perform Prime+Probe through conflicts resulting
from instruction fetching. This is an extension to previous
Prime+Probe attacks that potentially avoids other developed
mitigation strategies. 2) Data-instruction conflicts can be used
to perform a Spectre attack that breaks Delay-on-Miss. After
acquiring a secret, secret-dependent instruction fetching can
cause cache conflicts that result in evictions in the L1D cache,
creating observable timing differences. Essentially, it is possible to
leak a secret bit-by-bit through the cache, despite Delay-on-Miss
defending against caches.

We call our new attack Data-Out Instruction-In, DOIN!, and
demonstrate it on a real commercial core, the AMD Ryzen 9.
We demonstrate how DOIN! interacts with Delay-on-Miss and
perform an analysis of noise and bandwidth. Furthermore, we
propose a simple defense extension for Delay-on-Miss to maintain
its security guarantees, at the cost of negligible performance
degradation while executing the SPEC CPU2006 workloads.

Index Terms—Speculative side-channels, cache side-channels,
Spectre, security

I. INTRODUCTION

Caches—a well-known side channel [17]—provide one of
the key methods by which the memory hierarchy can be
exploited to leak information. The introduction of Spectre [12]
and other speculative side-channel attacks, has demonstrated
how a core can be tricked into accessing secrets through erro-
neous speculative execution and leak them through side chan-

nels. The combination of speculative execution attacks and
caches as a side-channel has become a serious design problem
for processor designers, due to the necessity of fast caches and
the variety of speculative side-channel attacks. Caches as a
side-channel have been explored in many works [9], [10], [15],
[32], and the discoveries have given speculative side-channel
attacks [7] easier methods by which to leak data through the
memory hierarchy. Several mitigations have been proposed,
both for speculative side-channel attacks [3], [4], [11], [19],
[21], [29], [33] and for caches as a generic side-channel [14],
[18], [27], [30].

Speculative side-channel attacks exploit transient instruc-
tions, instructions that are erroneously executed and are guar-
anteed to be squashed. These instructions, resulting from
speculative wrong path execution or delayed exception han-
dling, are able to perform potentially dangerous memory
accesses before speculation is resolved, and they are squashed.
Although misspeculation is always eventually detected and
architectural state may be fully reverted (e.g., registers), the
microarchitectural state is not reverted (e.g., locations of cache
lines in the memory hierarchy). Side-channels that are able to
expose this information non-speculatively can then leak secrets
by, for example, observing timing on cache lines.

Instructions that create observable microarchitectural
changes are called transmitters. Loads are some of the most
important transmitters due to how easy it is to observe their
changes and the relatively high bandwidth they enable for
covert side-channel communication. There are different ap-
proaches to mitigate these observable effects: some schemes
focus on hiding speculation [4], [29], others on delaying
execution [21], [22], [33], while others implement undo-based
speculation, allowing speculation to proceed and undoing the
effects [19]. While hiding speculation and undo-based specula-
tion schemes are theoretically elegant solutions, they are costly
to implement due to requiring many changes to the memory
hierarchy. Delaying speculative execution is appealing, as
selectively delaying instructions can limit performance loss.
However, complexity varies from proposal to proposal.

Delay-on-Miss [21] is a delay approach that focuses exclu-
sively on preventing information leakage through the specula-
tive cache side-channel. Delay-on-Miss, as the name suggests,

delays all speculative loads that miss in the L1D cache. The
key idea is that misses in the cache hierarchy are the only
accesses that create observable timing differences. Accesses
that hit in L1D cache are allowed to execute, since their side
effects (e.g., updates to the replacement policy) can be deferred
until after the speculation has been verified. Delay-on-Miss
allows unobservable (with respect to the caches) execution to
proceed, achieving notable performance gains, compared to the
earlier InvisiSpec [29]. The design principles behind Delay-on-
Miss have been adopted and extended (e.g., DOLMA [16]),
and different optimizations have been investigated (e.g., In-
varSpec [34], Clearing the Shadows [25]). Additionally, it
has also been the target for new attacks (e.g., Speculative
Interference [5], InvarSpec+Reorder Buffer Contention [2]).

However, despite the protection that Delay-on-Miss
promises to offer for the data cache side-channel and for
speculative loads (not allowing them to change the L1D
cache), it is unable to completely close the data cache side-
channel as it allows the indirect modification of the L1D via
instruction fetch, as we demonstrate.

In this paper, we present a new variant of last level cache
(LLC) attacks, called Data-Out Instruction-In DOIN! that
exploits inclusive caches. We show how instruction fetching
can create conflicts with data cache lines in the LLC, re-
sulting in the invalidation of cache lines in the L1D Cache
and creating observable timing differences. The attacker fills
caches with data (“prime” step), and waits for a period of time.
The victim then misses while attempting to fetch instructions
in the L1I cache, resulting in the processor fetching cache
lines from main memory to the L1I and LLC (due to cache
inclusivity). These instruction cache lines map to the same set
of cache lines in the LLC as the data that the attacker used
to prime the L1D cache (and were placed in the LLC because
of inclusivity), leading to an invalidation from the LLC to
the L1D cache. The attacker then measures the data access
(“probe” step) and detects whether it was a cache hit or a
cache miss, discovering the behavior of the victim.

We extend this attack to use speculative side-channels, so
that we can leak secrets that were accessed from memory
speculatively. The attacker behaves the same as before by
priming and probing the cache. This time, the secret is loaded
speculatively, and a secret-dependent branch is executed, forc-
ing a secret-dependent path to load an instruction that conflicts
in the LLC with the data the attacker primed, leading to an
eviction from the attacker’s L1D cache. Afterwards, even as
the transient executions have been squashed, the attacker can
perform the probe step to observe a cache hit or a miss, leaking
the binary value of the secret.1

We demonstrate the attack on an AMD Ryzen 9 processor
and show how this attack breaks Delay-on-Miss. Delay-on-
Miss allows control flow to depend on a speculatively accessed
secret (as long as the access is a hit in the cache), and

1An analogous attack can be mounted by swapping the role of instructions
and data, but this form of attack would not work with the Delay-on-Miss
defenses.

this proves to be its weakness as instruction fetch can affect
changes in the data caches.

Finally, we present DONOT!, a mitigation to DOIN! that
restores Delay-on-Miss security guarantees. DONOT! extends
the Delay-on-Miss data delay premise and applies it also to
instructions: instructions that miss in cache are delayed until
they are guaranteed not to be squashed. The proposed miti-
gation introduces negligible performance slowed own for the
SPEC CPU2006 compared to the unmodified Delay-on-Miss.

II. BACKGROUND

Cache side-channels have been a focal point for security
research for many years, while speculative side-channel attacks
were only revealed in 2018. In this section, we introduce
the background for both caches and speculative side-channel
attacks, which contributed to the creation of DOIN!.

A. Last Level Cache Prime+Probe

Prime+Probe [17] is a cache side-channel attack that is able
to observe changes in specific cache lines. The idea behind
the attack is that the attacker loads cache lines into a cache
set (step prime), waits for a certain period of time, and then
measures the access time to the cache lines in this set (step
probe). The cache set conflicts with a potential cache line that
the victim may or may not access. Depending on the time
required for the accesses (hit or miss), the attacker is able
to say if the victim accessed this set while the attacker was
waiting, as any access from the victim will evict a cache line
from the cache set and change timing.

Last level cache Prime+Probe [15] applies the Prime+Probe
attack to the LLC. This technique enables the attacker to attack
a victim operating on a different core, as the LLC is shared
between different cores. Information leakage occurs when the
victim evicts data that the attacker primed in the LLC.

B. Eviction sets

Cache lines are replaced according to the size of an eviction
set. To replace all the addresses in a single set we need to
map as many addresses as ways to that specific set. Eviction
sets [24], [26] is a technique that does exactly this: provides
as many virtual addresses as ways in a cache set that map to
the same set in the unified (data+instruction) cache. When all
those virtual addresses are accessed, they will clear all other
cache lines that were mapped to the same set. Thus, an eviction
set guarantees that all previous contents in that particular LLC
set have been cleared. The attacker has full control of the
cache state, and can later probe that set to examine if the
victim accessed it, as any access would evict at least one of
the attackers cache lines.

C. Speculative Side-Channel Attacks

Speculative side-channel attacks leverage speculative exe-
cution to leak data that would otherwise be inaccessible. A
processor can access data it is normally not able to during
speculation, due to misspeculation causing incorrect execution.
In this class of attacks, the attacker exploits predictors or

1 void access_array(int index){
2 if(index < array_size)
3 secret = array[index];
4 }
5

6 void train(){
7 for(i=0; i<100; i++)
8 access_array(0);
9 }

10

11 void attack() {
12 char probe_array[N * CACHE_LINE_SIZE];
13 train();
14 flush(&probe_array);
15 secret = access_array(secret_location);
16 x = probe_array[secret * CACHE_LINE_SIZE];
17 probe(&probe_array);
18 }

Fig. 1. Spectre V1.

exception handling to make the processor execute incorrect
instructions, and access data that is inaccessible in non-
speculative execution.

Figure 1 illustrates how a typical speculative attack using
a predictor works. The attacker goes through the setup phase:
trains the branch predictor (line 13) to always enter the if-
statement in the access array() function (line 2) and flushes a
probe array from the cache (line 14). Probe array is the array
that will be used to transmit the secret and create observable
timing differences into the non-speculative worlds. Because
the branch predictor is trained to assume the illegal access is
allowed, the attacker makes an out-of-bounds illegal access,
fetching a value from an otherwise inaccessible address (line
15), i.e., acquiring a secret. To leak the value of the secret,
the attacker passes it as an address into the probe array (line
16), accessing a specific cache line. Depending on the secret
value, a specific cache line will be inserted into the L1 cache)
Measuring the access latency of each cache line represented
by the probe array, even after speculative execution has been
squashed, will reveal which cache line that has been brought
into the L1 cache, and thus the value of the secret. The
cache line that was accessed using the value of the secret
will take significantly less time than the others, as it will
hit, in contrast to the other cache lines which were flushed
before the attack and are still missing from the L1 cache.
Thus, when we time all the possible cache lines of the probe
array after misspeculation is verified, the cache line with an
address corresponding to the secret value would hit (lower
access time) and the rest would miss (line 17).

D. Delay-on-Miss

Delay-on-Miss [21] is a safe speculation scheme that aims
to block the cache hierarchy as a speculative side-channel. Its
threat model covers only the speculative cache side channels.
Delay-on-Miss modifies the execution of speculative load
instructions, delaying all speculative loads that miss in the L1D
cache, while allowing hits to execute, but always delaying any

observable side effects, such as updating replacement policies,
a speculative load may impose on the microarchitecture.

Delay-on-Miss uses speculative shadows to track the spec-
ulative state of instructions efficiently. Every instruction that
might trigger a speculative state, either prediction or delayed
exception handling, casts a shadow. Every instruction placed
in the reorder buffer (ROB) after a shadow-casting instruction
is said to be under a shadow. A shadow is lifted once the
instruction that casts the shadow is guaranteed to commit and
not squash the following instructions. The following shadows
are introduced:

• E-Shadows: are cast by instructions that may cause an
exception, such as memory operations with unresolved
addresses and arithmetic operations.

• C-Shadows: are cast by speculative control-flow in-
structions, such as branches and jumps.

• D-Shadows: are cast by store instructions with unre-
solved addresses that may have memory dependencies. If
undetected aliasing occurred, this triggers an exception
and requires the processor to rollback.

• M-Shadows: are cast by load instructions when they
may be violating load ordering in some memory models
(e.g, under TSO).

Delay-on-Miss is an elegant concept that requires lim-
ited hardware modifications. Following Delay-on-Miss, several
other works block more side-channels [16], [23] or propose
performance optimizations [25], [34].

III. THREAT MODEL

In this section, we describe our threat model, and the
conditions under which DOIN! can successfully attack. For
non-speculative DOIN!, we assume the same threat model as
Prime+Probe. For this version of DOIN!, a successful attack
involves observing timing differences in the cache hierarchy
and being able to gleam information about the execution of
the program of the victim.

For speculative DOIN!, we assume that the attacker is
executing under normal user-permissions on an out-of-order
processor and wishes to access data not belonging to its
process, i.e., a secret. We assume a lenient threat model in
favor of Delay-on-Miss and mitigations: the attacker cares only
about the cache as a side-channel. For evaluation, we evaluate
only explicit speculation through control-flow instructions, i.e.,
C-shadows, but DOIN! works with any kind of speculation.
We use a strict definition of leakage as the persistence of
secrets after transient execution has been squashed. This means
that the secret must be recoverable after speculation has been
squashed and normal execution resumed.

For speculative DOIN!, a successful attack involves mis-
speculation to access a secret, and using this secret to trigger
dependent control flow that results in either a conflicting
eviction or no eviction, which reveals the value of the secret.
The secret can be recovered after squashing by timing the
access to the potentially conflicted cache line.

Cache side-channels are used as the only side-channel con-
sideration for these attacks due to being among the most noise-

resistant and high-bandwidth side-channels. DOIN! demon-
strates how previous secure speculative execution schemes are
unable to comprehensively eliminate speculative side-channel
attacks, due to their interactions with other aspects of the cache
hierarchy, such as inclusivity and instruction fetch. This is
likely to complicate mitigation efforts against attacks such
as Prime+Probe, as direct accesses to data caches are not
necessary to observe the victim program.

Other side-channels, such as port contention, timing-
inversion, or physical attribute (e.g., power or EMF) side-
channels are not considered for this work as they also fall
outside the scope of the original Delay-on-Miss strategy.
Delay-on-Miss only attempts to mitigate timing differences
in the memory hierarchy (including coherence directories
and DRAM) as the prime speculative side-channel, due to
its ubiquity and relative ease-of-use. Other side-channels are
known to be able to leak data under Delay-on-Miss, but
at a reduced bandwidth compared to the unsafe baseline.
We achieve similar results here, but directly use the timing
differences in the cache hierarchy, which Delay-on-Miss was
designed to protect against.

IV. DATA-OUT INSTRUCTION-IN (DOIN!)

Lower level caches are often inclusive, containing copies of
higher level cache elements, and evicting the copy from the
lower level cache also evicts it from the higher level cache.
Inclusive caches are simpler to design than non-inclusive or
exclusive caches in terms of coherence and in particular with
respect to invalidation. Because they avoid complications and
cost associated to the coherence implementation, inclusive
caches are appealing —and typically found— in cost-effective
commercial products for the consumer market (e.g., laptop
and desktop processors). DOIN! leverages cache inclusivity
to perform a combined data and instruction attack. In this
section, we describe how DOIN! functions non-speculatively
and speculatively.

A. Non-speculative DOIN!

Non-speculative DOIN! extends previous LLC attacks such
as Prime+Probe, by offering a new method of observing mem-
ory access patterns of a victim through instruction interference.
Non-speculative DOIN! consists of an attacker and a victim,
in which the attacker wishes to glean information about the
execution of the victim’s program. These sorts of attacks have
implications for the security of encryption implementations,
amongst other concerns. Non-speculative DOIN! consists of
the following four main steps:

1) Prime the cache by accessing an entire eviction set,
loading the set into the L1D cache (and the LLC due to
inclusivity).

2) Wait for the victim to execute its program, which
includes a secret-dependent instruction fetch.

3) In the case of an instruction fetch, it will cause a conflict
in the eviction set, and evict data from the L1D cache,
creating a timing difference.

4) The attacker periodically probes the cache by timing the
entire eviction set in the L1D. A longer access time on
any part of the set indicates secret = 1, else secret = 0.

Unlike other LLC attacks, here, the attacker avoids directly
accessing the same memory types as the victim, and can
instead merely conflict indirectly through the instruction-data
conflicts occurring in the LLC. The attack’s advantage is
that previous detection mechanisms, which might mitigate
observable timing differences on conflicting data accesses,
might not be designed to detect such conflicts originating
from the fetch part of the processor. This is, to the best of
our knowledge, the first time that a combined attack, using
both data and instructions to create conflicts in the LLC that
result in timing differences in a separate L1 cache, has been
presented. In the past, there have been exploits that use the
data cache through data [17] and instruction cache through
instructions [1], but no works that exploit the data cache using
instructions and the instruction cache using data.

B. Speculative DOIN!

In this section, we focus on speculative DOIN!, as this
particular speculative attack is able to break the security guar-
antees of Delay-on-Miss. The speculative and non-speculative
versions consist of many similarities, but the non-speculative
version does not require a victim program, and rather uses
DOIN! to avoid the mitigation introduced by Delay-on-Miss.

The attack consists of five main steps:
1) Prime the cache by accessing an entire eviction set, and

loading the set into the L1D cache (and the LLC due to
inclusivity).

2) Access a secret during speculation and perform a secret-
dependent instruction fetch. Secret-dependent control
flow does not use the cache directly, and therefore avoids
Delay-on-Miss.

3) In the case of an instruction fetch, it will cause a conflict
in the eviction set, and evict data from the L1D cache,
creating a timing difference.

4) Let the misprediction be resolved and the squash to
complete, relinquishing the secret, but otherwise not
affecting the cache hierarchy.

5) Probe the entire eviction set in the L1D cache. A longer
access time on any part of the set indicates secret = 1,
else secret = 0.

Figure 2 illustrates each step of a successful attack. The
attacker makes a read request and brings the data X into the
cache hierarchy, both in the L1D cache and the LLC, due
to inclusivity. A conflicting instruction that misses in the L1I
cache is fetched, and brings Y into the cache hierarchy (both
the L1I cache and the LLC). Y conflicts with X on the same set
in LLC, so X sends an invalidation to the L1D cache, which
then evicts X out of the L1D cache. The attacker now probes
X, and observes a miss.

V. BREAKING DELAY-ON-MISS

The goal of secure speculative execution schemes is
to protect against information leakage under speculation.

L1 Instruction
Cache

L1 Data
 Cache

LLC Cache

L1 Instruction
Cache

L1 Data
 Cache

LLC Cache

X

X

L1 Instruction
Cache

L1 Data
 Cache

LLC Cache

Y X

Y X

Evict

L1 Instruction
Cache

L1 Data
 Cache

LLC Cache

Y

Y

(a) Empty (b) Attacker Prime Step (c) Conflict (c) Attacker Probe Step

Fig. 2. Steps of DOIN!: (a) The cache is empty. (b) Attacker primes the L1D cache. (c) Conflict with the previously cached data in the LLC. The instruction
replaces the data in the LLC and evicts the data from the L1D cache. (d) Attacker probes the data in the L1D cache.

Delay-on-Miss proposed a complexity-effective solution,
noting that speculative loads that miss are the memory
accesses that create observable timing differences through the
memory hierarchy, covering a threat model only considering
cache side-channels. Because Delay-on-Miss prevents all data
cache misses while under speculation, it was assumed that
control-flow would be unable to create cache-side channels
through implicit channels. An implicit channel uses the
secret value to create differences in control flow, and thus
observable timing differences [33]. Delay-on-Miss allows
speculatively accessed secrets that hit in the cache to be used
for the formation of implicit side-channels.

However, speculative interference [5] has shown that it is
possible for an implicit channel to affect the timing (and
ordering) of non-speculative instructions that precede the spec-
ulation. This case was not considered by Delay-on-Miss and
although the instructions that are affected are non-speculative,
it is an inherent weakness, because it enables speculatively
accessed secrets to be used in implicit side-channels. These
issues have been addressed in a follow-up work that still
enables Delay-on-Miss to use secrets in implicit side-channels,
but prevents speculative interference by preserving priority
among younger and older instructions [23].

Understanding this, we show that allowing secrets to be
used in implicit side channels can still create observable
differences in data caches, thus breaking Delay-on-Miss in its
own threat model. More specifically, we show that although
DoM does not allow speculative modifications of the cache,
such modifications can be indirectly caused by instruction
fetches, which in turn can be driven by a secret dependent
implicit side-channel.

DOIN! is an attack that, instead of forming an explicit
channel, forms an implicit channel and leaks information
through interference in the memory hierarchy. As discussed
in Section IV-B, the instruction can contest the same cache
set as the data, and evict it both from the LLC and the L1D
cache. An attack using only the instruction cache as a side
channel would also be able to break Delay-on-Miss, but an
instruction only focused attack is considered outside the scope
of Delay-on-Miss. Instead, DOIN! uses instructions, but still

1 touch = data[0];
2 if(mispredict){
3 if(secret){
4 jmp inst_addr2; // PC: 0x(inst_addr1)
5 nops; // until 0xinst_addr2 is created
6 jmp inst_addr3; // PC: 0x(inst_addr2)
7 nops; // until 0xinst_addr3 is created
8 jmp inst_addr4; // PC: 0x(inst_addr3)
9

10 }
11 }
12 measure(data[0]);

Fig. 3. Pseudo-code of the speculative DOIN! attack, on AMD Ryzen 9.

leaks secret values through observable timing differences in
the L1D cache, which Delay-on-Miss explicitly is supposed
to protect against.

VI. ATTACK DEMONSTRATION

In this section, we present the details of the attack performed
on the AMD Ryzen 9, including how to conflict on the
eviction sets, the attack success rate, and its bandwidth. For
demonstration purposes we run the attack single core, so that
we leverage L1/L2 cache inclusivity and we leak speculatively
accessed data. Additionally, we evaluate the attack using gem5
to show how the stages of the attack affect the cache hierarchy.

A. Actual Processor: AMD Ryzen 9

We now delve into the details on how we make the attack
function on a state-of-the-art processor, the AMD Ryzen 9,
which has an inclusive L1/L2 caches. The attack is able to
leak, under speculation, the value of a secret, a single bit at a
time, based on a secret-dependent branch (taken, not taken).

One of the paths of the secret-dependent branch (e.g., the
taken path) is designed to generate conflicts at a particular
set in the L1D. It is necessary to fetch many conflicting
instructions, to increase the success rate of the attack. To
understand why, it is important to keep in mind how pages
interact with the cache hierarchy.

For L1 caches, it is enough to access the same page
offset (regardless of which page) to ensure that an access is

Fig. 4. Speculative DOIN! attack: one thousand attempts to guess the secret, on AMD Ryzen 9.

Fig. 5. Speculative DOIN! all one thousand attempts, on AMD Ryzen 9.

performed to a specific set in the L1D. The typical L1 design
is virtually-indexed, physically-tagged (VIPT) that constrains
the size of an L1 way to the page size. Ergo, the same page
offset leads to the same set. A single access (that misses) to the
target set causes a conflict. But the attack needs an instruction
to conflict with the data in the L2 (or LLC). An instruction
cannot conflict with data in the L1, as the separation of L1I
and L1D prevents this possibility.

However, in inclusive hierarchies, multiple sets in a (larger,
i.e., more sets) lower-level cache (i.e., L2, LLC) map to
a single set in a (smaller, i.e., fewer sets) higher-level L1
cache. This means that in the L2 we have potentially many
more target sets we could end up accessing, and we do not
know which ones. Because of the virtual to physical address
translation and because the L2 and the LLC are Physically-
Indexed, Physically Tagged (PIPT), potentially all L2 sets that
could map to the same L1 set must be tried as we do not know
the virtual to physical page mapping.

To ensure a high likelihood for a successful attack, it is
necessary to fetch several conflicting instructions. However,
due to the limited speculation window, it is not feasible to fetch
a large number of instructions. To enable the attack without
fetching an inordinate number of instructions, we use a chain
of jumps, each jump landing on an address that potentially
causes an inclusion conflict in the target L1D set. We fill the
space between the jumps with nop instructions, to align the
instruction address to conflict. So, despite the need for a large
code footprint to cause a desired inclusion miss in the L1D
(by missing in the L2 cache) the actual number of instructions
fetched is kept much smaller. By jumping from one instruction
to the next, the processor fetches only instruction addresses

that evict primed data from the appropriate L2 sets and
eventually cause an inclusion conflict in the desired L1D
set. This makes it possible to fetch a sufficient number of
instruction addresses during a limited speculation window to
cause information leak.

Figure 3 presents the pseudo-code behind the attack. Line
4 is the first instruction address that may conflict with data
in L2. nop instructions are used so that the program has
instructions with specific addresses that conflict (every time
a nop is inserted, the program counter changes). For example,
the instruction address of line 6 will be fetched, after a certain
number of nop instructions. This specific address (inst addr2)
may conflict with the primed data in the L2. During the
program execution when the jmp from line 4 is executed, the
next fetched instruction is at address (inst addr2) that may
also conflict with data, and so on. The jump chain continues
until all possible instruction addresses that can conflict with the
data are fetched in the front-end. Eventually this leads to the
data being evicted from the L2 and, consequently, from the L1.

The asymmetry between the taken path and the non-taken
(fall-through) path leaks information. Note that this is the
simplest form of the attack. More complex attacks can be
mounted where each path generates a different conflict miss.
For simplicity, in this paper, we discuss the simple form of
the attack, but it is straightforward to generalize.

1) Success Rate: Figure 4 shows the results of using the
attack with a thousand repetitions. A threshold of 231 cycles
differentiates between LLC hits and misses, as the noise
between two consecutive Read Time-Stamp Counter and
Processor ID cycle measurement function calls can be 33, 66,
198, or 231 cycles on AMD Ryzen 9. In this graph, accesses
with latency longer than 650 cycles are omitted, so that
the scaling of the graph is more visually intuitive. Figure 5
shows latencies for all one thousand attempts, including
longer latencies. The results show the success on guessing
the secret value by its latency on a single try. There are no
false-positives when secret is equal to zero, as it always
hits in the cache (no eviction takes place). On the other hand,
when secret is equal to one, the success rate is 8.3% on a
single access. The lack of false-positives, when the value is
zero, makes it possible to enhance the signal of the attack by
replaying it repeatedly.

Since there is a 91.7
100 chance of guessing wrong when the

L1 Instruction
Cache

L1 Data
 Cache

LLC Cache

0xaf340

0xaf340

L1 Instruction
Cache

L1 Data
 Cache

LLC Cache

0xaf340

0x17c0 0xaf340

L1 Instruction
Cache

L1 Data
 Cache

LLC Cache

0x17c0

0x17c0

(a) Atttacker Primes the Cache (b) Conflict code (d) Attacker Probes the Cache

68989746
Tick

69007500
Tick

4017bb: 83 7d e0 00
 cmpl $0x0,-0x20(%rbp)

4017bf: 74 73 je 401834
<Label+0x1>

 ...

4017ec: c7 45 ec 01 00 00
00 movl
$0x1,-0x14(%rbp)

// Line Address: 0x17c0

69000500
Tick

(c) Memory Request Handling

0x17c0 Evict

69130572
Tick

Accessing 0xaf340.
Thats a miss! Secret

is 1!

Fig. 6. Proof-of-Concept on gem5: (a) The attacker primes the L1D cache with cache line 0xaf340. (b) The conflict code executes code using a secret-
dependent branch fetching instruction 4017ec, with cache line 0x17c0. (c) Memory handles the requests and sends back-invalidation to L1D cache for 0xaf340,
to be able and cache 0x17c0. (d) The attacker probes L1D cache and observe changes in cache line 0xaf340.

secret is equal to one, it is necessary to try many times. If
the attacker performs x number of attempts, the probability to
succeed at least once is p = (1− (91.7100)

x). That means, that if
the attack is performed nine times, then the chance of seeing
a correct high value is p = 0.541. To ensure a strong signal, it
is necessary to have a high likelihood of evaluating the secret
correctly. For this purpose, if x = 50, the probability of getting
a positive signal is p = 0.986. We consider 50 repetitions as
a safe number of attempts before guessing the value of the
secret. Within those repetitions, if the attack observes at least
one cache miss, it assumes that the secret was one, otherwise
it assumes that the secret was zero.

2) Bandwidth: To leak secrets with a high success rate, the
bandwidth is calculated based on the execution time of the
attack with 50 repetitions, to achieve the previously discussed
98.6% accuracy. A single iteration of the attack takes around
7000 cycles. 50 repetitions therefore takes approximately
350K cycles. Since a single bit leaks each time, this gives
a rate of 1 bit / 350K cycles. For the AMD Ryzen 9 running
at 3.0 GHz, the attack therefore has a bandwidth of around
1.05 KiB/sec, when attacking with 50 repetitions.

B. Simulation Proof-of-Concept

We also demonstrate our attack on the gem5 [6] simulator
using the available debug flags. We use the ruby memory
system with the MESI Two Level protocol, which includes
two levels of inclusive cache hierarchy.

Examining the simulator output trace, it is possible to
illustrate exactly how the attack behaves. We demonstrate the
attack based on the instructions as shown in Figure 7.

Figure 6 and Figure 7 demonstrate the behavior and conflict
code for the executing processor as seen on the simulator. First,
in 6 and 7 (a) the attacker primes the cache using his data. The
data[0] (PC: 4017ae) has the physical address: 0xaf350, which
belongs to the cache line with physical address: 0xaf340.
Accessing the data and bringing the value into the cache
hierarchy completes on tick 68989746. Then, in 6 and 7 (b),

(a) Prime
// touch = data[0];
4017ae: 8b 05 9c eb 0a 00 mov 0xaeb9c(%rip),%

eax # 4b0350 <data> // Line Address: 0
xaf340

4017b4: 89 45 e8 mov %eax,-0x18(%rbp)

(b) Conflict
// if(secret){
4017bb: 83 7d e0 00 cmpl $0x0,-0x20(%rbp)
4017bf: 74 73 je 401834 <Label+0x1>
...
4017ec: c7 45 ec 01 00 00 00 movl $0x1,-0

x14(%rbp) // Line Address: 0x17c0
...
// }

(c) Probe
// touch = data[0];
401839: 8b 05 11 eb 0a 00 mov 0xaeb11(%rip),%

eax # 4b0350 <data> // Line Address: 0
xaf340

40183f: 89 45 e8 mov %eax,-0x18(%rbp)

Fig. 7. Conflict code for the attack.

the attacker waits for the conflict to access a cache line, which
conflicts with the data in LLC. The conflict fetches the instruc-
tion PC: 4017ec with physical address: 0x17c0. The request
to the memory hierarchy starts on tick 69000500. As seen
in 6 (c), the LLC (L2 on MESI Two Level protocol) sends an
invalidation on 0xaf340, which evicts it from the L1D cache
on tick 69002094, from the directory on tick 69006000,
and finally from the LLC on tick 69007500. Finally, in 6 (d)
and 7 (c) the attacker probes the data (PC: 401839) on tick
69130572, which misses in the memory hierarchy.

VII. WHAT REALLY HAPPENS:
INTERACTION WITH BRANCH PREDICTION

Figure 3 implies that the attack fetches instructions in a
secret-dependent manner. In reality, this is not exactly what

Fetch Decode Rename Dispatch Issue Execute

Taken

Not Taken

secret-
independent

branch
prediction

secret-
dependent

branch execution

1

0

Pipeline Stages

...

conflict
miss

Noise

Observed
Outcome

Prediction to Resolution Delay (not to scale)

Speculation window duration (not to scale)
...

Fig. 8. Attack in the instruction pipeline. Before the branch is resolved and
the value of the secret is used, a prediction is made, affecting the results.

happens. Speculative execution, in particular branch predic-
tion, firstly fetches instructions in a secret independent manner.
Fetch is first predicted (using non-speculative and there-
fore secret-independent data) and only subsequently becomes
secret-dependent, once the speculation is resolved, which leads
to the results we observed in the previous section. Here, we
give a more in-depth explanation of how the attack interacts
with branch prediction and explain the noise in the results.

When an instruction is in the fetch stage, branch prediction
based on branch history takes place, independent of the secret
value.2 Since branch prediction may or may not take the
branch, not only the results, but also the speculation window
is affected. Recall, that the secret-dependent branch (line 3
in Figure 3) comes after the branch that triggers speculation
(line 2 in Figure 3), and when it is fetched the speculation
window is already running. If the speculation window was
large enough, and fetch only occurred as a result of the secret
value, there would be much less noise and fewer repetitions
would be needed.

In general, attacks that rely on a secret-dependent branch
may experience two kinds of noise. First, noise induced by
branch prediction in the fetch stage, and second, noise induced
by limited speculative window length. The following section
summarizes how these two features can influence the results
of DOIN!, and similar ideas can be applied to explain the
behavior of various other speculative attacks.

Figure 8 illustrates how the attack proceeds in the pipeline.
The branch instruction, conditional on the secret value (line
3 in Figure 3), is fetched. At this point, the secret value is
unknown, so the branch decision cannot be secret-dependent:
the branch predictor predicts the path of the instruction.

In case the prediction is taken, the next instructions in the
attack path (lines 4–9 in Figure 3) will be fetched. Those next
instructions, which are fetched after the prediction and before
the branch is resolved, can miss in the instruction cache and
insert noise into the attack. While predicting not taken,

2We assume that the branch predictor is trained non-speculatively which is
a logical assumption post-Spectre.

TABLE I
ALL POSSIBLE OUTCOMES ACCORDING TO PREDICTION AND ACTUAL

SECRET VALUE.

Prediction Secret Outcome Comments
T 0 miss Noise: False-positive miss from ran-

dom wrong-path conflict — exceed-
ingly rare

T 0 — Attack: Wrong prediction but no
miss occurs (short misprediction to
resolution period) — likely outcome

T 1 miss Attack: Correct prediction
T 1 — Noise: Speculation window too

short!
NT 0 miss Noise: Random conflict from the cor-

rect path — rare
NT 0 — Attack: Correct prediction
NT 1 miss Attack: Wrong prediction delays

the conflict, somewhat reducing the
chances for a miss

NT 1 — Noise: Speculation window too
short!

forces the execution to fetch instructions after the secret-
dependent branch, not interacting with the secret-dependent
branch instructions. Instructions that come after the reconver-
gence point and not in the branch, may be able to cause a
conflict miss, but the chances of doing so are close to zero.
The difference between those conflict misses, and the conflict
misses happening through the secret-dependent true branch
path, is that the secret-dependent branch consists of instruction
addresses dedicated to conflict with the data in the cache, while
instructions after the reconvergence point are not.

The branch resolves in the execute stage, where it turns
into a secret-dependent branch. Depending on the prediction,
execution will either continue (prediction was correct), or
will squash everything and start fetching new instructions
(prediction was incorrect). In any case, from this point onward,
all upcoming instructions are control-dependent on the secret
value. If the secret is equal to one, instructions are fetched
from the secret-dependent taken path (Figure 3). Instructions
on this path are malicious, since they are destined to miss
in the cache and cause information leakage. In contrast, if
the secret is equal to zero, instructions are fetched from the
secret-dependent fall-through path that is not designed to cause
conflict misses (Figure 3).

The attack exhibits different behavior according to the
prediction and the actual secret value. Table I presents all the
possible outcomes depending on the branch prediction and
the actual value of the secret. A successful attack must create
an observable miss only when the secret value == 1. We
summarize the behavior as follows:

a) Prediction: Taken & Secret value: 0: The prediction
is incorrect (secret value == 0) and the branch is incor-
rectly taken. Instructions from the secret-dependent branch
are incorrectly fetched. Those instructions can execute during
the period between prediction and resolution, inducing noise
to the attack, before getting squashed. Since secret can
hit in cache, the prediction-to-resolution delay may not be
enough to fetch and execute many instructions to evict the

Fig. 9. Ratio of cycles that front-end stalls.

data. Although, false-positives can theoretically happen, they
are exceedingly rare. Results show that in a thousand attempts,
no such case occurred.

b) Prediction: Taken & Secret value: 1: The prediction is
correct since secret value == 1 means that the branch should
be taken. The attack starts executing as soon as the branch is in
the fetch stage, as it will not be squashed when it resolves. If
the speculation window lasts long enough, observable timing
differences will be effected, otherwise a conflict miss will not
appear, leading to a false-negative.

c) Prediction: Not Taken & Secret value: 0: The pre-
diction is correct (secret value == 0) and the most likely
outcome is that no conflict miss is observed. Although a false-
positive can happen through coincidental interference, it is
exceedingly rare: If an observable conflict miss occurs, it is
most likely caused (at random) by an instruction fetch after the
branch’s reconvergence point. Results show that in a thousand
attempts, no such case has occurred.

d) Prediction: Not Taken & Secret value: 1: The pre-
diction is incorrect, since secret value == 1 means that
the branch should be taken. However, this misprediction
only delays the attack until the secret-dependent branch is
resolved. Because of the prediction-to-resolution lost time
being subtracted from the speculation window, the chances of
a successful attack are lower. If the speculation window lasts
long enough, observable timing differences will be created,
otherwise a conflict miss will not be created.

Based on this analysis, it is highly unlikely for false-
positives to appear when the secret is equal to zero, and highly
likely to create observable timing differences when the secret
is equal to one. A defining factor in both cases is the duration
of the speculation window that is started by the mispredicted
branch in line 2 of Figure 3. These conclusions are well
corroborated by the results we see in Figure 5.

VIII. DONOT!: MITIGATING DOIN! ATTACKS

A. Front-end stalls

The front-end of out-of-order processors is in-order. The
processor has to wait for an instruction to be fetched, before
fetching the next instructions. In the front-end, and more

Fig. 10. L1I cache miss rate.

specifically the fetch stage, there are several factors that can
cause delays when fetching an instruction, such as instruction
squashes, BTB misses, L1I cache misses, and TLB misses.
This can negatively impact performance, sometimes drasti-
cally, depending on the instruction pattern of the executing
workload. Figure 9 shows the amount of time the processor
front-end stalls. On average, the processor spends 11.3% of
total execution cycles waiting for the front-end to finish until
it continues fetching the next instructions.

Finding an efficient mitigation strategy against speculative
DOIN! can be difficult, as restricting front-end execution can
introduce large performance penalties. However, instruction
caches are used ubiquitously in modern processors and, for
many workloads, posses an extraordinarily low miss rate.
Figure 10 shows the miss rate of the L1I cache running
the SPEC2006 workloads. Even when using high precision
(four decimal points), the miss rate is close to zero, showing
that there are just a few to no instructions missing in the
L1I cache. With 4 decimal digit precision on ratio (misses
over accesses), only xalancbmk has an instruction miss rate
higher than 1%. More specifically, it has a miss rate of 4.59%.
h264ref, omnetpp, perlbench, povray, sjeng, and tonto have a
miss rate between 1% and 0%, and the rest of the benchmarks
have a miss rate of 0%.

B. DONOT!: Delay-on-Miss for I-Caches

In this work, we focus on control shadows (C-Shadow) as
introduced by Delay-on-Miss Section II-D, more specifically
on speculative side-channel attacks executed as caused by
branch misprediction. DOIN! attack focuses on instructions
that miss in cache. Inspired by Delay-on-Miss’ idea of delay-
ing loads that miss in the L1D cache, we propose DONOT! a
mechanism that delays instructions that miss in the L1I cache.

An instruction that is to be fetched, but misses in the L1I
cache while branch instructions are unresolved is considered
unsafe for the Spectre threat model, and the fetch request will
not propagate through the cache hierarchy. Instruction fetches
that miss are delayed until all previous branch instructions are
clear from the pipeline, by either committing in the reorder
buffer or getting dropped before reaching the reorder buffer.
Once the pipeline is free of branches, the fetch stage can
continue by repeating the initial memory request.

TABLE II
THE SIMULATED SYSTEM PARAMETERS.

Parameter Value
Core out-of-order, 8-issue/execute/commit width,

192 Reorder Buffer Entries,
64 Instruction Queue Entries,
32 Load Queue, 32 Store Queue

Cache line size 64 bytes
L1 data cache size 32KiB, 8-way
L1 instruction cache size 32KiB, 8-way
L2 shared cache size 1MiB, 8-way
Warmup 3 billion instructions
Run 1 billion instructions

Restricting instruction misses while an unresolved branch
exists in the instruction pipeline is sufficient to mitigate DOIN!
attacks, as no speculative evictions can occur. This is a
conservative, yet effective, way of mitigating the attack.

C. Methodology

To evaluate the performance impact of our proposed mit-
igation we use the gem5 [6] cycle accurate simulator, and
we run SPEC2006 [8], which is consistent with the type
of workloads one would find in a processor for consumer
products. SPEC2006 is characterized by low L1I cache miss
rates in contrast to datacenter and server workloads, which
exhibit high instruction miss rates. However, the latter typi-
cally run on processors with non-inclusive or exclusive cache
hierarchies and thus less relevant to our case. We implement
DONOT! on top of Delay-on-Miss with only control shadows.
Table II shows the configuration of the simulated processor
and the parameters for the executed simulation. We warmup
the simulation for 3 billion instructions (2 billion for tonto)
and gather statistics for 1 billion instructions after the warmup.

D. Evaluation

DONOT! introduces negligible performance overhead for
Delay-on-Miss. Figure 11 presents the IPC of both Delay-on-
Miss and DONOT! normalized to an unsafe baseline. DONOT!
introduces a performance overhead of 0.1% on Delay-on-Miss,
slowing it down from 88.5% to 88.4%, as compared to the
unsafe baseline. Most benchmarks are not observably affected
by the mitigation, as they have a very small amount of L1I
cache misses. perlbench, povray, tonto, and xalancbmk intro-
duce 0.62%, 0.52%, 0.35%, and 0.61% overhead respectively.
h264ref, omnetpp, and sjeng are the other benchmarks that
have some very small number of instruction misses (Figure 10)
and introduce 0.04%, 0.03% and 0.04% performance overhead
respectively. The rest of the benchmarks maintain less than
10000 L1I cache misses on over 100m L1I cache accesses.

Figure 12 illustrates the percentage of how many
instructions out of all the instruction cache accesses were
delayed. As expected from the performance results, only
h264ref, omnetpp, perlbench, povray, sjeng and tonto delay
a very small number of instructions, while the rest of the
benchmarks delay from 0 to some decades or hundreds
of instructions. This amount of delayed instructions is not
enough to slow down the performance.

Fig. 11. Normalized IPC to unsafe baseline.

Fig. 12. Percentage of instructions that were delayed out of all the instruction
accesses.

E. Discussion: Further Improvements

This paper presents a new cache side-channel attack and
uses it to expose a new vulnerability in Delay-on-Miss. The
proposed mitigation is a basic solution to the problem and
can be further improved. In this section, we discuss how
DONOT! can be further optimized. Even though the mitigation
introduces negligible performance slowdown, it remains con-
servative and can experience different performance behavior
on workloads with significant front-end instruction misses.

One of the main reasons why DONOT! is conservative, is
because it delays all instruction misses, when they are under
a C-Shadow and miss in the L1I cache. In fact, an instruction
miss in L1 does not always correspond to a miss in L2
cache and beyond when caches maintain inclusive policy. An
instruction that is already placed in L2 and the request hits
in L2 cache is guaranteed not to cause any data eviction and
thus is safe to execute. Instead of delaying instructions that
miss in L1 cache, we can consider delaying instructions that
miss in L2 cache and beyond, as far as those caches maintain
inclusivity with L1 cache. A mitigation like this would result
into a more complex hardware, as the packet can now be
dropped deeper in the memory hierarchy.

Beyond that, currently, DONOT! waits for all unresolved
branch to retire from the reorder buffer before it proceeds
with the instruction access. In fact, we know if a branch
is going to commit or squash, once its operands are ready,

and not when it reaches the head of the reorder buffer. This
would enable instructions to be accessed and the front-end
to continue earlier, before the branch reaches the head of the
reorder buffer.

IX. RELATED WORK

Besides Prime+Probe [15], [17] that was introduced earlier,
there are several other cache hierarchy side-channel attacks.
Flush+Reload [9] uses software instructions (e.g., clflush()) to
evict data from cache, and then reloads them while measuring
the access latency. Flush+Flush [9] relies on the execution
time of flush instructions, which varies depending on if the
data is cached or not. ”LLC Attacks are Practical” [15]
shows how attacks can be implemented for the LLC. In
addition to purely cache content focused attacks, there are
other works regarding memory hierarchy functionality. LRU
State Attack [28] shows how replacement policies can leak
information about the data in caches, while Attack directories,
not caches [31] shows how information leakage can be done
through directories in non-inclusive cache hierarchies.

Speculative attacks have also evolved the last few years.
After the introduction of Spectre [12], there has been a ping-
pong game between mitigations and attacks. The first wave
of mitigations focused on hiding observable speculation using
buffers [20], [29]. The second wave focused on delaying the
execution, e.g., either delaying transient loads that miss [21] or
using a taint tracking mechanism to delay speculative transmit-
ters [33], or undoing the speculation leakage [19]. Moreover,
there were works trying to recover lost performance of specu-
lative mitigations, such as InvarSpec [34], which lifts protec-
tions for specific speculative instructions, if they are guaran-
teed to commit regardless of the outcome of the speculation.

Hiding speculative execution [29] and delay execution
schemes [21] were proven vulnerable by Speculative In-
terference [5]. Speculative Interference [5] uses speculative
instructions in order to influence the timing, and thus the
ordering, of non-speculative older instructions. Delaying exe-
cution using taint tracking [33] was proven to be vulnerable to
using secret-dependent store instructions to leak information
through the TLB. Undo-based speculation schemes [19] were
found vulnerable by unXpec [13] as the speculation window
varies according to the number of speculative loads. Lastly,
optimizations such as InvarSpec [34] were proven to be
vulnerable by Reorder Buffer Contention [2] using a variant
of Speculative Interference, manipulating the reorder buffer in
a secret-dependent manner and pushing in or out on demand a
speculation. Attacks against memory hierarchy speculative de-
fenses [2], [5], [13] share a similarity with DOIN!, information
leakage through implicit channels. Those attacks do not leak
the value of the secret explicitly, but by creating observable
timing differences using the value of the secret.

X. CONCLUSION

This paper presents two contributions to the world of
speculative side-channel attacks: Firstly, it is possible to use
the lower level caches to perform observable Prime+Probe

attacks, even while direct interference through data accesses is
not possible, due to instruction fetching potentially conflicting
in shared caches. These conflicts can be exploited through
inclusivity to transmit. Secondly, it is possible to use this data-
instruction conflict to perform Spectre attacks, even against
secure speculative execution schemes such as Delay-on-Miss.
As long as it is possible to acquire a secret, it can be covertly
transmitted through secret-dependent control-flow instruction
fetching conflicting in the lower level cache.

We name this new type of attack DOIN!, and show how it
works on the AMD Ryzen 9, as well as performing analysis of
the impact of noise and its potential bandwidth. We detail the
interactions between secret-dependent control flow and branch
prediction, and show how leakage occurs through differences
in latency post-squash in the memory hierarchy.

Finally, we introduce DONOT!, an extension to mitigate the
new attack introduced by DOIN! for Delay-on-Miss. DONOT!
waits for previous branches to retire from the reorder buffer
before fetching an instruction that misses in the L1 cache,
providing security at a negligible performance overhead.

ACKNOWLEDGMENTS

This work was supported by Microsoft Research through
its EMEA PhD Scholarship Programme grant no. 2021-020,
the Swedish Research Council (VR) grant 2018-05254, and
by VINNOVA grant 2021-02422.

REFERENCES

[1] O. Aciiçmez, “Yet another microarchitectural attack: exploiting I-
cache,” in Proceedings of the ACM Workshop on Computer Security
Architectures. Association for Computing Machinery, Nov. 2007, p.
11–18. [Online]. Available: https://doi.org/10.1145/1314466.1314469

[2] P. Aimoniotis, C. Sakalis, M. Själander, and S. Kaxiras, “Reorder buffer
contention: A forward speculative interference attack for speculation
invariant instructions,” IEEE Computer Architecture Letters, vol. 20, pp.
162–165, Jul. 2021.

[3] S. Ainsworth, “GhostMinion: A strictness-ordered cache system
for spectre mitigation,” in Proceedings of the IEEE/ACM
International Symposium on Microarchitecture. Association for
Computing Machinery, Oct. 2021, p. 592–606. [Online]. Available:
https://doi.org/10.1145/3466752.3480074

[4] S. Ainsworth and T. M. Jones, “MuonTrap: Preventing cross-domain
Spectre-like attacks by capturing speculative state,” in Proceedings of
the International Symposium on Computer Architecture, May 2020, pp.
132–144.

[5] M. Behnia, P. Sahu, R. Paccagnella, J. Yu, Z. N. Zhao, X. Zou,
T. Unterluggauer, J. Torrellas, C. Rozas, A. Morrison, F. Mckeen, F. Liu,
R. Gabor, C. W. Fletcher, A. Basak, and A. Alameldeen, “Speculative
interference attacks: breaking invisible speculation schemes,” in
Proceedings of the Architectural Support for Programming Languages
and Operating Systems. Association for Computing Machinery,
Apr. 2021, p. 1046–1060. [Online]. Available: https://doi.org/10.1145/
3445814.3446708

[6] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti,
R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and
D. A. Wood, “The gem5 simulator,” ACM SIGARCH Computer
Architecture News, vol. 39, pp. 1–7, May 2011. [Online]. Available:
https://dl.acm.org/doi/10.1145/2024716.2024718

[7] C. Canella, J. V. Bulck, M. Schwarz, M. Lipp, B. v. Berg, P. Ortner,
F. Piessens, D. Evtyushkin, and D. Gruss, “A systematic evaluation of
transient execution attacks and defenses,” in Proceedings of the USENIX
Security Symposium, 2019, pp. 249–266. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity19/presentation/canella

https://doi.org/10.1145/1314466.1314469
https://doi.org/10.1145/3466752.3480074
https://doi.org/10.1145/3445814.3446708
https://doi.org/10.1145/3445814.3446708
https://dl.acm.org/doi/10.1145/2024716.2024718
https://www.usenix.org/conference/usenixsecurity19/presentation/canella
https://www.usenix.org/conference/usenixsecurity19/presentation/canella

[8] S. P. E. Corporation, “SPEC CPU2006 benchmark suite,” 2006.
[Online]. Available: http://www.specbench.org/cpu2006/

[9] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+Flush: A
fast and stealthy cache attack,” in Proceedings of the International
Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment, J. Caballero, U. Zurutuza, and R. J. Rodrı́guez, Eds.
Springer International Publishing, 2016, pp. 279–299.

[10] D. Gruss, R. Spreitzer, and S. Mangard, “Cache template attacks:
automating attacks on inclusive last-level caches,” in Proceedings of
the USENIX Security Symposium. USENIX Association, Aug. 2015,
p. 897–912.

[11] V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and J. Emer,
“DAWG: A defense against cache timing attacks in speculative execution
processors,” in Proceedings of the IEEE/ACM International Symposium
on Microarchitecture. IEEE Computer Society, Oct. 2018, pp. 974–987.
[Online]. Available: https://ieeexplore.ieee.org/document/8574600/

[12] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom,
“Spectre attacks: Exploiting speculative execution,” in Proceedings of
the IEEE Symposium on Security and Privacy, May 2019, pp. 1–19.

[13] M. Li, C. Miao, Y. Yang, and K. Bu, “unxpec: Breaking undo-based
safe speculation,” in Proceedings of the International Symposium High-
Performance Computer Architecture, Apr. 2022, pp. 98–112.

[14] F. Liu and R. B. Lee, “Random fill cache architecture,” in Proceedings
of the IEEE/ACM International Symposium on Microarchitecture, Dec.
2014, pp. 203–215.

[15] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache side-
channel attacks are practical,” in Proceedings of the IEEE Symposium
on Security and Privacy, May 2015, pp. 605–622.

[16] K. Loughlin, I. Neal, J. Ma, E. Tsai, O. Weisse, S. Narayanasamy,
and B. Kasikci, “DOLMA: Securing speculation with the principle
of transient non-observability,” in Proceedings of the USENIX
Security Symposium, 2021. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity21/presentation/loughlin

[17] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and counter-
measures: The case of AES,” in Proceedings of the RSA Conference,
D. Pointcheval, Ed. Springer, 2006, pp. 1–20.

[18] K. Ramkrishnan, S. McCamant, P. C. Yew, and A. Zhai, “First
time miss : Low overhead mitigation for shared memory cache side
channels,” in Proceedings of the International Conference on Parallel
Processing. Association for Computing Machinery, Aug. 2020, p.
1–11. [Online]. Available: https://doi.org/10.1145/3404397.3404434

[19] G. Saileshwar and M. K. Qureshi, “CleanupSpec: An ”undo”
approach to safe speculation,” in Proceedings of the IEEE/ACM
International Symposium on Microarchitecture. Association for
Computing Machinery, Oct. 2019, p. 73–86. [Online]. Available:
https://doi.org/10.1145/3352460.3358314

[20] C. Sakalis, M. Alipour, A. Ros, A. Jimborean, S. Kaxiras, and
M. Själander, “Ghost loads: What is the cost of invisible speculation?”
in Proceedings of the ACM International Conference on Computing
Frontiers. Association for Computing Machinery, Apr. 2019, p.
153–163. [Online]. Available: https://doi.org/10.1145/3310273.3321558

[21] C. Sakalis, S. Kaxiras, A. Ros, A. Jimborean, and M. Själander,
“Efficient invisible speculative execution through selective delay and
value prediction,” in Proceedings of the International Symposium on
Computer Architecture, Jun. 2019, pp. 723–735.

[22] ——, “Understanding selective delay as a method for efficient secure
speculative execution,” IEEE Transactions on Computers, vol. 69, pp.
1584–1595, Nov. 2020.

[23] C. Sakalis, M. Själander, and S. Kaxiras, “Seeds of SEED: Preventing
priority inversion in instruction scheduling to disrupt speculative inter-
ference,” in Proceedings of the IEEE International Symposium on Secure
and Private Execution Environment Design, Sep. 2021, pp. 101–107.

[24] W. Song and P. Liu, “Dynamically finding minimal eviction sets
can be quicker than you think for Side-Channel attacks against
the LLC,” in Proceedings of the USENIX International Symposium
on Research in Attacks, Intrusions and Defenses, 2019, pp. 427–
442. [Online]. Available: https://www.usenix.org/conference/raid2019/
presentation/song

[25] K.-A. Tran, C. Sakalis, M. Själander, A. Ros, S. Kaxiras, and
A. Jimborean, “Clearing the shadows: Recovering lost performance
for invisible speculative execution through HW/SW co-design,” in
Proceedings of the ACM International Conference on Parallel
Architectures and Compilation Techniques. Association for Computing

Machinery, Sep. 2020, p. 241–254. [Online]. Available: https:
//doi.org/10.1145/3410463.3414640

[26] P. Vila, B. Köpf, and J. F. Morales, “Theory and practice of finding
eviction sets,” in Proceedings of the IEEE Symposium on Security and
Privacy, May 2019, pp. 39–54.

[27] Z. Wang and R. B. Lee, “New cache designs for thwarting software
cache-based side channel attacks,” in Proceedings of the International
Symposium on Computer Architecture, vol. 35, Jun. 2007, p. 494–505.
[Online]. Available: https://doi.org/10.1145/1273440.1250723

[28] W. Xiong and J. Szefer, “Leaking information through cache
LRU states,” in Proceedings of the International Symposium High-
Performance Computer Architecture, Feb. 2020, pp. 139–152.

[29] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. Fletcher, and J. Tor-
rellas, “InvisiSpec: Making speculative execution invisible in the cache
hierarchy,” in Proceedings of the IEEE/ACM International Symposium
on Microarchitecture, Oct. 2018, pp. 428–441.

[30] M. Yan, B. Gopireddy, T. Shull, and J. Torrellas, “Secure hierarchy-
aware cache replacement policy (SHARP): Defending against cache-
based side channel attacks,” in Proceedings of the International Sympo-
sium on Computer Architecture, Jun. 2017, pp. 347–360.

[31] M. Yan, R. Sprabery, B. Gopireddy, C. Fletcher, R. Campbell, and
J. Torrellas, “Attack directories, not caches: Side channel attacks in a
non-inclusive world,” in Proceedings of the IEEE Symposium on Security
and Privacy, May 2019, pp. 888–904.

[32] Y. Yarom and K. Falkner, “FLUSH+RELOAD: a high resolution, low
noise, L3 cache side-channel attack,” in Proceedings of the USENIX
Security Symposium. USENIX Association, Aug. 2014, p. 719–732.

[33] J. Yu, M. Yan, A. Khyzha, A. Morrison, J. Torrellas, and C. W.
Fletcher, “Speculative taint tracking (STT): A comprehensive protection
for speculatively accessed data,” in Proceedings of the IEEE/ACM
International Symposium on Microarchitecture. Association for
Computing Machinery, Oct. 2019, p. 954–968. [Online]. Available:
https://doi.org/10.1145/3352460.3358274

[34] Z. N. Zhao, H. Ji, M. Yan, J. Yu, C. W. Fletcher, A. Morrison,
D. Marinov, and J. Torrellas, “Speculation invariance (InvarSpec):
Faster safe execution through program analysis,” in Proceedings of
the IEEE/ACM International Symposium on Microarchitecture. IEEE
Computer Society, Oct. 2020, pp. 1138–1152. [Online]. Available:
https://ieeexplore.ieee.org/document/9251941/

http://www.specbench.org/cpu2006/
https://ieeexplore.ieee.org/document/8574600/
https://www.usenix.org/conference/usenixsecurity21/presentation/loughlin
https://www.usenix.org/conference/usenixsecurity21/presentation/loughlin
https://doi.org/10.1145/3404397.3404434
https://doi.org/10.1145/3352460.3358314
https://doi.org/10.1145/3310273.3321558
https://www.usenix.org/conference/raid2019/presentation/song
https://www.usenix.org/conference/raid2019/presentation/song
https://doi.org/10.1145/3410463.3414640
https://doi.org/10.1145/3410463.3414640
https://doi.org/10.1145/1273440.1250723
https://doi.org/10.1145/3352460.3358274
https://ieeexplore.ieee.org/document/9251941/

	Introduction
	Background
	Last Level Cache Prime+Probe
	Eviction sets
	Speculative Side-Channel Attacks
	Delay-on-Miss

	Threat Model
	Data-Out Instruction-In (DOIN!)
	Non-speculative DOIN!
	Speculative DOIN!

	Breaking Delay-on-Miss
	Attack Demonstration
	Actual Processor: AMD Ryzen 9
	Success Rate
	Bandwidth

	Simulation Proof-of-Concept

	What Really Happens: Interaction with Branch Prediction
	DONOT!: Mitigating DOIN! attacks
	Front-end stalls
	DONOT!: Delay-on-Miss for I-Caches
	Methodology
	Evaluation
	Discussion: Further Improvements

	Related Work
	Conclusion
	References

