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Abstract—In this work, we present a fast, polynomial time
implementation of the Timing Separation of Events (TSE) Al-
gorithm, with complexity O(E x (V + E)). TSE computation
is a fundamental problem in the analysis of event-driven, asyn-
chronous systems, when uncertainty is present, and event delays
are specified as [min, max] intervals. The maximum or minimum
TSE may be needed, based on the timing analysis required.
In this work, we present a novel approach to solving the TSE
computation problem, which utilises: (1) the Primal-Dual Method
Algorithm of [1] to compute the system period and critical cycle,
as well as annotate timing offsets to events, based on the minimum
delay values, and (2) an unfolding scheme, on the event graph,
to compute the maximum delay between source and target. We
show that only a maximum of three unfoldings are necessary,
based on the relative delays between source and target events. We
present results on a set of classical TSE examples. Our results are
correct and identical to [2], but our approach resolves the issue
of deciding how many unfoldings are needed to achieve periodic
behaviour, and is significantly faster than all other methods.

Index Terms—EDA, Static Timing Analysis, Asynchronous
Systems, Concurrent Systems

I. INTRODUCTION

EDA tools are the main reason of hardware design improve-
ment in recent history. EDA tools perform various complex
procedures, during implementation, giving designers the op-
portunity to focus on design issues. In other words, it is a
completely independent tool that comforts the implementation.
Throughout the years various tools have been developed
focusing on specific aspects of synchronous design. Those
tools are not suitable for asynchronous design. Asynchronous
design is not used today due to lack of a complete and
mature asynchronous design flow. We find ourselves obliged
to contribute on circuit’s timing, the most important factor in
design and implementation process. Asynchronous Static Tim-
ing Analysis (ASTA) requires new algorithms, as synchronous
Static Timing Analysis are based on Directed Acyclic Graph
(DAG) model for the circuit timing graph. Thus, when a
synchronous STA engine is provided with a cyclic circuit,
cycles are cut, leading to significant loss of timing information.

Our contribution is a fast, polynomial time TSE algorithm.
Prior works include [2]-[4], where [2] is of not polynomial
complexity, and depends on an amount of unfoldings, and [3]
is not applicable to cyclic event graphs. Out of prior works,
the best performance is achieved by [4], i.e. O(n3 ). However,
our implementation is of better computational complexity, i.e.
O(E x (V + E)). Our implementation is based on a sequence
of five steps, to compute the maximum TSE. First, (1) the

minimum delays critical cycle of the Event Timing Graph is
computed, using Burn’s Primal-Dual Method [1]. Then, (2) the
critical cycle, and remaining graph, is unfolded twice, and (3)
the minimum occurrence times for events prior to the source
are computed. Next, (4) the longest paths from the source, or
pre-source events, to the target event are computed, and (5) the
difference in timing occurrence computed between the target
and source yields the maximum TSE result.

II. BACKGROUND
A. Asynchronous Timing Models

Asynchronous control circuits are concurrent systems, thus
their behavior and specification is often modeled by concurrent
models, such as Petri Nets (PTnets) [5], Signal Transition
Graphs (STGs) or Event Rule systems (ER). In this work,
we use a both PTnets and ER systems, both of which are
general models, and conveniently model causality, concurrency
and specify behaviour in a closed loop model, i.e. the circuit
along with its environment. ER systems are STGs, with a
specified delay interval on their timing arcs. For example,
for an edge a — b, with a delay range [d, D], for event
b to occur, event a must occur first, and b will occur after
it some time between d and D. To create and simulate our
asynchronous circuit specification modelled as a PTnet, we
used the Workcraft framework [6], and perform a PTnet to
ER system transformation [7].
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Fig. 1: PTnet to ER Transformation

B. Timing Analysis using Unfoldings

The transitive and repetitive timing behaviors of an PTnet
or ER System may be modeled, by generating its unfolded,
acyclic version. A key parameter of the unfolded graph, is the
number of unfolding iterations. In the unfolded version, each
event, uyg, is labelled by an occurrence index, which represents
the unfolding iteration of the original graph. In this way, when



the ER System includes a rule u — v, with delays [d, D],
each event vy, may be assigned to an occurrence time 7(vg),
according to Equations 1 and 2.

T(vk) > max{T(ug—e) + d | up—c — ux € N} (D

T(vg) < max{r(ug—e) + D | up—e = ux € R} (2)

where 7 specifies the time occurrence of an event, ¢ the
occurrence index, d and D the minimum and maximum delay
values.

An unfolded graph may be used to compute the occurrence
times of all acyclic graph events. Figures 2a, 2b illustrate an
ER System and its unfolded version, for six unfoldings.
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Fig. 2: Unfolded Event-Rule system Example

C. Timing Separation of Events

TSE fundamentals and approaches for performing the TSE
computation, are presented in detail in this section.

Definition 1 (Timing Separation of Events Computation):
Given an ER System with bounded interval arc delays [d, D],
and any two events u and v, with u the source and v the target
events, the maximum (or minimum) separation of events u, v
is defined as the maximum (or minimum) occurrence time
difference.
In order to identify the maximum (or minimum) separation
between a pair of events, the occurrence times of the pair of
events in question, must have reached a repetitive, periodic
behaviour. This ensures that the system will have reached a
steady-state behavior, determined by one or more critical event
cycles.

Hence, maximum TSE may be computed as follows;

TSEax = T(target) — t(source) 3)

where T computes the maximum occurrence, and t the mini-
mum event occurrence respectively.

Definition 2 (Critical Cycle): [4] A Critical Cycle of an
ER System is the set of nodes and edges which form the

simple cycle(s), which dictate the system’s periodic behavior.
A Critical Cycle possesses the maximum ratio of arc delays,
to total number of tokens for the nodes and edges it contains.
In general, a system may have more than one Critical Cycle,
when multiple such Cycles have identical ratio.

o > ()

= max

Veycles > T(c)

where 3 d(c) corresponds to the sum of delays across timing
arcs, and > T'(c), the sum of tokens per cycle respectively.

Definition 3 (Steady-State): [4] Given a fixed-delay ER
System, its steady-state is reached when its period is deter-
mined by critical cycle(s) [4], and event occurrences repeat a
pattern, i.e. each event occurs periodically, based on a fixed
time interval.

In general, an ER system with an arbitrary number of tokens
may not reach a single value period, but its periodic state may
be an oscillation between two or more sequences of period
values, e.g. {2, 3, 4}. In such cases, unfolding-based methods
are prohibitive, as it is very difficult to determine when the
unfolding process should stop. For the purposes of maximum,
or minimum, TSE computation however, determining the
maximum or minimum periodic behaviour is sufficient.

Figure 3 will be used as a simple example, which TSE is
determined, based on unfolding method.
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Fig. 3: Figure 1 Example, from [2]
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Fig. 4: Unfolding of Figure 1 Example, from [2], with
timing distance from root annotated, based on d values

In Figure 4, steady-state behavior is reached at the third
unfolding, whereas period stabilises to 5 timing units, and is
determined by the b — b critical cycle. We will now illustrate
how to compute the maximum TSE between two occurrences
of event a.

As four unfoldings have been performed, event as is se-
lected as source, and event a4 as target events. Both events
are within the system’s stable time window, i.e. within the
third unfolding. Earlier events would not be appropriate. The
timing distance of a3 is minimum in Figure 4, as it is based



on d values. Then, we must perform longest path computation,
from event by, which occurs one period before the source
event, as, to the target, i.e. a4. The computed longest path
from bq to ay4, through b3 takes 26 timing units, using now D
value. As by occurs 1 unit before the source, az, T'SE,,qz i8
26 — 1 = 25 time units.

D. Primal-Dual Method for Critical Cycle Computation

As mentioned in the previous section, one fundamental issue
with unfolding methods is identifying the required number of
unfoldings required for the system to reach steady-state. A
direct method to compute an ER System’s Critical Cycle, with-
out unfolding it, is Burn’s Primal-Dual Method, which is also
of Polynomial complexity [1]. The latter algorithm supports a
single timing delay per ER System arc, and performs iterative
relaxation of the ER system period, until a Critical Cycle is
identified. As this method does not explicitly enumerate all
cycles, it avoids Exponential complexity.

The first step of the algorithm is to remove all arcs with
occurrence index ¢ > 0. Then, it topologically sorts the
resultant acyclic graph. Based on the topological order, x node
values are set, based on the following equations. The x node
values represent the occurrence time offset of an event, within
the system period. The value «a is the delay of an (u, v) arc
connecting nodes u and v.

if v is root
as (u,i—¢) = (v,i) Ae <0
)
A critical arc from node u to node v, indicates that z,
has assumed its value from this specific arc. Initial period is
computed as:

0
z(0) = {max{xu(O) +a}

(6)

—&

p(0) = max{x”(o) — 2,(0) - a}

where (u,i —¢) = (v,i) € R A > 0.

For all arcs, (u,i—¢) — (v,4), if x, (k) = z, (k) +a—ep(k),
then the arc is a critical arc. If the critical arc graph is cyclic,
or period at iteration k becomes zero, i.e. p(k) = 0, then
the algorithm exits. Else, it topologically sorts the critical arc
graph, and sets p(k) = 1, where & represents the maximum
distance of an event from the root, in period units, and is
computed in topological order, using:

. 0 if v is root
xv(k) = { Lo .
min{dy (k) — ep(k)}
@)
As 1z values are by their definition negative, min is used
instead of max. Next, the value 6 is computed, which repre-
sents the minimum delay per period allowable reduction, or
intuitively, the reduction that will make the smallest number
of edges to become critical.

(u,i —€) — (v,1) is critical

2 (k) — (k) +ep(k) —a
O) = mim{ =~ & (R) + 2p(8) ®
&, (k) — 40 (k) + ep(k) > 0}

The 6 value is used to update = values and period value p.

a(k +1) = z(k) — 0(k)@(k) ©)
p(k +1) = p(k) — 0(k)p(k) (10)

The algorithm iteratively updates = values and period p,
until the critical edges graph becomes cyclic, at which point
p has converged. Algorithm complexity is O(E x (V + E)),
as a topological sorting may be required per edge.

III. NOVEL MAXIMUM TSE ALGORITHM FLOW

In general, maximum TSE requires two steps. First, to min-
imize the occurrence of the source event, based on specified d
values. This implies also minimizing the delay of any events
before the source, i.e. pre-source events. This is the case, as
the longest path to the target event, based on the D values set,
may start not from the source, but from a pre-source event.

In our TSE flow, we avoid unfolding the ER system
for computing its Critical Cycle, by using the Primal-Dual
Algorithm [1] instead. The latter is run on the ER system
labelled with d values. Then, the computed x values are used,
representing time offsets are used to label the ER system,
based on the Critical Cycle delays. In this step, x values must
be transformed to be relative to the source event, so as to also
minimise the timing of pre-source events. At this point, the ER
system is unfolded, for TSE to be computed, but only twice,
and the longest path to the target event is computed, using D

values.
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Fig. 5: Maximum Time Separation of Events Algorithm Flow

A. d-values Time Occurrences Annotation

Figure 6(b) illustrates an example of the Critical Cycle
Computation Algorithm [1] result. Edges coloured in red



illustrate the computed Critical Cycle. Values in red are the
reported = values. In this example, two identical critical cycles
exist, a — a and ¢ — b — ¢. Root noted are a, ¢ and b occurs
Ty, l.e. 2 time units after root nodes.
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(b) Primal-Dual Method Algorithm Result
Fig. 6: Primal-Dual Method Algorithm Result Example

B. Source to Target Unfolded Graph Construction

To compute the TSE, the relative delay value to the source
has already been computed, based on the specified d values.
We now need to also compute the maximum delay to the
target, using the D values. To do this, we create a minimum
size unfolded version of the ER system graph, based on the
original cyclic one. For the unfolded graph, we must decide
both the number of necessary unfoldings, as well as pick the
reference source and target events appropriately.

For taking into account all pre-source nodes in the path
to target computation, we initially unfold the graph twice,
with the source node event reference being in the second
unfolding. This gives us one extra unfolding for taking into
account all pre-source nodes, which may be relatively delayed
with respect to it. With these two unfoldings, and the source
reference in the second one, all nodes with time offsets
within z4,y-ce — period will exist in the unfolded graph, thus
the graph is complete with respect to taking into account
all pre-source events. An interesting observation is that the
only case where the second unfolding will not be needed,
i.e. all relative pre-source events are guaranteed to exist
within the first unfolding, is when Critical Cycle Computation
annotates the source with the maximum timing offset, i.e.
Tsource pOssesses the largest x value. For the target event,
if (Ttarget > Tsource), the target node reference will already
be contained in the unfolded graph, as it occurs after the
source, within the system’s period. However, in the opposite
case, where (ZTsource > Ttarget), @ path connecting source and
target will not exist in the already unfolded graph, as the target
occurs before the source of the same unfolding iteration. Thus,
an extra third unfolding is required.

Figures 8(a), (b) illustrate the Source to Target Graph
Construction for computing the maximum TSE between events
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if XT > XS if Xs > XT

Fig. 7: Graph Unfolding for Max TSE Algorithm
Three default unfoldings. If xs > 7, then one extra unfold

a and b, and c and a respectively, for the Event RS of Figure 6.
For the a, b TSE computation, two unfoldings are sufficient,
whereas for the ¢, a TSE computation, an additional third
unfolding is necessary.
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Fig. 8: Graph Unfolding Cases of Fig. 6

C. x values to Source node Timing Offsets

Algorithm [1] computes timing offsets, i.e. £ node values
with respect to the graph root nodes. Root nodes correspond
to marked nodes, which are allowed to immediately occur,
and will possess zero x-values. However, to compute TSE, we
are interested in the timing offset to the source, not the root
event. Thus, we need to transform the x values to source node
timing offsets. This may be performed by subtracting x from
xsource, for all nodes, and then setting x;ource to 0, to render
everything relative to the source event. The transformation is
illustrated in Figure 9a, where nodes with x value offsets
both before and after the source are shown. If a node has
x offset after Zsources L€, Tnode > Tsource, then after the
transformation, it will occur x,,,4. — period before the source,
but in the previous period, i.e. unfolding. This is illustrated in
Figure 9b.

D. D Path to Target Computation

To compute the Maximum TSE, we now must compute the
maximum delay to the target, from the timing occurrences
labelled on the created unfolded acyclic graph. We do this
by using a Longest Path algorithm with the source and all
pre-source nodes as start points, with their timing offsets as
labelled. Figure 10 shows an example, where the maximum
delay path to a2 is from node by.
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Fig. 10: Maximum Delay Path for Figure 8(b)

Algorithm 1: compute_mazimum_TSE

1 Input: ER System G = (V, E), Source, Target Events;
Output: Maximum Time Separation of Events;

/I Compute Period, Critical Cycle and Critical Cycle Delay
Offsets //
primal_dual_method_algorithm(G); [1]

if (mtarget > xsou'rce) then

else

end

/I two unfoldings necessary //
// target node is in second unfolding //
graph_unfold(G, U, 2);

// three unfoldings needed, //
// target node in third unfolding //
graph_unfold(G, U, 3);

forall (nodes before source within I period) do

if Tsource > Tnode then
/I node occurs before source event //

‘ mindif ference := Tsource — Tnode;
else
/I node occurs after source node //
/I its previous occurrence is 1 period back //
mindif ference := period — |Tsource — Tnode
longestpathvalue := longest_path(U, node, target);
maxtsetemp := longestpathvalue — mindif ference;
if maxtsetemp > maxtse then

\ mazxtse := maxtsetemp;

>

IV. MINIMUM TSE COMPUTATION

So far, we have focused on Maximum TSE Computation.
However, we may want to compute Minimum TSE instead.
To do this, the same flow may be used, with some minor
differences. The Minimum Time Separation of Events requires
maximizing the source event time occurrence, and to minimize
the target event occurrence. To achieve this, we run the Primal-
Dual Method Algorithm on our ER system, but using D
values, i.e. the maximum values of the time interval, instead of
d values. Then, to be able to minimise the target event occur-
rence, we will use the same unfoldings strategy, as illustrated
in Section III-B, but we must perform shortest path, rather
than longest path computation, to the target, from all pre-
source nodes. Thus, Minimum TSE may be straightforwardly
implemented using the same algorithm.

V. EXPERIMENTAL RESULTS

We verified our algorithm, by running a number of ER
systems through it. We used published graphs, the TSE results
of which were available, and compared against our own algo-
rithm. We also implemented a k-unfoldings version of Acyclic
TSE, which reports the TSE on the k times unfolded graph.
We did this to validate that we get the exact same results using
our approach, and validated correctness for several examples.

Table I illustrates a set of Maximum TSE computations for
ER systems presented in the paper. It illustrates the source
and target events, the corresponding pre-source node which
produces the Maximum TSE, its time offset, the longest path
delay to the target node, and finally the Maximum TSE value.

[19,22]
Fig. 11: Single Cycle ER System

&

Fig. 12: Multiple Critical Cycles

VI. CONCLUSIONS AND FUTURE WORK

We have a presented a Polynomial complexity Time Sepa-
ration of Events algorithm based on Critical Cycles. As far
as we know, only one previous work [4] computes Time
Separation of Events based in cycles on polynomial time, but
our complexity is even less than that, as Burns Primal-Dual
Method Algorithm has less complexity than the algorithm used
in that work. The algorithm presented by Peggy B. McGee and
Steven M. Nowick is O(n?), as Floyd-Warshall algorithm has
that complexity, though Burns Primal-Dual Method Algorithm
has complexity of O(E x (V + E)). To sum up, in this work
we combined Burns Primal-Dual Method Algorithm, Graph



TABLE I: Experimental Results - Maximum Time Separation of Events of events on Critical Cycle

ER System || Source | Target || TSE Path | TSE Start Node | TSE Path Delay Maximum
Start Node Time Offset to Target TSE Result
Figure 6 a a b 2 21 19
Figure 6 b c c 2 15 13
Figure 6 c b b 2 15 13
Figure 11 a a b 26 78 52
Figure 11 a b b 26 41 15
Figure 11 a c b 26 56 30
Figure 11 b a c 21 63 42
Figure 11 b b c 21 67 46
Figure 11 b b c 21 41 20
Figure 11 c a a 9 41 32
Figure 11 c b a 9 45 36
Figure 11 c c a 9 60 51
Figure 12 a a b 5 19 14
Figure 12 a b b 5 10 5
Figure 12 a c b 5 16 11
Figure 12 a d b 5 21 16
Figure 12 a e b 5 13 8
Figure 12 b a e 5 18 13
Figure 12 b b e 5 15 10
Figure 12 b c e 5 15 10
Figure 12 b d e 5 20 15
Figure 12 c a a 3 10 7
Figure 12 c b a 3 13 10
Figure 12 c c a 3 19 16
Figure 12 c d a 3 12 9
Figure 12 c e a 3 16 13
Figure 12 d a b 5 19 14
Figure 12 d b b 5 10 5
Figure 12 d c b 5 16 11
Figure 12 d d b 5 21 16
Figure 12 d e b 5 13 8
Figure 12 e a c 5 15 10
Figure 12 e b c 5 18 13
Figure 12 e c c 5 12 7
Figure 12 e d c 5 17 12
Figure 12 e e c 5 21 16

Unfolding Method, and Path Finding Algorithms to compute
Critical Cycles, Appearance of Source Event and Pre-source
Nodes, Paths to Target Event and compute the Longest, and
eventually Time Separation of Events on critical cycles. We
can not perform our algorithm outside of critical cycles for
the reason provided in Burns Primal-Dual Method Algorithm
Section.
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