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ABSTRACT
Clueless is a binary instrumentation tool that characterises ex-
plicit cache side channel vulnerabilities of programs. It detects the
transformation of data values into addresses by tracking dynamic
instruction dependencies. Clueless tags data values in memory if
it discovers that they are used in address calculations to further
access other data.

Clueless can report on the amount of data that are used as ad-
dresses at each point during execution. It can also be specifically
instructed to track certain data in memory (e.g., a password) to see
if they are turned into addresses at any point during execution. It
returns a trace on how the tracked data are turned into addresses,
if they do.

We demonstrate Clueless on SPEC 2006 and characterise, for the
first time, the amount of data values that are turned into addresses
in these programs. We further demonstrate Clueless on a micro
benchmark and on a case study. The case study is the different
implementations of AES in OpenSSL: T-table, Vector Permutation
AES (VPAES), and Intel Advanced Encryption Standard New In-
structions (AES-NI). Clueless shows how the encryption key is
transformed into addresses in the T-table implementation, while
explicit cache side channel vulnerabilities are note detected in the
other implementations.

CCS CONCEPTS
• Security and privacy → Side-channel analysis and countermea-
sures; Information flow control.

1 INTRODUCTION
Cache side-channel attacks leak information through a microar-
chitectural covert channel – the cache. By observing changes in
the shared cache state, a spy process can bypass process isolation
and read secret data from a victim process. Cache side-channel
attacks have been demonstrated on processors of different archi-
tectures and on different algorithms, e.g., RSA [1], AES [2–5], and
ElGamal [6]. Speculative side-channel attacks such as Spectre [7],
Meltdown [8] and their variants [9–14] have caused major changes
on how the architecture community view security. These attacks
exploit speculative instructions that are to be squashed (e.g., in-
structions in mispredicted branches) to access and then transmit
secret data over the shared cache. While non-speculative cache
side-channel attacks could usually be mitigated by improving the
implementations of vulnerable algorithms (e.g., avoid using secret
data to look up in large tables), the speculative variants of them are
difficult to prevent by changing software implementations because
the information leakage happens in speculation.

Fig. 1 shows Spectre Variant 1 where an attacker can exploit
the branch misprediction to access arbitrary program data and

transmit the secret over a shared cache [7]. The victim program is
correctly implemented with the appropriate bound check, yet it is
still vulnerable due to speculative execution.

Speculative side-channel attacks have found to be an enormous
security threat. Different hardware approaches have been proposed
to protect against them. For example, InvisiSpec [15] and Ghost-
Minion [16] makes speculation invisible in the data cache hierarchy
using additional speculative buffers so that secrets cannot be trans-
mitted over cache channels. Delay-on-Miss (DoM) [17] delays all
speculative loads that miss in data cache and thus prevent the
observable timing differences, while Speculative Taint Tracking
(STT) [18] focuses on blocking only the transmitter instruction.
STT uses dynamic information flow tracking (DIFT) to taint secret
data. It allows to forward the results of speculative instructions if
they cannot leak secrets via any potential covert channels.

This work does not propose new mitigation methods for specu-
lative side-channel attacks. Instead, we intend to understand how
prevalent these vulnerabilities are in programs from a new per-
spective. Side-channel attacks rely on a fundamental programming
feature to leak the value of secrets – the transformation of data
values into memory addresses. Besides the victim program in Fig. 1,
consider for example sorting, hashing, or many other algorithms
that create addresses based on data values. While we understand
the mechanism that leaks data as addresses, there is no clear indi-
cation of how serious the problem is in our workloads: How many
values do “leak” as addresses in a given application?

This work aims to shed some light on how exposed are we to
the potential vulnerability. Clueless is a tool (based on binary re-
writing) that tracks dynamic instruction dependencies and tags
data values in memory if it discovers that they are used in address
calculations to further access other data.

Clueless can be used in two modes: aggregating mode, where it
reports on the amount of data that are used as addresses at each
point during execution, and tracking mode where the tool is specif-
ically asked to track certain data in memory (e.g., a password) to
see if they are turned into addresses at any point during execution.
Tracking mode returns a trace on how the tracked data are turned
into addresses, if they do.

1 uint8 A[10];
2 uint8 B[256*64];
3 void victim (size_t addr) {
4 if (addr < 10) { // mispredicted branch
5 uint8 val = A[addr]; // secret accessed
6 ... = B[64* val]; // secret transmitted
7 }
8 }

Figure 1: Spectre Variant 1.



1 secret = *addr;
2 if (secret % 2)
3 a = A[0];
4 else
5 a = A[128];

(a) Control flow

1 secret = *addr;
2 i += 64 * secret;
3 a = A[i];

(b) Data flow

Figure 2: Code that leaks secret.

We demonstrate Clueless in aggregating mode on SPEC 2006
and characterise, for the first time, the amount of data values that
are turned into addresses in these programs. We further demon-
strate Clueless in tracking mode on a micro benchmark and on
a case study. The case study is the different implementations of
AES in OpenSSL: T-table, Vector Permutation AES (VPAES), and
Intel Advanced Encryption Standard New Instructions (AES-NI).
The T-table AES implementation can be easily broken with a cache
side-channel attack (e.g., Prime+Probe), but VPAES and AES-NI
are immune to cache-timing attacks. Clueless readily shows how
the encryption key is transformed into addresses in the T-table
implementation and a lack of the corresponding transformations
in the other two implementations.

2 METHODS
Clueless is a dynamic instrumentation tool that analyses instruc-
tions at run-time to track values that leak as memory addresses.
Values are data that should not be used, directly or indirectly, as
memory addresses, e.g., password hashes, private encryption keys.
A value can leak as a memory address when there is information
flow from the value to a memory address. The scope of the tool
is limited to detecting data-flow: it tracks data dependences but
disregards control dependences. In other words, Clueless is able to
detect explicit channels [18], a value that is used as an address on a
load instruction, but not implicit channels [18], where the value is
leaked through control flow interaction. Assume secret is a value,
the leakage in the code in Fig. 2a will not be detected by the tool
because &A[0] and &A[128] only have control dependence on secret.
On the other hand, the tool will detect the leakage in Fig. 2b because
secret is involved in the computation of &A[i]. Furthermore, addr
will be tagged as a leak point. A leak point is a memory location
where a leaked value resides.

Clueless uses an algorithm based on dynamic information flow
tracking (DIFT) [19–21]. DIFT has been successfully applied to
prevent attacks on software [20–25] and has been seen in hard-
ware protection proposals against speculative execution attacks
[18]. DIFT tracks information flow by associating taints with data
and propagating the taints according to the data flow. In addition,
Clueless’s algorithm needs to automatically assign taints to data
and maintain the taints.

2.1 Taint assignment
A new taint is assigned to a memory location whenever a value
(i.e., data that should not be used to address memory) is loaded
from that memory location. Each taint is associated to the address
of a value. In the example in Fig. 3, suppose that values reside at
memory location addrX and addrY, a new taint 𝑡𝑥 is assigned to addrX

1 r1 = addrX
2 r2 = addrY
3 load rX <- (r1)
4 load rY <- (r2)
5 r3 = rX * 64
6 r4 = r3 + rY
7 load r5 <- (r4)

Figure 3: Instructions where addrX and addrY are leak points.

when the load instruction on line 3 executes, and then another taint
𝑡𝑦 is assigned to addrY when line 4 executes.

Clueless needs to know if the loaded data is a value. Most con-
temporary Instruction Set Architectures (ISAs) do not make a dis-
tinction between value and address loads nor between value and
address registers. As a binary instrumentation tool, Clueless is clue-
less about which loads actually load values. Clueless provides two
solutions to this problem.

Everything is a value. One solution is to regard all data in the
memory initially as values, i.e., Clueless assumes nothing in the
memory should be used as a memory address. For every load in-
struction, a new taint is assigned to the memory address of the
load. Consequently, all memory locations which contain memory
addresses will be considered as leak points. Clueless effectively pro-
vides a way to classify any data in memory into memory addresses
or non-addresses based on the past execution. This provides a new
perspective to analyse programs: how much of a process’s memory
is potentially observable by another process through a cache side
channel? We name this model as aggregation mode. Aggregation
mode indicate how visible a program memory can be — Section 3
presents its results.

Users set watchpoints. Another solution is to let users mark out
memory regions that contain values. A new taint is assigned to the
memory address of a load only if that address is within a marked
memory region. Clueless supports this solution by providing an
API that can dynamically register and unregister memory regions
to watch. This requires users to modify the source code of instru-
mented programs by inserting Clueless watchpoint API calls. We
name this model as tracking mode. Section 4 presents its results.

2.2 Taint propagation
Clueless uses bit arrays to store taint sets, where each bit represents
a different taint. With this representation, set union operations are
equivalent to bit-wise or operations, which are efficient to perform.
Each bit array is associated to a register or a memory location. The
number of bits in a bit array is finite and can be configured when
compiling the tool. Consequently, the maximal number of taints is
equal to the number of bits in a bit array.

At instruction level, data-flow can be divided into two categories:
register-register flow and register-memory flow. One of the main
differences of the two categories in the context of dependence
tracking is that the space required by register-register flow tracking
is upper-bounded by the number of architectural registers while
that of register-memory flow tracking is upper-bounded by the
number of virtual memory locations. For example, pairs of a load
and a store (both cause register-memory flow) can copy some data
throughout the entire virtual memory and result in every memory
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Table 1: Example Taint Propagation

Instruction rX rY r3 r4 Remark
r1 = addrX {} {} {} {}
r2 = addrY {} {} {} {}
load rX <- (r1) {𝑡𝑥 } {} {} {} 𝑡𝑥 associated to addrX
load rY <- (r2) {𝑡𝑥 } {𝑡𝑦} {} {} 𝑡𝑦 associated to addrY
r3 = rX * 64 {𝑡𝑥 } {𝑡𝑦} {𝑡𝑥 } {}
r4 = r3 + rY {𝑡𝑥 } {𝑡𝑦} {𝑡𝑥 } {𝑡𝑥 , 𝑡𝑦}
load r5 <- (r4) {} {} {} {} addrX, addrY tagged

location being tainted by the taints of the data, requiring enormous
amount of space to store the taint sets. This might not be an issue
when a few pieces of data are tracked because the data are not likely
to flow through a large part of the memory. When the numbers
of tracking points are large, however, the space overhead makes
complete tracking of register-memory flow impractical. This is the
case for Clueless in aggregating mode — it regards everything in
the memory as a value and tracks the entire memory. On the other
hand, storing a taint set for each register requires much less space
because the number of architectural registers is low.

Tracking dependences via registers. Clueless tracks register-register
flow by examining instructions, identifying source, destination, and
memory addressing registers and following propagation rules. Ta-
ble 1 demonstrates how taints propagate through the registers as
instructions from Fig. 3 are executed. The propagation rules are
listed below:

(1) For each load instruction, the taint set of its destination
registers becomes either a singleton or an empty set. If a
value is loaded, the taint set is a singleton whose element
is the new taint associated to the value’s address. If what is
loaded is not a value, the taint set is the empty set.

(2) For instructions that set their destination registers to a con-
stant (e.g. xor with two same source registers, mov a constant
to a register), the taint sets of their destination registers
become the empty set.

(3) For instructions whose source and destination operands are
all registers except the instructions in rule 2, the taint sets
of their destination registers become the union of the taint
sets of their source registers.

(4) For load and store instructions, memory addressing registers
have their taint sets emptied. All the memory addresses
associated with the emptied taints are tagged as leak points.

(5) For store instructions, if the taint sets of all the memory
addressing registers are the empty set, the address is no
longer a leak point and is untagged.

Expanding dependence tracking tomemory. Using register-register
flow tracking alone, the taint sets of data could be lost because
programs often store some data to the memory, use the register
containing the data for something else, and later reload the data
from the memory. These cases require tracking register-memory
flow to store and reload the taint sets. Two additional propagation
rules are introduced to expand dependence tracking to memory:

(6) For each store instruction, the taint set of the memory ad-
dress becomes the taint set of the source register that con-
tains the stored data.

(7) For each load instruction, in addition to rule 1, the taint set
of a destination register becomes the union of the resulting
taint set from rule 1 and the taint set of the memory address.

Although tracking all the register-memory flow using a com-
plete method is impractical due to the space requirements, it is still
important to track these flows because temporarily storing data to
memory is very common. For this reason, a set-associative cache is
used as a best-effort approach to store the taint sets that are asso-
ciated with memory addresses. The cache uses a first-in-first-out
replacement policy. The number of sets as well as the associativity
of the cache can be configured when compiling the tool.

2.3 Taint maintenance
Clueless has finite number of taints because of the use of statically
sized bit arrays as taint sets. Therefore, taints must be maintained
and reused. A taint can only be reused when it is in none of the
taint sets. Propagation rule 1, 2 and 4 are the rules that can empty
taint sets and make taints reusable. Since the addresses associated
with the emptied taints are already tagged as leak points according
to propagation rule 4, the emptied taints no longer have useful
information, thus can be removed from all the taint sets, resulting
in them immediately becoming reusable.

Taints can still be exhausted in spite of the recycling. For example,
a program can have a loop that loads many values from the memory
and sums them. In these cases, Clueless makes the taint assigned
by the earliest load available by removing it from all the taint sets.

2.4 Limitations
No tracking on speculative execution. Clueless is a binary instru-

mentation tool. It is not a hardware simulator and does not obtain
micro architectural information such as instructions executed in
speculation. As a result, Clueless cannot track speculative execu-
tion.

Incomplete tracking. Clueless is a characterisation tool as op-
pose to a verification tool. The tracking of Clueless is incomplete.
Clueless can track data dependence within a limited window. The
incompleteness is the consequence of our implementation that uses
a finite number of taints and a finite sized cache. When compiling
the tool, users can adjust these parameters to find the desired size
of the tracking window.
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Dependencies. Clueless depends on Intel Pin [26]. Clueless is
compiled into a shared library and needs to be loaded by Intel
Pin. The propagation algorithms of Clueless is implemented in a
platform-independent way, but Intel Pin only supports instrumen-
tation of IA-32, x86-64 and MIC ISAs. As a result, Clueless currently
only supports these ISAs.

2.5 Source code
The source code of Clueless is published under the GNU General
Public License, Version 3. Its git repository is accessible at https:
//github.com/xiaoyuechen/dift-addr.git.

3 AGGREGATING MODE
Clueless in aggregating mode regards everything in the instru-
mented program’s memory as values. Clueless in this mode tags
any memory locations whose data transform into addresses as leak
points. In addition, Clueless collects a set of all memory addresses
used by the program, i.e., addresses used in any memory accessing
instructions. With the set of leak points and the set of all memory
addresses, we could introduce a metric that describes the propor-
tion of data that are used as addresses for a given execution of a
program.

3.1 The Λmetric
Let 𝐿𝑖 be the set of leak points and 𝐴𝑖 be the set of all addresses
after the execution of the 𝑖:th instruction of a program (Trivially,
𝐿𝑖 ⊆ 𝐴𝑖 ). Let 𝑛 be the number of instructions of the entire execution
of the program, metric Λ defined by

Λ =

∑𝑛
𝑖=1 |𝐿𝑖 |∑𝑛
𝑖=1 |𝐴𝑖 |

indicates the average proportion of data that transform into ad-
dresses during the entire executing of the program. Figuratively, Λ
is the area under the |𝐿𝑖 | curve divided by the area under the |𝐴𝑖 |
curve in Fig. 5.

3.2 Λ of SPEC benchmarks
We used Clueless’s aggregating mode on SPEC 2006 to charac-
terise data transformation into memory addresses by analysing
how |𝐴𝑖 | and |𝐿𝑖 | change and comparing the Λ values of different
benchmarks. Since Clueless uses incomplete methods to track 𝐿𝑖
while the tracking of 𝐴𝑖 is complete, the reported values of Λ are
lower-bounds of the actual Λ.

The prevalence of data-address transformations, indicated by Λ,
is an innate property of a program. Fig. 4 shows the values of Λ
of different benchmarks programs. The astar program and soplex
program usemore than one third of their memory to store addresses.
In the bwaves program and sjeng program, on the other hand, such
transformations are rarely seen.

3.3 A closer look
For more insights into data-address transformation, we further
study how much data are transformed into addresses at each point
of execution of some benchmark programs.

Figure 4: Λ of SPEC benchmarks.

Astar. Fig. 5a shows how |𝐴𝑖 | and |𝐿𝑖 | change during an execu-
tion of the astar program. Note that |𝐴𝑖 | increases monotonically
while |𝐿𝑖 | does not. When an address 𝑙 ∈ 𝐿𝑖 is written to by the
(𝑖 + 1):th instruction, 𝐿𝑖+1 = 𝐿𝑖 \ {𝑙}. This is very common when 𝑙
is a stack address, as the stack memory tends to be rewritten often.
In the astar program, |𝐿𝑖 | fluctuates when 𝑖 ∈ [2 × 1011, 3 × 1011].
The cause of such fluctuations is that the same blocks of memory
containing addresses are repeatedly loaded from and written to.

Bzip2. Fig. 5b shows that the bzip2 program periodically store
new addresses to the same blocks of memory. One common data-
address transformation pattern can be found when 𝑖 ∈ [0, 3.9 ×
1010], 𝑖 ∈ [3.9×1010, 7.9×1010], and 𝑖 ∈ [7.9×1010, 1.75×1011] — a
rapid increase in |𝐿𝑖 | which then fluctuates periodically, followed by
another rapid but smaller increase in |𝐿𝑖 | and fluctuates periodically
again. The cause for the repeated pattern could be that the bzip2
program reallocates memory to store memory addresses, but the
same algorithm is used on the reallocated memory.

Calculix. Fig. 5c shows that the calculix program has an obvious
periodic memory access pattern. After the initial increase of both
|𝐴𝑖 | and |𝐿𝑖 |, |𝐴𝑖 | becomes stable while |𝐿𝑖 | becomes periodic. The
amplitude of |𝐿𝑖 | is relatively large at approximately 2.1 × 106,
indicating that blocks containing 2.1× 106 addresses are repeatedly
written with new addresses.

Soplex. Fig. 5d shows how |𝐴𝑖 | and |𝐿𝑖 | of the soplex program
change. After the initial increase, both |𝐴𝑖 | and |𝐿𝑖 | become stable.
This does not mean that data in this program are transformed
to memory addresses only once. After the data are tagged, they
may still be transformed into memory addresses multiple times
in different ways, but 𝐿𝑖 would remain the same. The stable |𝐿𝑖 |
only indicates that no new data are tagged, and no tagged memory
location is written to.

4 TRACKING MODE
Clueless in tracking mode allows users to dynamically register and
unregister watchpoints, i.e., memory blocks that contain values. If
data from any watchpoint are transformed into memory addresses,
Clueless will provide a detailed diagnose on each leakage. The diag-
nostic information include the leak point, the memory address that

4

https://github.com/xiaoyuechen/dift-addr.git
https://github.com/xiaoyuechen/dift-addr.git


(a) astar (b) bzip2 (c) calculix (d) soplex

Figure 5: |𝐴𝑖 | and |𝐿𝑖 | of benchmark programs.

1 // The shared library:
2 const uint8 T[256 * 64];
3 int foo (const uint8 *s, size_t n) {
4 for (size_t i = 0; i < n; ++i) {
5 uint8 r = T[s[i] * 64];
6 ...
7 }
8 }
9
10 // The victim program:
11 uint8 s[] = "cLUe";
12 foo (s, sizeof (s) - 1);

Figure 6: The micro benchmark program.

the value in the leak point transforms into, a trace of instructions
that shows the value-address transformation, and the relevant rou-
tine and image names where the leakage happens. This mode could
be used to test the side-channel vulnerability of programs and help
understand where and how secrets are leaked if such vulnerability
exists.

4.1 The micro benchmark
We demonstrate Clueless in tracking mode on a micro benchmark
program in Fig. 6. Array T[] and function foo are defined in a shared
library the victim program links against. The victim program has a
secret stored in the s[] array. The victim calls foo with the secret as
its parameter. Function foo loads each byte of its parameter array,
multiplies the byte value by 64, and uses the result as the index of
a constant array T[] to do some lookup.

This program is vulnerable to side channel attacks such as Flush
+ Reload [1]. The attacking program may mmap the shared library
and flush the cache lines containing T[], wait for the victim to call
the foo function, and measure the time to reload the cache lines to
find out which lines are accessed by foo. Assuming that the victim’s
machine has 64-byte cache lines, the attacker can recover the secret
completely — each access of T[s[i]*64] will be on a different cache
line, so each byte of the secret can be computed using (l-T)/64

where l is the address of an accessed line. The offset of T can also
be found trivially because it is just a symbol in a shared library. In
our example, T has an offset of 0x2020.

4.2 Pinpointing the leakage
Clueless’s aggregation mode can be used to characterise the micro
benchmark program. Fig. 7 shows how its |𝐴𝑖 | and |𝐿𝑖 | change.
With Clueless in tracking mode, we can pinpoint which increase of

Figure 7: |𝐴𝑖 | and |𝐿𝑖 | of the micro benchmark program.

1 0x7fff41801683 { 0 } -> %rax
2 %rax { 0 } -> %rax
3 %rax { 0 } -> %rax
4 %rax { 0 } -> %rax
5 %rdx %rax { 0 } -> %rdx
6 %rdx { 0 } -> %rcx
7 [ %rcx { 0 } ] = 0x55baae46d8e0 ->

(a) Propagation

movzbl (%rax),%eax
movsbl %al ,%eax
shl $0x6 ,%eax
cltq
add %rax ,%rdx
mov %rdx ,%rcx
mov (%rcx),%rax

(b) Instruction

Figure 8: Tracing the micro benchmark.

|𝐿𝑖 | results in the tracked secrets being leaked. The annotations in
Fig. 7 reveal the content of the leaked secrets at the point of their
leakage. For example, 0x38e0 is leaked when 𝑖 = 20, i.e., &T[s[0]*64]
evaluates to 0x38e0 (after subtracting the image load offset), and is
used as a memory address in a load. To recover s[0], we compute
(0x38e0-0x2020)/64 and yield 0x63, which is the ASCII code for ‘c’.

4.3 Tracing the transformation
For further understanding on the leakage, Clueless gives a trace of
propagation that causes it. Fig. 8a shows the part the propagation
trace that causes s[0] to leak, and Fig. 8b shows the corresponding
instructions.

The propagation trace has the following syntax:
5



• { NUM, .. } is a taint set, e.g., %rax { 0, 3 } means register rax
has taint set {𝑡0, 𝑡3}.

• -> represents data flow and taint propagation, e.g., %rdx { 0

} -> %rcx means data flow from register rdx to register rcx,
and taint 𝑡0 propagates to register rcx.

• [ REG { NUM, .. } ] represents a register being used as a mem-
ory address, followed by an equal sign and the effective ad-
dress, e.g., [ %rcx { 0 } ] = 0x55baae46d8e0 -> means that reg-
ister rcx whose taint set is 𝑡0 is used as a memory address in
a load.

By analysing the trace of the micro benchmark, we find that the
instruction at line 1 loads &s[0]which is 0x7fff41801683with taint set
{𝑡0} to register rax. The following 3 instructions propagate {𝑡0} from
register rax to itself. Then the instruction at line 5 propagates {𝑡0}
to register rdx by adding register rax to it. {𝑡0} is further propagated
to register rcx which is eventually used as the memory address
0x55baae46d8e0.

5 CASE STUDY: AES
We have seen how the micro benchmark in Section 4 could leak
secrets due to its value-address transformations. Some implementa-
tions of Advanced Encryption Standard (AES) [27] are susceptible
to cache side-channel attacks for the same reason. These implemen-
tations often depend on large tables to speed up the encryption
process [28]. If encryption keys are transformed into indices of
large tables for lookups, attackers may partially or completely re-
cover the keys by observing the corresponding cache state changes.
Numerous attacks on AES exploiting this class of vulnerability have
been demonstrated in the past [2–5]. Different implementations of
AES have also been proposed to protect against such attacks while
retaining or improving the speed of encryption [3, 28, 29].

In this case study, we use Clueless in tracking mode to analyse
three different implementations of AES present in OpenSSL 3.0.3
— T-table, Vector Permutation AES (VPAES), and Intel Advanced
Encryption Standard New Instructions (AES-NI). The expanded
encryption key is set as the watchpoint in order to observe if it is
transformed into memory addresses.

5.1 T-table
The T-table implementation of AES in OpenSSL uses 9 T-tables,
i.e., pre-computed lookup tables, with 8 of them being 8kiB each
and 1 of them being 2kiB. The encryption key is first expanded
to round keys. The first round key is combined with the 16-byte
plaintext using xor to form the initial state vector. The elements in
the state vector are then used as indices of the T-tables to look up
values which are combined with the next round key to form the
next state vector. This implementation could be easily broken using
Prime+Probe, with the 128-bit encryption key fully recovered after
only 300 encryptions [3].

Clueless detects the potential leak and marks all the bytes of the
key as leak points. In addition, Clueless gives a propagation trace
that shows how the key is transformed into memory addresses.
Fig. 9a shows the propagation trace of the first round of the encryp-
tion (all rounds are similar) while Fig. 9b shows the corresponding
instructions. The traces shows that the first round key is leaked as
follows:

0x7fff609ec660 { 1 } -> %xmm5
%xmm2 %xmm5 { 1 } -> %xmm2
%xmm0 %xmm2 { 1 } -> %xmm0
%xmm1 %xmm0 { 1 } -> %xmm1
%xmm1 { 1 } -> %xmm1
%xmm0 { 1 } -> %xmm0
%xmm5 %xmm0 { 1 } -> %xmm5
%xmm0 %xmm1 { 1 } -> %xmm0
%xmm3 %xmm1 { 1 } -> %xmm3
%xmm3 %xmm5 { 1 } -> %xmm3
%xmm4 %xmm0 { 1 } -> %xmm4
%xmm4 %xmm5 { 1 } -> %xmm4
%xmm2 %xmm3 { 1 } -> %xmm2
%xmm2 %xmm0 { 1 } -> %xmm2
%xmm3 %xmm4 { 1 } -> %xmm3
...
%xmm3 %xmm1 { 1 2 ... 10 } -> %xmm3
%xmm4 %xmm2 { 1 2 ... 10 } -> %xmm4
%xmm4 %xmm5 { 1 2 ... 11 } -> %xmm4
%xmm0 %xmm3 { 1 2 ... 10 } -> %xmm0
%xmm0 %xmm4 { 1 2 ... 11 } -> %xmm0
%xmm0 { 1 2 ... 11 } -> %xmm0

Figure 10: Tracing the VPAES implementation.

(1) Instructions from line 1 to 4 load the first round key and
xor them with the plaintext in register rax, rbx, rcx, and rax

to form the initial state vector. Different taints are assigned
to the watched memory locations and propagated to the
destination registers.

(2) Instructions from line 5 to 8 extracts some bytes from the
initial state vector and copy them to a different set of regis-
ters (r10, r11, r12 and r8). Taints propagate from the source
registers to the destination registers.

(3) Instructions from line 13 to 16 use the extracted bytes to
perform lookup in one of the T-tables. The tainted registers
are used to form effective addresses. At this point, Clueless
marks the memory locations of the first round key as leak
points.

5.2 VPAES
VPAES is a technique for accelerating AES using vector permute
instructions. It avoids key-dependent memory references thus being
immune to known cache-timing attacks [28]. The hardware must
support vector permutation instructions to use VPAES.

Clueless in tracking mode shows that no part of the key is leaked
as memory addresses in OpenSSL’s VPAES implementation. The
reported propagation trace in Fig. 10 indicates that the key is loaded
(e.g., by instruction at 86e1) and combined in different rounds, but
no part of the key is used to reference memory.

5.3 AES-NI
Intel introduced AES-NI instruction sets in 2010 to provide direct
hardware support for AES. These new instructions run in data-
independent time and do not use tables [29]. AES-NI can encrypt
an entire round with a single instruction. AES implementations
that properly use AES-NI should be immune to cache side-channel
attacks as no cache is involved in these instructions.
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1 0x7ffc4afe86b0 { 1 } -> %rax
2 0x7ffc4afe86b4 { 2 } -> %rbx
3 0x7ffc4afe86b8 { 3 } -> %rcx
4 0x7ffc4afe86bc { 4 } -> %rdx
5 %rax { 1 } -> %r10
6 %rbx { 2 } -> %r11
7 %rcx { 3 } -> %r12
8 %rdx { 4 } -> %r8
9 %rbx { 2 } -> %rsi
10 %rcx { 3 } -> %rdi
11 %rcx { 3 } -> %rcx
12 %rdx { 4 } -> %rbp
13 [ %r10 { 1 } ] = 0x555e939ad533 ->
14 [ %r11 { 2 } ] = 0x555e939ad527 ->
15 [ %r12 { 3 } ] = 0x555e939ad4c0 ->
16 [ %r8 { 4 } ] = 0x555e939ad4c0 ->

(a) Propagation

xor (%r15),%eax
xor 0x4(%r15),%ebx
xor 0x8(%r15),%ecx
xor 0xc(%r15),%edx
movzbl %al ,%r10d
movzbl %bl ,%r11d
movzbl %cl ,%r12d
movzbl %dl ,%r8d
movzbl %bh ,%esi
movzbl %ch ,%edi
shr $0x10 ,%ecx
movzbl %dh ,%ebp
movzbl (%r14 ,%r10 ,1) ,%r10d
movzbl (%r14 ,%r11 ,1) ,%r11d
movzbl (%r14 ,%r12 ,1) ,%r12d
movzbl (%r14 ,%r8 ,1) ,%r8d

(b) Instruction

Figure 9: Tracing the T-table implementation.

0x7ffd85426fd0 { 1 } -> %xmm0
0x7ffd85426fe0 { 2 } -> %xmm1
%xmm2 %xmm0 { 1 } -> %xmm2
%xmm2 %xmm1 { 1 2 } -> %xmm2
0x7ffd85426ff0 { 3 } -> %xmm1
%xmm2 %xmm1 { 1 2 3 } -> %xmm2
0x7ffd85427000 { 4 } -> %xmm1
...
%xmm2 %xmm1 { 1 2 3 ... 10 } -> %xmm2
0x7ffd85427070 { 11 } -> %xmm1
%xmm2 %xmm1 { 1 2 ... 11 } -> %xmm2
%xmm0 { 1 } -> %xmm0
%xmm1 { 11 } -> %xmm1
%xmm2 { 1 2 ... 11 } -> 0x55feae1dd130

Figure 11: Tracing the AES-NI implementation.

The AES implementation in OpenSSL that uses AES-NI has not
been found to transform the key into memory addresses. The prop-
agation trace in Fig. 11 shows that no part of the key is used to
reference memory.

6 CONCLUSION AND FUTUREWORK
We have presented Clueless: a tool characterising values leaking
as addresses. Using Clueless in aggregating mode, we have charac-
terised, for the first time, the amount of data values that transformed
into memory addresses in SPEC 2006 benchmark programs. Some
benchmark programs use more than one third of accessed memory
to reference memory. Clueless in tracking mode has provided the
traces of how secrets propagate and leak in a micro benchmark and
AES implementations in OpenSSL. The T-table implementation of
AES exhibits potential vulnerabilities to cache side-channel attacks
while the VPAES and AES-NI implementations are immune to such
attacks.

The “leaks” reported by Clueless are to be further studied. We
hope to identify the value-address transformations that would lead
to the danger of leaking sensitive information from the false pos-
itives (e.g. secrets transforming to addresses on the same cache
lines). We are interested in applying similar dynamic information
flow tracking techniques on hardware models to mitigate cache
side-channel attacks such as Specture. The high frequencies of

data-address transformations in some programs also indicate opti-
misation opportunities in cache systems: data that would transform
to memory addresses may be associated to the data the transformed
addresses point to. This may be a focus of our future work.
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