
Reorder Buffer Contention: A Forward
Speculative Interference Attack for
Speculation Invariant Instructions

Pavlos Aimoniotis , Christos Sakalis,
Magnus Sj€alander , and Stefanos Kaxiras

Abstract—Speculative side-channel attacks access sensitive data and use

transmitters to leak the data during wrong-path execution. Various defenses have

been proposed to prevent such information leakage. However, not all speculatively

executed instructions are unsafe: Recent work demonstrates that speculation

invariantinstructions are independent of speculative control-flow paths and are

guaranteed to eventually commit, regardless of the speculation outcome.

Compile-time information coupled with run-timemechanisms can then selectively

lift defenses for speculation invariant instructions, reclaiming some of the lost

performance. Unfortunately, speculation invariant instructions can easily be

manipulated by a form of speculative interference to leak information via a new

side-channel that we introduce in this paper. We show that forward speculative

interference where older speculative instructions interfere with younger speculation

invariant instructions effectively turns them into transmitters for secret data

accessed during speculation. We demonstrate forward speculative interference on

actual hardware, by selectively filling the reorder buffer (ROB) with instructions,

pushing speculative invariant instructions in-or-out of the ROB on demand, based

on a speculatively accessed secret. This reveals the speculatively accessed secret,

as the occupancy of the ROB itself becomes a new speculative side-channel.

Index Terms—Speculative side-channel attacks, security, spectre, speculative

interference

Ç

1 INTRODUCTION

SPECULATIVE side-channel attacks use speculative execution to gain
access to information that would otherwise be inaccessible. Specu-
latively executed instructions are capable of temporarily bypassing
hardware or software defenses to gain illegal access to data that
are then passed to speculative side-channel instructions, a transmit-
ter gadget, capable of leaking those sensitive data to the non-specu-
lative domain. Transmitter gadgets perform an operation that
alters the microarchitectural state of the processors, leading to a
data leak. A receiver observes the changes in the microarchitectural
states and is able to identify leaked data outside of the speculation
window.

To tackle this problem several hardware defenses [3], [4], [6],
[8], [9], [11], [12], [13], [15] have been proposed, introducing a vari-
ety of security guarantees. However, defenses also introduce vari-
ous levels of complexity and performance overhead. Several
hardware defenses rely on techniques that protect instructions
while they are speculative, and focus on making them invisible.
One example is Delay-on-Miss (DoM) [11]. DoM delays speculative
loads that miss in the L1 cache until they become non-speculative,
at which point they can be executed safely. Another example is

InvisiSpec [13]. InvisiSpec performs speculative loads but keeps
the effects of a miss invisible in the cache hierarchy. When the spec-
ulation is verified, changes in the memory hierarchy are effected
with a visible access.

Hardware defenses, such as DoM and InvisiSpec, add signifi-
cant performance overhead [11], [13]. For this, Zhao et al. proposed
InvarSpec [16], a framework that detects and lifts the protection for
speculative instructions that become speculation invariant. For an
instruction to be speculative invariant, its data and control depen-
dencies must be resolved during the speculation window. Such
instructions are eventually going to execute with the same oper-
ands, even if they are temporarily squashed due to misspeculation,
and are, thus, considered safe to execute. Lifting the protection for
speculation invariant instructions enables the visible execution of
an instruction while it is still under speculation, maintaining the
“invisible speculative execution” semantics of defenses such as
DoM or InvisiSpec while recovering significant performance lost to
these defenses.

In a related development, Behnia et al. demonstrate that Specula-
tive Interference [5] can break (under some assumptions) the DoM
and InvisiSpec defenses. Up until now, the transmitter instructions
were considered to be exclusively under speculative execution.
With the introduction of Speculative Interference attacks, this has
changed. In such an attack, the transmitter instructions are placed
before (in program order) the speculation window. Hence, the
transmitter instructions can lie outside the protection of DoM or
InvisiSpec defenses, as these are engaged only for instructions that
follow (in program order) the source-of-speculation instruction(s).
Since Speculative Interference is based on the fact that younger
speculative instructions can influence the timing of older instruc-
tions, it can consequently lead to information leakage even under
speculative defense mechanisms [5].

The key insight of our work is that speculation-invariant instruc-
tions are susceptible to speculative interference from older specula-
tive instructions: Forward Speculative Interference (FSI). To clearly
differentiate between FSI and the speculative interference from
younger speculative instructions, we refer to the latter as Backward
Speculative Interference (BSI). Using FSI, a new side-channel can be
created by manipulating the inclusion or exclusion of speculation-
invariant instructions in the reorder buffer (ROB). Other forms of
forward interference are also possible and Behnia et al. [5] discuss
how to delay instruction fetch with reservation station (RS) conten-
tion, calledGI

RS in [5]. However,GI
RS concerns blocking of instruc-

tion fetch (and the front-end) which affects the I-Cache and is
distinctly different from the ROB-contention interference discussed
here that concerns instruction execution.

We demonstrate FSI with ROB contention on actual processors
(Intel Sandy Bridge) and show how the ROB can be used as a side-
channel. Specifically, we show how, during speculation, we can
selectively push in-or-out of the ROB load instructions that are on
the—yet unknown—correct path of execution, leading to side-
effects that remain observable after the speculation has been
resolved. These load instructions would be marked as speculative-
invariant by InvarSpec, therefore the InvarSpec framework is sus-
ceptible to such a side-channel attack as well.

2 BACKGROUND

2.1 Delay-on-Miss

Delay-on-Miss (DoM) is a hardware defense mechanism against
speculative side-channel attacks, focusing on side-channels that
abuse the memory hierarchy [11]. Consecutively, side-channel
attacks that do not focus on the memory hierarchy are outside the
scope of DoM and are not hindered by it.

� Pavlos Aimoniotis, Christos Sakalis, and Stefanos Kaxiras are with Uppsala Univer-
sity, 752 36 Uppsala, Sweden. E-mail: {pavlos.aimoniotis, christos.sakalis,
stefanos.kaxiras}@it.uu.se.

� Magnus Sj€alander is with the Norwegian University of Science and Technology, 7491
Trondheim, Norway. E-mail: magnus.sjalander@ntnu.no.

Manuscript received 14 Sept. 2021; accepted 22 Oct. 2021. Date of publication 27 Oct.
2021; date of current version 9 Nov. 2021.
This work was supported in part by Microsoft Research through its EMEA
PhD Scholarship Programme under Grant 2021-020 and in part by the Swed-
ish Research Council under Grants 2015-05159 and 2018-05254.
(Corresponding author: Pavlos Aimoniotis.)
Digital Object Identifier no. 10.1109/LCA.2021.3123408

162 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 20, NO. 2, JULY-DECEMBER 2021

1556-6056 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Uppsala Universitetsbibliotek. Downloaded on November 22,2021 at 10:12:53 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-6602-1988
https://orcid.org/0000-0001-6602-1988
https://orcid.org/0000-0001-6602-1988
https://orcid.org/0000-0001-6602-1988
https://orcid.org/0000-0001-6602-1988
https://orcid.org/0000-0003-4232-6976
https://orcid.org/0000-0003-4232-6976
https://orcid.org/0000-0003-4232-6976
https://orcid.org/0000-0003-4232-6976
https://orcid.org/0000-0003-4232-6976
https://orcid.org/0000-0001-8267-0232
https://orcid.org/0000-0001-8267-0232
https://orcid.org/0000-0001-8267-0232
https://orcid.org/0000-0001-8267-0232
https://orcid.org/0000-0001-8267-0232
mailto:pavlos.aimoniotis@it.uu.se
mailto:christos.sakalis@it.uu.se
mailto:stefanos.kaxiras@it.uu.se
mailto:magnus.sjalander@ntnu.no

DoM operates on two fundamental principles. First, DoM
delays transient loads until they become non-speculative. DoM
introduces the concept of speculative shadows to efficiently track the
speculative state of instructions and discover the earliest time
instructions become non-speculative, typically significantly earlier
than reaching the commit stage (becoming head of the reorder
buffer).

Second, DoM delays only loads that miss in the cache. Because
reading data into a cache requires complicated interactions with
the rest of the system, it is difficult to hide the side-effects of loads
in the memory hierarchy on a cache miss, as demonstrated in prior
solutions such as InvisiSpec [13] and Ghost Loads [10]. However, a
cache hit requires only small modifications to the cache state
(update of the replacement state etc.), which can be easily deferred
for when the load is non-speculative. Thus, instead of delaying all
loads, DoM allows loads that hit in L1 cache to execute under spec-
ulation, while delaying any side-effects until the load becomes
non-speculative.

2.2 Speculation Invariance: InvarSpec

InvarSpec is a framework that detects when a speculative instruc-
tion becomes speculation invariant and upon detection lifts any
existing protections for the instruction [16]. InvarSpec consists of
two main parts. The first part is a compiler technique that after
static analysis generates a safe set (SS) for the instructions. The sec-
ond part is a hardware mechanism that at runtime designates an
execution-safe point (ESP) according to the SS.

An example of speculation invariance is shown in Fig. 1, where
a (instr3) has a potential data dependence with instr2, and instr2
has a control dependence with instr1. In order for instr3 to become
speculation invariant, it must reach its execution safe point, mean-
ing both instr1 and instr2 must reach their outcome safe point. Since
instr4 has no data nor control dependencies with any other instruc-
tion (its SS is empty) it can execute immediately.

Each instruction has its safe set (SS) defined by the compiler and
corresponds to the instruction’s control and data dependencies on
the instructions in the set [16]. The SS is used to determine at run-
time when an instruction is ready and safe to execute during spec-
ulative execution. An instruction is considered to be speculation
invariant when it reaches its execution-safe point (ESP). To reach
the ESP, the operands of an instruction must have been finalized.
Older instructions that comply with these rules are said to have
reached their outcome-safe point (OSP), meaning that their final
result will not change, no matter how many future squashes may
happen. When everything in the safe set reaches the outcome-safe
point, the instruction itself has reached the execution-safe point
and the speculative side-channel defense mechanisms can be lifted
for the instruction to be executed, even if the speculation has not
been verified.

Fig. 2 shows the timeline of an instruction using InvarSpec
framework. As a reminder, an instruction is said to have reached
its ESP when all its operands reach their OSP. Once the instruction
is ready to be executed, even if the speculation has not been

resolved, the defense mechanisms are lifted and the instruction
executes.

2.3 Backward Speculative Interference

Speculative Interference attacks [5] are able to break defense mech-
anisms similar to DoM and InvisiSpec. Even though speculative
loads are executed invisibly, misspeculated instructions can
change the timing of older instructions that may be outside the protec-
tion of DoM or InvisiSpec as non-speculative instructions. This change
can influence the ordering of memory operations that will be com-
mitted, setting the fundamentals for a possible attack.

For example, assume that the interference target is a load that
takes X cycles before its operand becomes ready. The interference
gadget can then use the secret value to selectively add contention in
the MSHRs. For example, if the secret is equal to 1, the interference
gadget attempts to fill all MSHR entries before the interference tar-
get is ready to execute. Otherwise, if the secret is equal to 0, nomem-
ory operations are performed by the interference gadget. Once the
interference target becomes ready to execute, if the secret was 1 it
will be further delayed, otherwise, if the secret was 0, it will be exe-
cuted unhindered. This difference in behavior can lead to informa-
tion leakage as it can affect the order of the interference target with
respect to other loads, and thus affect the cache replacement state.

3 ROB-CONTENTION: AN FSI ATTACK THAT BREAKS

SPECULATIVE INVARIANCE

Speculation invariance allows (bound-to-commit) speculative
instructions to be executedwithout defenses before the speculation is
verified. In this respect, speculation-invariant instructions behave the
same as the corresponding instructions in an unprotected processor.

In Backward Speculative Interference, the interference gadget
delays the execution of the interference target, a bound-to-commit
instruction that is placed prior to the speculation. In Forward Specu-
lative Interference, the interference gadget instead interferes with a
bound-to-commit speculation-invariant instruction, which is exe-
cuted while still under speculation, unprotected by defense mecha-
nisms like DoM [11] or InvisiSpec [13].

While FSI can take many forms, in this paper we introduce a
novel side-channel based on manipulating ROB contention. To the
best of our knowledge, this has not been explored previously. The
ROB side-channel can be used to construct new Spectre [7] variants
on unprotected processors, but more importantly, it can break
InvarSpec approaches [16] that selectively lift defenses of instruc-
tions under speculation. Assuming DoM as the underlying defense
mechanism—other defenses, such as InvisiSpec, are similarly sus-
ceptible—an FSI ROB-contention attack consists of three parts:

1) A branch predictor that is trained to follow the attack path.
2) A secret that is read from the cache (allowed in DoM) and

ROB contention, as a function of the secret value, is added.

Fig. 1. Dependences related to safe set (SS). Fig. 2. Speculation invariant timeline: For instr3 to be considered speculation
invariant, instr2 and instr1 must reach their OSP. Instr4 has no dependences, and
executes immediately under speculation using InvarSpec framework.

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 20, NO. 2, JULY-DECEMBER 2021 163

Authorized licensed use limited to: Uppsala Universitetsbibliotek. Downloaded on November 22,2021 at 10:12:53 UTC from IEEE Xplore. Restrictions apply.

3) A speculation-invariant target instruction that resides just
after the reconvergence point and that is executed with the
DoM protections lifted. We initialize the speculation-invari-
ant instruction with an empty safe set, i.e., a set that
has no dependencies and can execute immediately when it
becomes ready.

Depending on the contention-induced delay, and thus on the
secret value, the speculation invariant target instruction will be
affected in terms of when it will be ready to execute. For example,
when the secret is equal to 1, we add extra ROB contention, in the
form of a loop or a long sequence of spurious instructions. As a
result, the ROB is filled with speculative instructions, which pre-
vents the speculation-invariant target instruction from even
entering the ROB and executing. On the other hand, the path fol-
lowed when the secret is 0 behaves normally, enabling the specu-
lation-invariant target instruction to execute when it enters the
ROB. Since InvarSpec has lifted the defenses from the instruction,
any side-effects caused by its execution will remain observable
even after the misspeculation has been detected and squashed,
making it possible to infer the secret value outside of the specula-
tive window.

While the FSI ROB-contention attack shares some similarities
with the GI

RS speculative interference attack, described by Behnia
et al. [5], it is distinctly different in a number of ways: First, in con-
trast to GI

RS , ROB-contention manipulates the execution of bound-
to-commit loads (which lie after the reconvergence point) rather
than instruction fetch. As such, ROB-contention directly affects
mitigations such as DoM or InvisiSpec (when combined with
InvarSpec) that aim to protect data caches from leaking information,
which is not a concern with GI

RS : G
I
RS uses the instruction cache

as a side-channel—ROB-contention uses the data cache. Second,
GI

RS must cause a front-end stall to work. ROB-contention works
as long as a target instruction is kept just outside the ROB, which
does not necessarily mean a front-end stall. For example, if the tar-
get instruction is sufficiently far from the reconvergence point, the
front end will keep fetching and decoding instructions from the
reconvergence point onwards.

The technique of identifying the secret can be thought-of as a
version of the Flush&Reload attack [14]. It is shown in Fig. 3 and is
based on testing if data are cached in the L1 cache or not.

To achieve this, we measure the access time of the speculation-
invariant target instruction when the speculation is finally resolved
and the execution continues from the correct path. While on the
misspeculated attack path, whether the load instruction at the
reconvergence point will be executed depends on which path the
speculative execution followed, i.e., it depends on if the secret is 0
or 1. Then, on the correct path, the time it takes to execute the load
will change depending on if the data was loaded by the attack
path, thus making it possible to infer the secret value.

The attack starts by ensuring that the address of the specula-
tion-invariant target instruction is flushed from the cache. If the
secret is equal to 1 then the speculative-invariant target instruction
is never executed along the incorrect path. Once the speculation is
resolved and the correct path is taken a load with the same address
as the speculative-invariant target instruction will miss in the cache
and experience a long delay. If the secret is equal to 0 then the spec-
ulative-invariant target instruction is executed in the incorrect path
and the load in the correct path will hit in the cache and experience
a short delay.

4 ROB ATTACK USING REP INSTRUCTIONS

An FSI ROB-contention attack requires filling the ROB with specu-
lative instructions. While either a tight loop, or a long sequence of
spurious instructions, fit the bill for this purpose, interestingly, one
can achieve the same result with a single static instruction. In the x86
ISA, REP is a prefix that can be used before string instructions. It
creates a single-instruction loop, with the value stored in the ECX

register acting as the loop counter.
The key property that enables a single REP instruction to affect

ROB contention is that it unrolls as a mop loop in the microarchitec-
ture, at decode time [1]. ROB occupancy becomes a function of ECX.

According to empirical studies [1], [2], REP-prefixed x86
instructions expand into a number of mops in the ROB.

The following table lists the mop expansion (number of mops
generated with ECX==n) in the ROB for two typical REP instruc-
tions and for some well-known microarchitectures—similar expan-
sion takes place for the majority of x86 microarchitectures [1].

Furthermore, we ascertain that the REP movs instruction
expands speculatively on a Sandy Bridge microarchitecture. We
tested this scenario by giving ECX various values, after a specula-
tion point, followed by a REP instruction (as in the code shown
in Fig. 3). By timing the code, we observe that the REP instruction,
indeed, expands speculatively into a number of mops that is pro-
portional to ECX.

To mount a ROB attack with REP instructions (Fig. 3), we use
the speculatively-accessed secret to update the ECX register, which
then controls the number of mops that are dispatched to the ROB.
To create a large enough repetition factor, we left-shift the secret
by, e.g., ten places (if the secret is zero, it does not change). This
value is passed to ECX which subsequently drives a REP movs

instruction to selectively flood the ROB with up to 2n mops.

5 ATTACK DEMO AND EXPERIMENTAL RESULTS

We implemented our FSI attack on actual hardware. While DoM
defenses and InvarSpec are not implemented, we can see the effects
of the attack in an unprotected core, which behaves the same as a
protected core with respect to speculative-invariant instructions.
We evaluated our results on an Intel� CoreTM i7-2600K, which is a
Sandy Bridge microarchitecture, running at up to 3.40GHz. The
processor has 4 cores (2 SMT threads per core, for 8 threads in total)
and 3 cache levels. Each core has a 32KiB L1 Cache and a 256KiB L2
Cache, and all cores share an 8MiB LLC.

The overall structure of the attack demo is illustrated in Fig. 3.
We report on the results for the timing-load variant on a real sys-
tem. Before we follow the attack path, all load addresses are
flushed from the cache. The branch predictor is trained so that it

Fig. 3. Abusing InvarSpec with forward speculative interference using REP
instruction.

Instr./Proc. Haswell Broadwell Skylake IceLake

rep movs 2n 2n 2n 2n
rep lods 5n+12 5n+12 5n+12 5n+12

164 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 20, NO. 2, JULY-DECEMBER 2021

Authorized licensed use limited to: Uppsala Universitetsbibliotek. Downloaded on November 22,2021 at 10:12:53 UTC from IEEE Xplore. Restrictions apply.

will always mispredict and follow the attack path. The secret value
is already cached in the L1. Depending on the secret, ROB conten-
tion is added, so that speculation invariant instruction

(line 16) will be delayed. If secret==1, delay from ROB con-
tention will be sufficient for speculation to be verified before
speculation invariant instructions (line 16) executes.
If secret==0, no delay is applied and speculation invariant

instruction (line 16) is executed as soon as possible.
Fig. 4a shows the results across all 1000 attempts. Fig. 4b illus-

trates the average cycles every 100 repetitions. We show, that when
repeating the attack, the results diverge, making it easier to identify
the secret: An average load when secret==0 is 170 cycles. On the
other hand, when secret==1 an average load is 260 cycles.

Our results show that, clearly, forward speculative interference and
ROB-contention work successfully in actual processors, and consti-
tute a new side-channel that can be used to construct Spectre-type
attacks. Because the speculation-invariant instructions behave the
same as instructions from the re-convergence path in unprotected
processors, FSI ROB-contention poses a significant threat when we
want to lift defenses for speculation-invariant instructions.

6 CONCLUSION

In this work, we present a new side-channel, based on ROB conten-
tion, and a new speculative execution attack (ROB-contention attack)
using this side-channel. The attack is achieved through FSI, i.e., spec-
ulative instructions interfering with younger instructions that are
bound to commit regardless of the speculation outcome. For this rea-
son, techniques, such as the InvarSpec framework, that lift the
defenses for such bound-to-commit instructions, are susceptible to
the same attack and can leak speculatively accessed information.

REFERENCES

[1] F. Agner, “Instruction tables,” May 2021, [Online]. Available: https://
www.agner.org/optimize/instruction_tables.pdf

[2] F. Agner, “Themicroarchitecture of intel, amd, and via cpus: An optimization
guide for assembly programmers and compiler makers,” May 2021, [Online].
Available: https://www.agner.org/optimize/microarchitecture.pdf

[3] S. Ainsworth and T. M. Jones, “MuonTrap: Preventing cross-domain spec-
tre-like attacks by capturing speculative state,” in Proc. Int. Symp. Comput.
Archit., 2020, pp. 132–144.

[4] K. Barber, A. Bacha, L. Zhou, Y. Zhang, and R. Teodorescu, “SpecShield:
Shielding speculative data from microarchitectural covert channels,” in
Proc. Int. Conf. Parallel Architectural Compilation Techn., 2019, pp. 151–164.

[5] M. Behnia et al., “Speculative interference attacks: Breaking invisible specu-
lation schemes,” in Proc. 26th ACM Int. Conf. Architectural Support Program.
Lang. Oper. Syst., 2021, pp. 1046–1060.

[6] K.N. Khasawneh, E.M.Koruyeh, C. Song,D. Evtyushkin, D. Ponomarev, and
N. Abu-Ghazaleh , “SafeSpec: Banishing the spectre of a meltdownwith leak-
age-free speculation,” inProc. ACM/IEEEDes. Automat. Conf., 2019, pp. 1–6.

[7] P. Kocher et al., “Spectre attacks: Exploiting speculative execution,” in Proc.
IEEE Symp. Secur. Privacy, 2019, pp. 19–37.

[8] G. Saileshwar and M. K. Qureshi, “CleanupSpec: An ”undo” approach
to safe speculation,” in Proc. ACM/IEEE Int. Symp. Microarchit., 2019,
pp. 73–86. [Online]. Available: http://doi.acm.org/10.1145/3352460.3358314

[9] C. Sakalis, S. Kaxiras,A. Ros, A. Jimborean, andM. Sj€alander, “Understanding
selective delay as a method for efficient secure speculative execution,” IEEE
Trans. Comput., vol. 69, no. 11, pp. 1584–1595, Nov. 2020.

[10] C. Sakalis, M. Alipour, A. Ros, A. Jimborean, S. Kaxiras, and S. Magnus,
“Ghost loads: What is the cost of invisible speculation?,” in Proc. ACM Int.
Conf. Comput. Front., 2019, pp. 153–163.

[11] C. Sakalis, S. Kaxiras, A. Ros, A. Jimborean, and M. Sj€alander, “Efficient
invisible speculative execution through selective delay and value pre-
diction,” in Proc. Int. Symp. Comput. Archit., 2019, pp. 723–735.

[12] M. Taram, A. Venkat, and D. Tullsen, “ Context-sensitive fencing: Securing
speculative execution via microcode customization,” in Proc. Architectural
Support Program. Lang. Oper. Syst., 2019, pp. 395–410.

[13] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. W. Fletcher, and J. Torrellas,
“InvisiSpec: Making speculative execution invisible in the cache hier-
archy,” in Proc. ACM/IEEE Int. Symp. Microarchit., 2018, pp. 428–441.

[14] Y. Yarom and K. Falkner, “FLUSH+ RELOAD: A high resolution, low
noise, l3 cache side-channel attack,” in Proc. USENIX Secur. Symp., 2014,
pp. 719–732. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity14/technical-sessions/presentation/yarom

[15] J. Yu, M. Yan, A. Khyzha, A. Morrison, J. Torrellas, and C. W. Fletcher,
“Speculative taint tracking (STT): A comprehensive protection for specul-
atively accesseddata,” inProc. ACM/IEEE Int. Symp.Microarchit., 2019, pp. 954–
968. [Online]. Available: http://doi.acm.org/10.1145/3352460.3358274

[16] Z. N. Zhao et al., “Speculation invariance (invarSpec): Faster safe execution
through program analysis,” in Proc. 53rd Annu. IEEE/ACM Int. Symp.
Microarchit., 2020, pp. 1138–1152.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Fig. 4. Speculation Invariant access latency, in cycles, leaking the secret.

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 20, NO. 2, JULY-DECEMBER 2021 165

Authorized licensed use limited to: Uppsala Universitetsbibliotek. Downloaded on November 22,2021 at 10:12:53 UTC from IEEE Xplore. Restrictions apply.

https://www.agner.org/optimize/instruction_tables.pdf
https://www.agner.org/optimize/instruction_tables.pdf
https://www.agner.org/optimize/microarchitecture.pdf
http://doi.acm.org/10.1145/3352460.3358314
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
http://doi.acm.org/10.1145/3352460.3358274

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

