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Abstract
We consider parameterized verification, i.e., proving correctness of a system with an unbounded
number of processes. We describe the method of view abstraction whose aim is to provide a small
model property, i.e., showing correctness by only inspecting instances of the system consisting
of a small fixed number of processes. We illustrate the method through an application to the
classical Burns’ mutual exclusion protocol.
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1 Introduction

The behavior of many types of systems can be described using one or more parameters such
as the number of processes, or the sizes of the data structures that the system uses. The
goal of parameterized verification is to prove (or refute) the correctness of the system for
all values of the parameters. There are numerous applications where parameterized systems
arise naturally:

Number of processes. In a mutual exclusion protocol, an arbitrary number of processes
may participate in a given session of the protocol. In a cache coherence protocol, an
arbitrary number of threads may share a cache line. In a Petri net, there is no bound on
the number of tokens that are generated during a run of the net.
Sizes of data structures. The behaviors of recursive programs can be captured using
unbounded stacks [18]. Data link protocols can be modeled by processes communicating
through unbounded FIFO queues [8]. The latter have also recently been used to encode
the behavior of programs running on weak memory models such tso, pso, and power
[12, 2, 28].
Multiple parameters. Timed Petri Nets (TPN) [10] extend the model of Petri nets by
equipping each token with a real-valued clock. A TPN induces a system that is infinite
in two dimensions. More precisely, a run of a TPN may generate an unbounded number
of tokens each of which is a real-valued clock. The implementations of concurrent stacks,
queues, and sets are infinite in three dimensions [5]. First, an unbounded number of
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2 View Abstraction – A Tutorial

threads may operate on the data structure. Furthermore, there is no bound on the size
of the data structure. Finally, the values stored inside the data structure are usually
fetched from an infinite domain such as the set of integers.

In this tutorial, we concentrate on systems where the parameterization arises due to the
number of processes. This class of systems can itself be divided into several subclasses
depending on the following three parameters.

Processes. The processes may be finite-state or infinite-state. Even in the case of finite-
state processes, the state space of the system is unbounded. This is true since the state
space contains all states we get as we vary the parameter (size of the system). The
individual processes may be infinite-state since they may operate on variables ranging
over infinite domains (e.g., the natural numbers). In such a case we get a state space
that is infinite in two dimensions.

Topology. On the one hand, the system may consist of a set of processes without any
structure. On the other hand, the system topology may have a certain pattern. For
instance, the processes may be organized as a linear array. Then, a process may refer to
its left/right neighbors, or to all the processes to its left/right. The processes may also
be organized in a ring, tree, or a general graph.

Communication Primitives. A simple form of communication is when two processes per-
form a rendezvous which involves both processes changing state simultaneously. Another
form of communication is through shared variables that can be read from and written
to by all/some processes in the system. We may have broadcast transitions where an
arbitrary number of processes change state simultaneously. Furthermore, the transitions
of a process may be conditioned by global conditions. An example of a (universal) global
condition, in a system with linear topology, is that “all processes to the left of a given
process i should satisfy a property φ”. In this case, process i is allowed to perform the
transition only in the case where all processes with indices j < i satisfy φ.

In this paper, we consider a class of systems where we have finite-state processes that are
organized in a linear array. The processes communicate through global transitions. For such
systems, we consider the verification of safety properties. Intuitively, a safety property states
that nothing bad will happen during the execution of the system. For a a mutual exclusion
protocol, a typical safety property is that no two processes should be in their critical sections
at the same time. Checking a given safety property reduces to checking the reachability of
a set of bad configurations, namely those that violate the property.

The work of this tutorial is based on the ideas presented in [4] that introduces view
abstraction. View abstraction is inspired by strong empirical evidence that parameterized
systems often enjoy a small model property. More precisely, it analyzes only a small number
of processes (rather than the whole family) and shows that this is sufficient to capture the
(un)reachability of bad configurations. On the one hand, bad configurations can often be
characterized by minimal conditions that are possible to specify through a fixed number of
witness processes. For instance, in a mutual exclusion protocol, a bad configuration contains
two processes in their critical sections; and in a cache coherence protocol, a bad configuration
contains two cache lines in their exclusive states. In both cases, having the two witnesses is
sufficient to make the configuration bad (regardless of the actual size of the configuration).
On the other hand, it is usually the case that such bad patterns (if existing) appear already
in small instances of the system. View abstraction shows also that it is often the case that
correctness can be established by only inspecting a small number of processes. We illustrate
the method through an application to the classical Burns’ mutual exclusion protocol.
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Figure 1 A process in Burns’ Protocol.

Related Work.

Regular model checking [24, 15] performs parameterized verification by encoding the set of
configurations using finite-state automata. The method has been augmented with techniques
such as widening [13, 29], abstraction [14], and acceleration [9]. All these works rely on
computing the transitive closure of transducers or on iterating them on regular languages.

There are numerous techniques less general than regular model checking, but that are
lighter and more dedicated to the problem of parameterized verification. The idea of counter
abstraction is to keep track of the number of processes which satisfy a certain property [22,
16, 17, 27]. In general, counter abstraction is designed for systems with unstructured or
clique architectures, but may be used for systems with other topologies too.

Several works reduce parameterized verification to the verification of finite-state models.
Among these, the invisible invariants method [11, 26] and the work of [25] exploit cut-off
properties to check invariants for mutual exclusion protocols.

Monotonic abstraction [6, 7, 30] combines regular model checking with abstraction in
order to produce systems that have monotonic behaviors wrt. a well quasi-ordering on the
state-space. The method of [21, 20] and its reformulated, generic version of [19] come
with a complete method for well-quasi ordered systems which is an alternative to backward
reachability analysis based on a forward exploration.

Parameterized systems whose behaviors are conditioned by time or data constraints are
described in [3, 1].

2 Model

We consider parameterized systems where the processes are modeled as finite-state auto-
mata arranged in a linear array. The processes may perform local or global (existential or
universal) transitions. We illustrate our model through the classical Burns’ protocol.

2.1 Processes
A process in Burns’ protocol, depicted in Fig. 1, is defined by a finite-state automaton. The
automaton has six states, namely , , , , , and . The process starts its execution
form the initial state , and tries to reach its critical section . The automaton contains
three types of transitions. From the state , the process can perform the local transition
t1 in which it changes state to regardless of the states of the other processes. From
the state , the process can perform the existential global transition t7 in which it changes
state to provided that there exists a process to its left (and hence the notation ∃L) whose
state is either , , or . From the state , the process can also perform the universal
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Figure 2 Parameterized Burns’ Protocol.

Figure 3 A configuration.

t3

Figure 4 A local transition.

global transition t2 in which it changes state to provided that the states of all processes
to its left (and hence the notation ∀L) are either , , or . A process starts its execution
from (state) and can immediately cross to . At it looks left and performs a test
where it checks whether all processes to its left are in one of the states , , or . If the
test succeeds it crosses to ; otherwise it goes back to the initial state . Form it can
perform a local transition and move to . At , the process looks left again and performs
the same test as before. If successful, it will now move to . At , the process now looks
right, and checks whether all processes to its right are in one of the states , , or . If
the test succeeds it crosses to its critical section , from which it can go back to the initial
state .

The parameterized version of Burns’ protocol (Fig. 2) consists of an arbitrary number of
processes. The goal is to show that if we start from a configuration where all the processes
are in state then it is not possible to reach a configuration where two or more processes
are in state .

2.2 Transition System
We define the transition system induced by the parameterized version of Burns’ protocol.
More precisely, we define the set of configurations and the transition relation.

A configuration gives the states of the processes in a given instance of the system. A
configuration in Burns’ protocol is depicted in Fig. 3, corresponding to an instance of the
system with four processes that are in states , , , and respectively. Notice that the
set of configurations is infinite since there is no bound of the number of processes.

The transition relation is induced on the set of configurations by the above mentioned
three types of transitions. When performing a transition, a process, called the active process
changes state while the other processes remain passive (although their states may help
enable/disable the move of the active process).

Fig. 4 depicts a local transition, where the active process performs t3 and changes state
from to while the states of the other processes remain unchanged.

An existential global transition is shown in Fig. 5. Here, the active process performs t7
and changes state from to . The transition is enabled since there is a witness in state

(marked by a green arrow). On the other hand, in Fig. 6, the transition is not enabled
since there is no witness with the appropriate state to the left of the active process.

A universal global transition is shown in Fig. 7. The active process performs t5 and
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Figure 5 An existential transition.
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Figure 6 A disabled existential transition.

t5

Figure 7 A universal transition.

t5

Figure 8 A disabled universal transition.

changes state from to . The transition is enabled since all processes to the right of the
active process (marked by green arrows) are in one of the states , , or , as required
by the condition of the transition. In Fig. 8, the same transition is not enabled since there
is one process in state to the right of the active process (thus violating the condition of
the transition).

For a configuration c, we use post(c) to be the set of configurations that we can reach
from c through the application of a single transition.

2.3 Safety Properties
Checking a safety property amount to checking whether an instance of the system, starting
from an initial configuration, can reach a bad configuration through repeated applications of
the post operator.

In Burns’ protocol, an initial configuration (Fig. 9) contains only processes in the state
. The set Init of initial configurations is infinite since there is one initial configuration

for each size of the system. the set Init can be characterized by a (very simple) regular
expression, namely

( )+
, i.e., one or more processes in state .

A bad configuration (Fig. 10) is one which contains two or more processes in their
critical sections (in state ). This set Bad of bad configurations is also infinite. The set Bad
upward closed wrt. the subword relation. Here, we say that a configuration c1 is subword of a
configuration c2 if c1 occurs (not necessarily contiguously) in c2. Obviously if a configuration
contains at least two processes in state then any larger configuration (wrt. the subword
relation) will also contain at least two processes in state , and hence belongs to the set
of bad configurations. In fact, the set Bad is often characterized by its (finite) set Badmin
of minimal elements. In the case of Burns’ protocol, Badmin is the singleton containing the

configuration .
Mutual exclusion is a safety property. Checking it amounts to checking whether there is
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Figure 9 The set of initial configurations.
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Figure 10 examples of bad configurations.

a sequence of transition that leads from an initial configuration to a bad configuration.

3 Verification

We describe a scheme that allows to carry out parameterized verification automatically. The
scheme consists of two procedures that can be performed in parallel, independently of each
other. The first procedure is an under-approximation of the set of reachable configurations
that is performed in the concrete domain. The second procedure is an over-approximation
that is based on view abstraction. Both procedures are parameterized by a natural number
k ≥ 1 that defines the degree of the precision of the approximation.

3.1 Under-approximation
For a given k ∈ N, we perform reachability analysis on the set of configurations of size
k (Fig. 11). We start from the initial configuration of size k and generate all reachable
configurations Rk of size k. This amounts to performing standard reachability analysis on
a finite-state system since there are only finitely many configurations of size k. We can
inspect Rk and search for bad configurations. We start from k = 1, and increase the value
of k successively. If there is a bad configuration (of some size k) that is reachable, then it
will be detected by the under-approximation procedure when inspecting Rk. Consequently,
if the system does not satisfy the safety property then this will be reported by the under-
approximation procedure. However, the procedure is not able to prove correctness of the
system, since this would require computing Rk for all k ∈ N.

3.2 Over-approximation
The over-approximation procedure is based on an abstract interpretation scheme, called view
abstraction, that is parameterized by a natural number k ∈ N. The concrete domain consists
of the configurations of the system, while the abstract domain consists of objects that we
call views. As we shall see below, each view is a subword of a configuration. We define an
abstraction function αk, a concretization function γk, and an abstract post operator Apostk,
all of which are parameterized by k.
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Figure 11 The under-approximation procedure.

For a configuration c, the abstraction αk(c) is the set of views (subwords of c) of size up
to k (Fig. 12). For a set C of configurations, we define αk(C) := ∪c∈Cαk(c). Consider a set
of views of size up to k such that X is downward closed, i.e., if X contains a view x then
each subword of x is also included in X. We define the concretization γk(X) of X to be the
set of configurations c such that that αk(c) ⊆ X, i.e. all members of the the abstraction of
c are included in X (see Fig. 13.) Notice that, even for a finite set X and for a fixed k ∈ N,
the set γk(X) is in general infinite (as is the case with γ2(X) in Fig. 13).

For k ∈ N, we define the abstract post operator Apost such that for a set of views
of size up to k, we have Apostk(X) := αk(post(γk(X))). In other words, we first take the
concretization ofX, then apply the concrete post operator, and finally take the abstraction of
the result. We will preform reachability analysis on the set of views using a fixpoint iteration,
parameterized with k ∈ N. More precisely, we define the set Vk := µX.αk(Init)∪Apostk(X).
Before we describe how we compute Vk, we will give two of its properties (illustrated in
Fig. 14). Let R be the set of reachable configurations. First, the concretization of Vk is an
over-approximation of R, i.e., R ⊆ γk(Vk) for all k ∈ N. Furthermore, the precision of the
abstraction increases with k in the sense that γk+1(Vk+1) ⊆ γk(Vk) for all k ∈ N. We use
these two properties to define the following scheme for proving correctness of the system.
Suppose that the system is correct, i.e., R ∩ Bad = ∅. We consider the sequence of sets
γ1(V1) ⊇ γ2(V2) ⊇ γ3(V3) ⊇ · · · . We start with γ1(V1) and check whether γ1(V1) ∩ Bad = ∅.
If the answer is positive then we know that the system is correct (since R ⊆ γk(Vk) and
hence R∩Bad = ∅.) On the other hand, if γ1(V1)∩Bad 6= ∅ (which is the case in Fig.14) then
we are not sure whether R ∩ Bad 6= ∅ holds or not. Therefore, we increase k and repeat the
procedure for γ2(V2). In Fig. 14, the intersection γ2(V2)∩ Bad is still not empty. Therefore,
we increase k yet again. The procedure will terminate if and when we reach a k where
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Figure 13 Concretization of a set of views.
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Figure 14 Abstract Analysis.

γk(Vk) ∩ Bad = ∅. In Fig. 14 such a k exists and k = 3.
Computing Apostk(X) efficiently is not straightforward. The reason is that the set γk(X)

is in general infinite even if the set of views X is finite. We solve this problem by showing
that we only need to perform a simpler operation Apostk+1

k (X). For 1 ≤ ` ≤ k, we define
Apost`

k(X) := αk(post(γ`
k(X))), where γ`

k(X) is the subset of γk(X) containing only views
of size up to `. Notice that for any ` (and in particular for ` = k+ 1), the set γ`

k(X) is finite
and (easily) computable. We will illustrate why Apostk(X) = Apostk+1

k (X) through the
following example which shows a part of computing Apost2(X). Assume that X contains

(among others) the views , , and . We first compute the set γ3
2(X),

i.e., we include all members of the concretization of X of size up to 3. For instance, the

configuration is a member of γ3
2(X). Then, we apply the concrete post operator

post on the set γ3
2(X). In particular we apply post on the configuration . For

instance, if the active process is then transition t8 is enabled due to the existence of
the witness to the left of the active process. As a result, we obtain the configuration

. Finally, we apply the abstraction α2, obtaining, among others, the new views

and . In particular, the latter view was obtained from the view which
was part of X, through applying the transition t8. There are two interesting aspects of this
transition to observe. First, the transition needed the witness which was not part of the
original view. Second, the witness consists of a single process. Thus, in order to derive the

new view we needed to add one extra process in order to accommodate the witness.
This explains the reason why we need to consider concrete configurations of larger sizes than
the views (to ensure the inclusion the witnesses), but also the reason why we need to only
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Figure 15 Abstract Analysis.

consider configurations whose sizes are larger by one (since witnesses are of size one).

3.3 Scheme
Our verification scheme consists of performing a number of iterations, where each iteration
corresponds to a particular value of k ∈ N (Fig. 15). We start with k = 1. During each
iteration, we run the under- and over-approximation procedures for the given value of k. If
the under-approximation procedure is conclusive, i.e., Rk ∩ Bad 6= ∅ then we terminate and
declare the system unsafe. Otherwise, we run the over-approximation procedure to compute
Vk. If this is conclusive, i.e., Vk ∩ Bad = ∅ then we terminate and declare the system
safe. Notice that if either of the two procedures is conclusive then the current k is a cut-
off point beyond which we need not continue (since we have either concluded correctness
or incorrectness of the system). If none of the procedures is conclusive, we increase the
precision, by increasing the value of k, and perform the next iteration.

We show how to perform each operation that is required for implement the scheme.
Checking whether Rk∩Bad 6= ∅. As mentioned above, computing Rk amount to perform-
ing reachability analysis on a finite-state system. Furthermore, to check Rk ∩ Bad 6= ∅
we need only to consider elements of Bad whose sizes are up to k. The latter is finite and
easily computable since Bad is upward closed. Thus, we need to consider the intersection
of two finite sets.
Computing Vk. We can compute the fixpoint as follows.

Since the set of initial configurations Init is regular, computing αk(Init), for any
k ∈ N, amounts to generating the subwords of members of Init of size up to k. This
is a task that can accomplished using simple automata operations.
As mentioned above, for a given set of viewsX, we need only to compute Apostk+1

k (X)
rather than Apostk(X). The former can be computed as follows: (i) we compute the
finite set of configurations C := γk+1

k (X) by matching the different members of X. (ii)
We compute the set C ′ := post(C) by applying the transition relation on C. Notice
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that C ′ is finite. (iii) We compute the finite set of views V ′ := αk(C ′) which amounts
to computing the abstraction of a finite set.

Checking whether Vk ∩ Bad = ∅. This amounts to checking whether there is a minimal
configuration c in Bad (i.e., c ∈ Badmin) such that αk(c) ⊆ Vk. Recall that Badmin is
finite and given, and hence we can perform the test by systematically going through all
members of Badmin.

4 Application

We illustrate the verification scheme by applying it to Burns’ protocol.

Iteration 1: Under-Approximation.

We start from the initial configuration of size one. The set R1 of reachable configurations
of size one can be shown to contain all configurations of size one. However, none of these
configurations belongs to Bad since each member of Bad contains at least two processes (in
state ). Hence, the under-approximation scheme is inconclusive for k = 1.

Iteration 1: Over-approximation.

The set α1(Init) contains a single view, namely . This will be added to V1. In order
to compute the fixpoint, we apply Apost2

1 repeatedly. Let us consider its first application.

The set γ2
1 contains the two configurations and . Applying post to these two

configurations gives the configurations , , and . Applying α2 on the derived

set of configurations gives the set containing the two views and that will now be
added to V1. Applying Apost2

1 repeatedly in this manner will yield the set of all views of
size one. Applying γ2 to this set gives the set of all configurations, and in particular this set
will intersect with the set Bad. Therefore, the over-approximation scheme is inconclusive for
k = 1.

Iteration 2: Under-Approximation.

We start from the initial configuration of size two. The set R2 of reachable config-
urations of size two can be computed using finite-state reachability analysis. We leave the
computation of the set (as an easy exercise) to the reader. None of the configurations in R2
belongs to Bad, and hence, the under-approximation scheme is inconclusive also for k = 2.

Iteration 2: Over-approximation.

The set α2(Init) contains the two views and . Thus, these views will be added
to V2. In order to compute the fixpoint, we apply Apost3

2 repeatedly. Let us consider its first

application. The set γ3
2 contains the configurations , , and . Applying

post to these three configurations gives the configurations , , , ,

, and . Applying α2 to the derived set of configurations gives the set
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containing the views , , , , and . Applying Apost3
2 repeatedly

will yield the set of all views of size two except the views and . In particular,
the absence of the second view implies that applying γ2 gives a set of configurations that
does not intersect with the set Bad. This means that we can terminate and conclude that
the system is safe. Notice that the cut-off point for Burns’ protocol is k = 2.

5 Completeness

We will give examples of systems for which our method is complete (for which the scheme
is guaranteed to terminate). First, we give the definitions of upward and downward closed
sets, and then give a sufficient condition that guarantees termination. Finally, we describe
a class of systems, namely monotonic systems, that satisfy the condition.

5.1 Downward and Upward Closed Sets
Let � be the subword relation on configurations. The relation � is a well quasi-ordering [23]:
for any infinite sequence c0, c1, c2, . . . of configurations, there are i < j such that ci � cj . A
set D of configurations is said to be downward closed if c1 ∈ D and c2 � c1 implies c2 ∈ D. A
set U of configurations is said to be upward closed if c1 ∈ U and c1 � c2 implies c2 ∈ U . For
a set C of configurations, we define C ↑:= {c2 | ∃c1 ∈ C. c1 � c2} to be the upward closure of
C. Let min(C) be the set of minimal elements of C. The set min(C) is always finite. Notice
that, for an upward closed set U , we have that U ↑= U , and that U can be characterized by
its minimal elements in the sense that U = min(U) ↑. For instance, the set Bad in Burns’

protocol is upward closed, and min(Bad) is a singleton containing the configuration .
Observe that the complement ¬D of a downward closed set D is upward closed, and vice
versa.

5.2 Sufficient Condition
Let D be a set of configuration. We say that D is a good downward closed invariant if
it satisfies the following conditions: (i) downward closed: D is downward closed; and (ii)
invariant: D is inductive, i.e., D contains the set Init of initial configuration, and D is
closed under the application of the transition relation (for any c ∈ D, a transition from c

leads to a configuration inside D again.) (iii) good: D∩Bad = ∅. If D satisfies conditions (i)
and (ii) then we can show that there is a k such that γk(Vk) ⊆ D. In fact, we can define k to
be the size of a largest configuration in min(¬D), i.e., the size of a largest configuration in
the minimal set of configurations in the complement of D. Recall that ¬D is upward closed.
If D also satisfies condition (iii) then the over-approximation procedure is guaranteed to
terminate. More precisely, D ∩ Bad = ∅ implies that γk(Vk) ∩ Bad = ∅, which means that
the procedure declares correctness of the system at step k (if not earlier). As a side remark,
notice also that if the set R of reachable configurations is downward closed then γk(Vk) = R

for some k (we know from the previous section that R ⊆ γk(Vk) for all k.)
We will motivate that if R is downward closed then our procedure is guaranteed to

terminate implying its completeness. We consider two cases. If R∩ Bad 6= ∅, then there is a
k such that Rk∩Bad 6= ∅ and the under-approximation procedure declares the system unsafe
during the kth iteration. If R ∩ Bad 6= ∅ then since R is an invariant, i.e., it satisfies the
conditions (i), (ii), and (iii), and hence the over-approximation procedure will terminate.
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In the case of Burns’ protocol, the set R is characterized by the regular expression(
+ + + +

)∗
·
(

+ ε
)
·
(

+ + +
)∗

. Our method will not
compute this regular expression explicitly. However, the language of the expression is

downward-closed and is equal to the set ¬
{

,
}
↑. The size of the largest

elements in the set of minimal configurations is equal to 2, which explains why the over-
approximation procedure terminates at k = 2 for Burns’ protocol.

5.3 Monotonic Systems
A system is said to be monotonic if, for all configurations c1, c2, c3, whenever c2 ∈ post(c1)
and c1 � c3 then there is a configurations c4 such that c2 � c4 and c4 ∈ post(c3). In other
words, the relation � is a simulation wrt. the transition relation. For monotonic systems,
it is the case that R ∩ Bad = ∅ iff R ↓ ∩Bad = ∅. This follows from the assumption that
Bad is an upward closed set. Therefore, taking the downward closure of the set of reachable
configurations does not cause any imprecision. This means that we can work with a new
transition relation in which we allow the system to be lossy: a configuration may, at any
point of time, lose an arbitrary number of processes. The new transition relation will reach
Bad if and only if the old one does. Furthermore, the new set of reachable configurations is
downward closed which means that our procedure is guaranteed to terminate. In fact, there
is a wide class of systems that induce transition relations that are monotonic with respect
to a well quasi-ordering. Our scheme is complete for such systems. Examples include lossy
channel systems [8], Petri nets (our procedure solves the coverability problem for them),
timed Petri nets [10], etc.

6 Conclusion

We have presented a method for automatic verification of parameterized systems. The
method proves or refutes whether a given safety property is satisfied by only inspecting
small instances of the system. More precisely, we run two procedures in parallel. The
first computes the (finite) set of reachable configurations of size up k for some natural
number k. The second procedure carries out an abstract interpretation scheme, called view
abstraction, in which precision is defined (and can be increased) using a natural number k.
The latter is guaranteed to terminate in case there is a good invariant that is downward
closed. This implies that the whole method is guaranteed to terminate in case the set of
reachable configurations is downward closed and hence that termination is guaranteed in
case the transition relation is monotonic on the set of configurations.

The framework can be extended in a straightforward manner to other types of topologies
such as multisets, rings, and trees, and also extended to the case where global transitions
are not assumed to happen atomically [4].
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