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Abstract. We study computational properties of conformon P-systems,an exten-
sion of P-systems in which symbol objects are labelled by their current amount
of energy. We focus here our attention to decision problems like reachability and
coverability of a configuration and give positive and negative results for the full
model and for some of its fragments. Furthermore, we investigate the relation be-
tween conformon P-systems and other concurrency models like nested Petri nets
andconstrained multiset rewriting systems.

1 Introduction

P-systems [10] are a basic model of the living cell defined by aset of hierarchically
organized membranes and by rules that dynamically distribute elementary objects in
the component membranes. Conformon P-Systems [5] are an extension of P-systems in
which symbol objects (conformons) are labelled with their current amount of energy. In
a conformon P-system membranes are organized into a directed graph. Furthermore, a
symbol object is a pair name-value, where name ranges over a given alphabet, and value
is a natural number. The value associated to a conformon denotes its current amount of
energy. Conformon P-systems provide rules for the exchangeof energy from a con-
formon to another and for passing through membranes. Passage rules are conditioned
by predicates defined over the values of conformons. In [6] Frisco and Corne applied
conformon P-systems to model the dynamics of HIV infection.Concerning the expres-
sive power of conformon P-systems, in [5] Frisco has shown that the model is Turing
equivalent even without the use of priority or maximal parallelism.

In this paper we investigate restricted fragments of conformon P-systems for which
decision problems related to verification of qualitative properties are decidable. We
focus our attention to verification of safety properties anddecision problems like cov-
erability of a configuration [1]. The fragment we consider put some restrictions on the
form of predicates used as conditions of passage rules. Namely, we only admit passage
rules with lower bound constraints as conditions (i.e.p(x) = x ≥ c for c ∈ N). The
resulting fragment, we will refer to asrestricted conformon P-systems, is still interest-
ing as a model of natural processes. Indeed, we can use it to specify systems in which
conformons pass through a membrane when a given amount of energy is reached.

For restricted conformon P-systems, we apply the methodology of [1] to define
an algorithm to decide the coverability problem. This algorithm performs a backward
reachability analysis through the state space of a system. Since in our model the set of
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configurations is infinite, the analysis is made symbolic in order to finitely represent in-
finite sets of configurations. For this purpose, we use the theory of well-quasi orderings
and its application to verification of concurrent systems [1].

In the paper we also investigate the relation between (restricted) conformon P-
systems and other models used in concurrency like Petri nets[11], nested Petri nets
[8], and constrained multiset rewriting systems (CMRS) [2]. Specifically, we show that
conformon P-systems are a special class of nested Petri nets, and restricted P-systems
are a special class of CMRS. This comparison gives us indirect proofs for decidability
of coverability in restricted conformon P-systems that follows from the results obtained
for nested nets and CMRS in [9, 2].

To our knowledge, this is the first work devoted to the analysis of problems like
coverability for conformon P-systems, and to the comparison of the same models with
other concurrency models like nested Petri nets and CMRS.

Plan of the paperIn Section 2 we introduce the conformon P-systems model. In Section
3 we study decision problems like reachability and coverability In Section 4 we compare
conformon P-systems with nested Petri nets and CMRS. Finally, in Section 5 we discuss
related work and address some conclusions.

2 Conformon P-systems

Let V be a finite alphabet andN the set of natural numbers. Aconformonis an element
of V ×N0 whereN0 = N∪{0}, denoted by[X, x]. We will refer toX as thenameof the
conformon[X, x] and tox as itsvalue. In the rest of the paper we work with multisets
of conformons. We use{{a1, . . . , an}} to indicate a multiset with elementsa1, . . . , an,
and symbols⊕ and⊖ to indicate resp. multiset union and difference. We useCV to
denote the set of conformons defined over alphabetV .

Conformons are situated inside a finite set of membranes or regions. LetN be the
set of membrane names. Aconfigurationµ is a tuple (indexed onm) of multisets of
conformons. For simplicity we often assume that membranes are numbered from1 to n

and that configurations are tupled(ξ1, . . . , ξn) whereξi is a multiset of conformons in
CV .

The dynamic behavior of conformons is described via a set of rules of the following
form:

– A creationrule has the forme
⇀
m

A, whereA ∈ V , e ∈ N0, andm ∈ N and defines
the creation of a conformon[A, e] inside membranem. A creation rule for confor-
mon [A, e] in membranem corresponds to a conformon[A, e] with cardinalityω

in [5]. The use of creation rules allows us to obtain a better comparison with other
Petri net models as discussed later in the paper.

– An internal rule has the formA e→
m

B, whereA, B ∈ V , e ∈ N, m ∈ N and defines
the passage of a quantitye of energy from a conformon of typeA to one of typeB
inside membranem.

– A passagerule has the formm
p
→֒n wherem, n ∈ N andp(x) is a monadic predi-

cate of one of the following formsx = a, x > a, x < b for a ∈ N0 andb ∈ N. With
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this rule, a conformon[X, x] insidem can move to membranen if p(x) is satisfied
by the current value ofX .

As in tissue P-systems, the underlying structure of membranes is here a finite graph
whose nodes are the membranes inN and edges are defined by passage rules. We are
ready now for a formal definition of conformon P-systems.

Definition 1 (Conformon P-system).A basic conformon P-system of degreem ≥ 1
with unbounded values(cP-system for short) is a tupleΠ = (V, N, R, µ0), V is a finite
set of conformon names,N is a finite set of membranes names (we assume that each
membrane has a distinct name),R is a set of rules,µ0 is an initial configuration.

Given a configurationµ, we say that an internal ruler = A
e→
m

B is enabled atµ if there
exist a conformon[A, x] ∈ µ(m) and a conformon[B, y] ∈ µ(m) such thatx ≥ e;
we say in this case thatr operates on conformons[A, x] and [B, y] in µ. A passage

rule r = m
p
→֒n is enabled atµ if there exists a conformon[A, x] ∈ µ(m) such that

p(x) is satisfied; we say here thatr operates on conformon[A, x] in µ. Notice that
creation rules are always enabled. The evolution of a conformon P-systemΠ is defined
via a transition relation⇒ defined on configurations as follows. A configurationµ may
evolve toµ′, writtenµ ⇒ µ′, if one of the following conditions is satisfied:

– There exists a ruler = A
e→
m

B in R which is enabled inµ and operates on confor-
mons[A, x] and[B, y], and the following conditions are satisfied:
• µ′(m) = (µ(m) ⊖ {{[A, x], [B, y]}}) ⊕ {{[A, x − e], [B, y + e]}};
• µ′(n) = µ(n) for anyn 6= m.

– There exists a ruler = m
p
→֒n in R which is enabled inµ and operates on confor-

mon[A, x] (i.e.p(x) is true) and the following conditions are satisfied:
• µ′(m) = µ(m) ⊖ {{[A, x]}};
• µ′(n) = µ(n) ⊕ {{[A, x]}};
• µ′(p) = µ(p) for anyp 6= m, n.

– There exists a ruler = e
⇀
m

A in R and the following conditions are satisfied:
• µ′(m) = µ(m) ⊕ {{[A, e]}};
• µ′(p) = µ(p) for anyp 6= m.

In the rest of the paper we use⇒∗ to indicate the reflexive and transitive closure of the
transition relation⇒. Furthermore, we say thatµ evolves intoµ′ if µ ⇒∗ µ′, i.e., there
exists a finite sequence of configurationsµ1, . . . , µr such thatµ = µ1 ⇒ . . . ⇒ µr =
µ′. Furthermore, given a set of configurationsS, the set of successor configurations is
defined as

Post(S) = {µ′ | µ ⇒ µ′, µ ∈ S}

and the set of predecessor configurations is defined as

Pre(S) = {µ′ | µ′ ⇒ µ, µ ∈ S}

Notice that the transition relation⇒ defines an interleaving semantics for acP-system
Π , i.e., only a single rule among those enabled can be fired at each evolution step ofΠ .
This semantics is slightly different from the original semantics in [5] where an arbitrary
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subset of all enable rules can be fired at each evolution step.It is important to remark
however that the two semantics are equivalent with respect to the kind of qualitative
properties (reachability problems) we consider in this paper.

As an example, consider thecP-system with two membranesm1 andm2 andN =

{A, B, C}, and with the rules1
⇀
m1

A, A
1→
m1

B, andm1
p
→֒m2 wherep(x) is defined by

the equalityx = 3. In this model the configurationc = ({{[B, 0]}}, ∅) may evolve as
follows:

c ⇒ ({{[A, 1], [B, 0]}}, ∅) ⇒ ({{[A, 1], [A, 1], [B, 0]}}, ∅) ⇒
({{[A, 1], [A, 1], [A, 1], [B, 0]}}, ∅) ⇒ ({{[A, 1], [A, 1], [A, 0], [B, 1]}}, ∅) ⇒
({{[A, 1], [A, 0], [A, 0], [B, 2]}}, ∅) ⇒ ({{[A, 0], [A, 0], [A, 0], [B, 3]}}, ∅) ⇒
({{[A, 0], [A, 0], [A, 0]}}, {{[B, 3]}})

Finally, notice that both our semantics and Frisco’s semantics in [5] do not require all
enabled rules to be fired simultaneously as in the semantics of P-systems (maximal
parallelism). In general, maximal parallelism and interleaving semantics may lead to
models with different computational power.

3 Qualitative analysis ofcP-systems

In [5] Frisco introduced the class ofcP-systems withbounded valuesin which the only
type of admitted creation rules have the form0⇀

m
A, i.e., the only type of conformons

for which there is no upper bound on the number of occurrencesin reachable config-
urations (finite but unbounded multiplicity) are of the form[A, 0]. In cP-system with
bounded valuesthe total amount of energy in the system is always constant. Thus, with
this restriction, the only dimension of infiniteness of the state-space is the number of oc-
currences of conformons. This kind of restricted systems, saycP-systems with bounded
values, can be represented as Petri nets. Thus, several interesting qualitative properties
like reachability and coverability of a configuration and can be decided for this fragment
of cP-systems.

In the full model the set of configurations reachable from an initial one may be
infinite in two dimensions, i.e., in the number of conformonsoccurring in the membrane
system and in the amount of total energy exchanged in the system. In [5] Frisco has
proved that fullcP-systems are a Turing equivalent model. Despite of the power of the
model, we prove next that a basic qualitative property called reachabilitycan be decided
for full cP-systems. Let us first define the reachability problem.

Definition 2 (Reachability problem).
The reachability problem is defined as follows: Given acP-systemΠ = (V, N, R, µ0)
and a configurationµ1, doesµ0 ⇒∗ µ1 hold?

The following results then hold.

Theorem 1 (Decidability of reachability for full cP-systems).
The reachability problem (w.r.t. relation⇒) is decidable for anycP-system.
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Proof. The proof is based on a reduction of reachability of configuration µ1 in a cP-
systemΠ to reachability in a finite-state system extracted fromΠ and µ1. The re-
duction is based on the following key observation. For two configurationsµ0 andµ1

the setQ of distinct configurations that may occur in all possible evolutions fromµ0

to µ1 is finite. This property is a consequence of the fact that internal and passage
rules maintain constant the total number of conformons and the total amount of en-
ergy of a system (sum of the values of all conformons) whereascreation rules may
only increase both parameters. Thus, the total amount of conformons and of energy
in configurationµ1 gives us an upper boundUC on the possible number of confor-
mons and an upper boundUV on their corresponding values in any evolution fromµ0

to µ1. Based on this observation, it is simple to define a finite-state automataS with
states inQ and transition relationδ defined by instantiating the rules inR over the el-
ements inS. As an example, ifV = {A, B}, N = {m, n}, UC = 10 andUV = 4

andR contains the ruler = A
2→
m

B. Then, we have to consider a finite state automa-
ton in which the states are all possible multisets of at most10 elements taken from
the alphabetΣ = {[X, n] | X ∈ V, 0 ≤ n ≤ 4}. The ruler generates a transition
relation δ that put in relations two statesq and q′ iff q contains a pair of elements
[A, a], [B, b] ∈ Σ such thata anda + 2 satisfy the condition2 ≤ a, a + 2 ≤ 4 and
q′ = (q⊖{{[A, a], [B, b]}})⊕{{[A, a− 2], [B, b+2]}}. The finite automataS satisfy the
property thatµ1 is reachable fromµ0 if and only if for the states ∈ Q that represents
µ0 ands′ ∈ Q that representsµ1, (s, s′) is in the transitive closure ofδ. The thesis then
follows from the decidability of configuration reachability in a finite-automata. ⊓⊔

In order to study verification of safety properties, we need to introduce an ordering
between configurations similar to the coverability ordering used for models like Petri
nets. We use here an ordering⊆ between configurationsµ andµ′ such that for each
membranem, each conformon inµ(m) is mapped to a distinguished conformon in
µ′(m) that has the same name and greater or equal value. This ordering allows us to
reason about the presence of a conformon with a given name andat least a given amount
of energy inside a configuration.

Example 1.Consider the configurations

µ1 = ({{[A, 2], [A, 4], [B, 3]}}, {{[A, 5]}})
µ2 = ({{[A, 4], [A, 5], [B, 6], [C, 8]}}, {{[A, 7], [B, 5]}})

Thenµ1 ⊑ µ2, since[A, 2], [A, 4] and[B, 3] in membrane1 of µ can be associated resp.
to the conformons[A, 4], [A, 5] and[B, 6] in membrane1 of µ2; furthermore,[A, 5] in
membrane2 of µ can be associated to conformon[A, 7] in membrane2 of µ2. Consider
now the configurations

µ3 = ({{[A, 4], [A, 5], [B, 1]}}, {{[A, 7], [B, 5]}})
µ4 = ({{[A, 5], [B, 6]}}, {{[A, 7], [B, 5]}})

Then,µ1 6⊑ µ4 since there is no conformon in membrane1 in µ3 with nameB and value
greater or equal than3. Furthermore,µ1 6⊑ µ4 since we cannot associate two different
conformons, namely[A, 2] and [A, 4] in µ1, to the same conformon, namely[A, 5],
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in µ4. Finally, notice that the configurationµ = ({{[A, 0]}}, ∅) is such thatµ ⊑ µi

for i : 1, . . . , 4. The configurationµ can be used to characterize the presence of a
conformon with nameA in membrane1 no matter of how energy it has.

The ordering⊑ is formally defined as follows.

Definition 3 (Ordering ⊑). Given two configurationsµ and µ′, µ ⊑ µ′ iff for each
m ∈ N there exists aninjective mappinghm from µ(m) to µ′(m)4 that satisfies the
following condition: for each[A, x] ∈ µ(m), if hm([A, x]) = [B, y], thenA = B and
x ≤ y ([A, x] is associated to a conformon with the same name and larger amount of
energy).

A set S of configurations is saidupward closedw.r.t. ⊑ if the following condition is
satisfied: for anyµ ∈ S, if µ ⊑ µ′ thenµ′ ∈ S. In other words if a configurationµ
belongs to an upward closed setS than all configurations greater thanµ w.r.t.⊑ belong
to S either.

Consider now the following decision problem.

Definition 4 (Coverability problem). The coverability problem is defined as follows:
Given acP-systemΠ = (V, N, R, µ0) and a configurationµ1, is there a configuration
µ2 such thatµ0 ⇒∗ µ2 andµ1 ⊑ µ2?

Coverability can be viewed as a weak form ofconfiguration reachabilityin which we
check whether configurations with certain constraints can be reachable from the initial
configuration. In concurrency theory, the coverability problem is strictly related to the
verification of safety properties. This link can naturally be transferred toqualitative
propertiesof natural systems. As an example, checking if a configuration in which two
conformons with nameA can occur in membranem during the evolution of a system
amounts to checking the coverability problem for the targetconfigurationµ2 defined as
µ2(m) = {{[A, 0], [A, 0]}} andµ2(m

′) = ∅ for m′ 6= m. The following negative result
then holds.

Proposition 1. Coverability is undecidable for fullcP-systems.

Proof. The encoding of a counter machineM in cP-systems can be adapted to our for-
mulation with creation rules in a direct way: conformons with ω-cardinality are speci-
fied here by creation rules. In the encoding in [5] an execution of the counter machine
M leading to locationℓ is simulated by the evolution of acP-systemΠM that reaches
a configuration containing a conformon[ℓ, 9] in a particular membrane, saym. Thus,
coverability of the configuration with[ℓ, 9] insidem in ΠM corresponds to reachability
of locationℓ in M . Since location reachability is undecidable for counter machines,
coverability is undecidable forcP-systems.

3.1 A syntactic fragments ofcP-systems

In this section we show that checking safety properties can be decided for a fragment of
cP-systems with a restricted form of passage rules in which conditions are only defined
by lower bound constraints.

4 By injective, we mean that two distinct conformons inµ(m) cannot be mapped to the same
conformon inµ′(m).
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Definition 5 (Restricted cP-systems).We call restrictedthe fragment ofcP-systems
in which we forbid the use of predicates of the formx = c andx < c as conditions of
passage rules.

Our main result is that, despite of the two dimension of infiniteness, the coverability
problem is decidable for restrictedcP-systems with an arbitrary number of conformons.
To prove the result we adopt the methodology proposed in [1],i.e., we first show that
restrictedcP-systems are monotonic w.r.t.⊑. We then show that⊑ is a well-quasi or-
dering. This implies that any upward closed set is represented via a finite set of minimal
(w.r.t. ⊑) configurations. Thus, minimal elements can be used to finitely represent in-
finite (upward closed) sets of configurations. Finally, we prove that, given an upward
closed setS of configurations, it is possible to compute a finite representation of the
set of predecessor configurations ofS. Monotonicity ensures us that such a set is still
upward closed. We compute it by operating on the minimal elements ofS only.

Lemma 1 (Monotonicity). RestrictedcP-systems are monotonic w.r.t.⊑, i.e., ifµ1 ⇒
µ2 andµ1 ⊑ µ′

1, then there existsµ′

2 such thatµ′

1 ⇒ µ′

2 andµ2 ⊑ µ′

2.

Proof. Let µ1 be a configuration evolving intoµ2, and letµ1 ≤ µ′

1. The proof is by
case analysis on the type of rules applied in the execution step.
Internal rule.Let us consider a single application of an internal rule(A, e, B) operating
on conformons[A, x] and [B, y] in membranem. Since the rule is enabled we have
that x ≥ e. Furthermore, the application of the rule modifies the valueof the two
conformons as follows:[A, x − e] and[B, y + e].
Sinceµ1 ⊑ µ′

1 and by definition of⊑, we have that there exist conformons[A, x′] and
[B, y′] in membranem of µ′

1 such thatx ≤ x′ andy ≤ y′. Thus, the same rule can
be applied to[A, x′] and[B, y′] leading to a configurationµ′

2 in which the two selected
conformons are updated as follows:[A, x′ − e] and[B, y′ + e]. Finally, we notice that,
sincex′ ≥ x ≥ e, we have thatx − e ≤ x′ − e andy + e ≤ y′ + e. Thus,µ2 ≤ µ′

2

Passage rule.Let us consider a single application of a passage rule(e, p), e = (m, n),
operating on the conformons[A, x] in membranem such thatp(y) = y > e. Since the
rule is enabled we have thatx > e. Furthermore, the application of the rule moves the
conformon to membranen in µ2.
Sinceµ1 ⊑ µ′

1 and by definition of⊑, we have that there exist conformons[A, x′] in
membranem of µ′

1 such thatx ≤ x′. Thus, the same passage rule is enabled inµ′

1 and
can be applied to move[A, x′] in membranen in µ′

2. Thus, we have thatµ2 ≤ µ′

2. ⊓⊔

From the monotonicity property, we obtain the following corollary.

Corollary 1. For any restrictedcP-systems and any upward closed set (w.r.t.⊑) S of
configurations, the set of predecessor configurations ofS, namelyPre(S) = {µ | µ ⇒
µ′, µ′ ∈ S}, is upward closed.

It is important to notice that the last two properties do not hold for full cP-systems. As
an example, a passage rule from membrane1 to 2 with predicatex = 0 is not mono-
tonic w.r.t. to the configurationsµ1 = ({{[A, 0]}}, ∅) andµ′

1 = ({{[A, 1]}}, ∅). Indeed,
µ1 ⊑ µ′

1 andµ1 ⇒ µ2 = (∅, {{[A, 0]}}) but µ′

1 has no successors. Furthermore, the
set of predecessors of the upward closed set with minimal elementµ3 is the singleton
containingµ1 (clearly not an upward closed set).
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Let us now go back to the properties of the ordering⊑. We first have the following
property.

Lemma 2. Given acP-systemΠ and two configurationsµ andµ′, checking ifµ ⊑ µ′

holds (i.e. ifµ is more general thanµ′) is a decidable problem.

Indeed, to decide it we have to select an appropriate injective mapping from a a finite
set of mappings fromµ to µ′ and, then, to compute a finite set of multiset inclusions.

Let us now recall the notion ofwell-quasi ordering(see e.g. [7]).

Definition 6 (⊑ is a wqo). A quasi ordering� on a setS is a well-quasi ordering
(wqo) if and only if for any infinite sequencea1, a2, . . . of elements inS (i.e.ai ∈ S for
anyi ≥ 1) there exist indexesi < j such thatai � aj .

The following important property then holds.

Lemma 3 (⊑ is a wqo).Given acP-systemΠ = (V, N, R, µ0), the ordering⊑ defined
on the set of all configuration ofΠ is a wqo.

Proof. AssumeN = {1, . . . , m} as the set of membrane names. Let us first notice that
a configurationµ can be viewed as a multiset of multisets of objects over the alphabet
V 1 ∪ . . . ∪ V m, whereV i = {vi | v ∈ V }. Indeed,µ can be reformulated as the
multiset unionρ1⊕ . . .⊕ρm where for each[A, x] ∈ µ(m), ρi contains a multiset with
x occurrences ofAm. E.g.,µ1 = ({{[A, 2], [B, 3]}}, {{[A, 5]}}) can be reformulated as
the multiset of multisets{{{{A1, A1}}, {{B1, B1, B1}}, {{A2, A2, A2, A2, A2}}}}.

When considering the aforementioned reformulation of configurations, the ordering
⊑ corresponds to the composition of multiset embedding (the existence of injective
mappingh1, . . . , hm) and multiset inclusion (the constraint on values). Since multiset
inclusion is a well-quasi ordering, we can apply Higman’s Lemma [7] to conclude that
⊑ is a well-quasi ordering. ⊓⊔

As a consequence of the latter property, we have that every upward closed setS of
configurations is generated by a finite set of minimal elements, i.e., for any upward
closed setS there exists a finite setF of configurations such thatS = {µ′ | µ ≤ µ′, µ ∈
F}. F is called thefinite basisof S. As proved in the following lemma, given a finite
basis of a setS, it is possible to effectively compute the finite basis ofPre(S).

Lemma 4 (Computing Pre). Given a finite basisF of a setS, there exists an algo-
rithm that computes a finite basisF ′ of Pre(S).

Proof. The algorithm is defined by cases as follows.

Creation rulesAssume e
⇀
m

A ∈ R andµ ∈ F . Then,µ occurs inF ′. Furthermore, sup-
pose thatµ(m) contains a conformon[A, e]. Then,F ′ also contains the configurations
µ′ that satisfies the following conditions:

– µ′(m) = µ(m) ⊖ {{[A, e]}};
– µ′(n) = µ(n) for m 6= n.
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Internal rules Assume a ruler = A
e→
m

B ∈ R andµ ∈ F . We have several cases to
consider.

– We first have to consider a possible application ofr to two conformons that are
not explicitly mentioned inµ. This leads to a predecessor configuration in which
we require at least the presence ofA with at least valuee and the presence ofB
with any value. Thus,F ′ contains the configurationsµ′ that satisfies the following
conditions:
• µ′(m) = µ(m) ⊕ {{[A, e], [B, 0]}};
• µ′(n) = µ(n) for m 6= n.

– We now have to consider the application ofr to a conformonA with valuex in µ

and to a conformonB not explicitly mentioned inµ. This leads to a predecessor
configuration in which we require at least the presence ofA with at least value
x + e and the presence ofB with any value. Thus, if[A, x] ∈ µ(m), F ′ contains
the configurationsµ′ that satisfies the following conditions:
• µ′(m) = (µ(m) ⊖ {{[A, x]}}) ⊕ {{[A, x + e], [B, 0]}};
• µ′(n) = µ(n) for m 6= n.

– Furthermore, we have to consider the application ofr to a conformonB with value
y ≥ e in µ and to a conformonA not explicitly mentioned inµ. This leads to a
predecessor configuration in which we require at least the presence ofA with at
least valuee and the presence ofB with valuey − e. Thus, if [B, y] ∈ µ(m) and
y ≥ e, F ′ contains the configurationsµ′ that satisfies the following conditions:
• µ′(m) = (µ(m) ⊖ {{[B, y]}})⊕ {{[A, e], [B, y − e]}};
• µ′(n) = µ(n) for m 6= n.

– Finally, we have to consider the application ofr to a conformonB with value
y ≥ e and to a conformonA with valuex both inµ. This leads to a predecessor
configuration in which we require at least the presence ofA with at least valuex+e

and the presence ofB with valuey − e. Thus, if [A, x], [B, y] ∈ µ(m) andy ≥ e,
F ′ contains the configurationsµ′ that satisfies the following conditions:
• µ′(m) = (µ(m) ⊖ {{[A, x], [B, y]}}) ⊕ {{[A, x + e], [B, y − e]}};
• µ′(n) = µ(n) for m 6= n.

Passage rulesAssumem
p
→֒n ∈ R with p(x) defined byx ≥ c andµ ∈ F . We first have

to consider a possible application ofr to a conformon that is not explicitly mentioned
in µ. This leads to a predecessor configuration in which we require at least the presence
of A with at least valuee in membranem. Thus,F ′ contains the configurationsµ′ that
satisfies the following conditions:

– µ′(m) = µ(m) ⊕ {{[A, e]}};
– µ′(n) = µ(n) for m 6= n.

Furthermore, suppose thatµ(n) contains a conformon[A, x] with x ≥ e. Then,F ′ also
contains the configurationsµ′ that satisfies the following conditions:

– µ′(n) = µ(n) ⊖ {{[A, x]}};
– µ′(m) = µ(m) ⊕ {{[A, x]}};
– µ′(p) = µ(p) for m, n 6= p.
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The correctness follows from a simple case analysis. ⊓⊔

Theorem 2 (Decidability of Coverability for Restricted cP-systems).The coverabil-
ity problem is decidable for restrictedcP-systems.

Proof. The thesis follows from Lemmas 1, 3, 4, and from Theorem 4.1 in[1].

4 Relation with other models

In this section we comparecP-systems with other models used in the concurrency
field, namely the nested Petri nets of [8] and the constrainedmultiset rewriting systems
(CMRS) of [2].

4.1 cP-systems vs nested Petri nets

Let us first recall that a Petri net (P/T system) [11] is a tuple(P, T, m0) whereP is a
finite set ofplaces, T is a finite set oftransitions, andm0 is the initial marking. Intu-
itively, places correspond to location or states of a given system. Places are populated
with tokens, i.e., indistinguishable objects, that can be used e.g. to mark a given set of
states of to model concurrent processes. Tokens have no internal structure. This means
that we are only interested in the multiplicity of tokens inside a place. Transitions are
used to control the flow of tokens in the net (they define links between different places
and regulate the movement of tokens along the links). More formally, a transition t

has a pre-set•t and a post-sett• both defined by multisets of places inP . A marking is
just a multiset with elements inP , a mapping fromP to non-negative integers. Given
a markingm and a placep, we say that the placep containsm(p) tokens. A transition
t is enabled at the markingm if •t is contained as a sub-multiset inm. If it is the case,

firing t produces a markingm′, writtenm
t
→ m′, defined as(m⊖• t)⊕ t•, where⊕ is

multiset union and⊖ is multiset difference. A firing sequence is a sequence of markings
m0m1 . . . such thatmi is obtained frommi−1 by firing a transition inT atmi.

A Petri net with inhibitor arc is a Petri net in which transitions can be guarded by an
emptyness test on a subset of the places. For instance, a transition with an inhibitor arc
on placep is enabled only whenp is empty.

Nested Petri netsDifferently from P/T systems, in anested Petri nettokens have an
internal structure that can be arbitrarily complex (e.g. a token can be a P/T system, or
a P/T system with tokens that are in turn P/T systems, and so on). For instance, a2-
level nested Petri netis defined by a P/T system that describes the whole system, called
system net, and by a P/T system that describes the internal structure oftokens, called
element net.

The transitions of the system net can be used to manipulate tokens as black boxes,
i.e. without changing their internal structure. These kindof transitions are calledtrans-
port rules(they move complex objects around the places of the system net).
Transitions of the element nets can be used to change the internal structure of a token
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without changing the marking of the system net. These kind oftransitions are called
autonomous rules.
Finally, we can use synchronization labels (i.e. labels in system/element net transitions)
to enforce the simultaneous execution of a transition of thesystem net and of an ele-
ment net (vertical synchronization), or the simultaneous execution of transitions of two
distinct element nets residing in the same system place (horizontal synchronization).
Notice that vertical synchronization modifies both the marking of the system net and
the internal structure of (some) tokens.

cP-systems as nested Petri netsIn this section we show thatcP-systems can be encoded
as 2-level nested Petri nets in which the system net is a P/T system and the element net
is a P/T system with inhibitor arcs.

Assume acP-systemΠ = (V, N, R, µ0). We build a 2-level nested Petri nets as
follows. The system net is a P/T system with a placesCONF used to contain all con-
formons in a current configuration ofΠ , and a placeCREATEr for each creation
rule r ∈ R. The transitions of the system net are transport rules that model creation
rules used to non-deterministically inject new conformonsin placeCONF . Namely,
for each creation ruler ∈ R we add a transport ruletr with present{{CREATEr}} and
postset{{CREATEr, CONF}}. We assume here thatCREATEr is initialized with
a single element net that models the conformon created by rule r. Transitiontr makes
a copy of such an element net and puts it in placeCONF .

An element netNc denotes a single conformonc. It is defined by a P/T system with
placesP = V ∪ N ∪ {E}. Only one place of those inN and only one place of those
in V can be marked in the same instant. The marked places correspond to the name and
current location ofc. Furthermore, the number of tokens in placeE denotes the current
amount of energy ofc.

To model an internal ruler = A
e→
m

B we use a horizontal step between two distinct
element netsN1 andN2, i.e., a pair(tr,1, tr,2) of element net transitions with synchro-
nized labels such that:

– •tr,1 has one occurrence ofA, one ofm, ande of E, i.e., it is enabled ifN1 rep-
resents a conformon with nameA in membranem and at leaste units of energy;
those units are subtracted from placeE in N1.

– •tr,2 has one occurrence ofB and one ofm, i.e., it is enabled ifN2 represents a
conformon with nameB in membranem.

– t•r,1 has one occurrence ofA and one ofm.
– t•r,2 has one occurrence ofB, one ofm, ande of E, i.e., e units of energy are

transferred to placeE in N2.

To model a passage ruler = m
p
→֒n with conditionx ≥ e, we use an autonomous

step. Specifically, we define an element net transitiontr such that:

– •tr has one occurence ofm, ande occurrences ofE, i.e., it is enabled ifN1 is in
membranem and at leaste units of energy.

– t•r has one occurrences ofn, and ande occurrences ofE, i.e.,N1 represents now
a conformon (with the same name) in membranen. Its energy is not changed (we
first subtracte tokens to check the conditionx ≥ e) and then adde tokens back to
placeE in N1).
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SYSTEM NET

A

B

M N P

3

E
3

ENERGY

MEMBRANE NAMESCONFORMON NAME

INT

INT

PASS

ELEMENT NET: CONFORMON [A, 4] IN MEMBRANE M

CREATE

CONF
CREATE

Fig. 1. Example of nested Petri net.

To model a passage ruler with conditionx = e, we can add to each transitiontr,A with
A ∈ V the test= e on placeE. It is easy to define this test by using P/T transitions
with inhibitor arcs. Rules with conditionsx < e for e > 1 can be encoded by splitting
the test intox = 0, . . . , x = e − 1.

A marking of the resulting 2-level nested net specifies the number of element nets
inside the system placeCONF . Since each element net maintains information about
name, value and location the content of placeCONF corresponds to the current con-
figuration ofΠ .

Example 2.Assume acP-systemΠ with V = {A, B}, N = {M, N, P}, creation rules
4
⇀
M

A and 2
⇀
N

B, internal ruleA 3→
M

B, and passage ruleN
p
→֒P with conditionx = 0. The

2-level nested Petri nets that encodes thecP-systemsΠ is shown in Fig. 1. We use here
circles to denote places, rectangles to denote transitions, an arrow from a circle to a
rectangle to denote places in the pre-set and an arrow from a rectangle to a circle to
denote places in the post-sets of transitions; we label arrows with numbers to indicate a
multiplicity > 1 of a place in the pre-/post-set. The system net placeCREATE is used
to keep a copy resp. of the conformon[A, 4] so as to non-deterministically inject new
ones in the current configuration (placeCONF ). The element net has places to model
names, membranes, and energy. The internal rule is modelledby the pair of transitions
with labelsINT andINT . When executed simultaneously (within placeCONF of
the system net) by two distinct element net (one executesINT and the other executes



On the Qualitative Analysis of Conformon P-Systems 13

INT ) their effect is to move 3 tokens from theE place of an element net markedA, M

to theE place of an element net markedB, M . Notice that tokens of the element nets
are objects with no structure. The passage rule is modelled by the element net transition
with labelPASS. It simply checks thatE is empty with an inhibitor arc (arrow with
circle) and then moves a token from the placeN to the placeP (it changes the location
of the element net). Notice that the system net placeCONF may contain an arbitrary
number of element nets (the corresponding P/T system is unbounded).

It is important to notice that 2-level nested Petri nets in which element nets have in-
hibitor arcs are Turing equivalent [9]. This result is consistent with the analysis of the
expressive power of fullcP-systems [5]. From the previous observations, restrictedcP-
systems are a subclass of nested Petri nets in which both the system and the element nets
are defined by P/T systems. From the results obtained for well-structured subclasses of
nested Petri nets in [9], we obtain an indirect proof for decidability of coverabilityof
restrictedcP-systems.

The connection betweencP-systems and nested nets can be exploit to extend the
model in several ways. As an example, for restricted passagerules, coverability re-
mains decidable when extendingcP-systems with: conformons defined by a list of pairs
name-value instead of a single pair; rules thattransferall the energy fromA to B; or
conformons defined by a state machine (i.e. with an internal state instead of statically
assigned type).

4.2 RestrictedcP-systems vs CMRS

RestrictedcP-systems can also be modelled in CMRS, an extension of Petrinets in
which tokens carry natural numbers.

CMRS Constrained multiset rewriting systems(CMRS) [2] are inspired to formulations
of colored Petri nets in term rewriting. A token with datad in placep is represented
here as a termp(d), a marking as a multiset of terms, and a transition as a (conditional)
multiset rewriting rule. More precisely, letterm be an elementp(x) wherep belong
to a finite set of predicate symbolsP (places) andx is a variable ranging over natural
numbers. We often call a termp(t) with p ∈ P a p-term or P -term. A elementp(v)
with p ∈ P andv ∈ Nat is called aground term.
A configuration is a (finite) multiset of ground terms. A CMRS is a set of rewriting rules
with constraints of the formr = L ; R : Ψ that allows to transform (rewrite) multisets
into multisets. More precisely,L andR are multisets of terms (with variables) andΨ is
a (possibly empty) finite conjunction ofgap-orderconstraints of the form:x + c < y,
x ≤ y, x = y, x < c, x > c, x = c wherex, y are variables appearing inL and/orR
andc ∈ Nat is a constant.
A rule r is enabled at a configurationc if there exists a valuation of the variablesV al

such thatV al(Ψ) is satisfied. Firingr at c leads to a new multisetc′ = c ⊖ V al(L) ⊕
V al(R) whereV al(L), resp.V al(R), is the multiset of ground terms obtained fromL,
resp.R, by replacing each variablex by V al(x).

As an example, consider the CMRS rule:

ρ = [p(x) , q(y)] ; [q(z) , r(x) , r(w)] : {x + 2 < y , x + 4 < z , z < w}
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A valuation which satisfies the condition isVal(x) = 1, Val(y) = 4, Val(z) =
8, andVal(w) = 10. A CMRS configuration is a multisets of ground terms, e.g.,
[p(1), p(3), q(4)]. Therefore, we have that[p(1), p(3), q(4)]tρ[p(3), q(8), r(1), r(10)].

A CMRS is well-structured with respect to the well-quasi ordering�c defined as
follows. Given a configurationc, let V (c) = {i ∈ Nat | ∃p(i) ∈ c}, andc=i : P 7→
Nat with i ∈ Nat be the multi set such thatc=i(p) = c(pi) for anyp ∈ P. Then, we
have thatc �c c′ iff there exists an injective functionh : V (c) 7→ Nat such that (i) for
anyi ∈ V (c) : c=i ≤ c′=h(i); (ii) for anyi ∈ V (c) s.t. i ≤ cmax : i = h(i); (iii) for
any i, j ∈ V (c) ∪ {0} s.t. i < j andj > cmax : j − i < h(j) − h(i). A symbolic
algorithm to check coverability – w.r.t.�c – is described in [2].

RestrictedcP-systems as CMRSA cP-configurationµ is mapped to a CMRS configu-
ration as follows. A conformonc = [A, x] in membranem is represented by means of
a multiset of terms

M
v
c,m = [confA,m(v)] ⊕ O

v
x

whereOx
v is the multiset withx occurrences of the termu(v), i.e.,

O
v
x = [u(v), . . . , u(v)

︸ ︷︷ ︸

x−times

]

wherev is a natural number used as a unique identifier for the conformon c. Theu-
terms with parameterv are used to count the amount of energy of conformon with
identifierv. E.g. if c = [ATP, 4] thenM2

c,m = [confATP,m(2), u(2), u(2), u(2), u(2)]
– 4 occurrences ofu(2) – where2 is the unique identifier of conformonc. Furthermore,
if c = [ATP, 0], thenM2

c,m = [confATP,m(2)]. Thus, we use[confA,m(v)] to model a
conformon with zero energy and identifierv.

A representationRep(µ) of acP-configurationµ is obtained by assigning a distinct
indentifier to each conformon and by taking the (multiset) union of the representations
of each conformons inµ. Formally, letµ containsr membranes such thatµ(mi) con-
tains the conformonsc1,i, . . . , ci,ni

for i : 1, . . . , r andn1 + . . . + nr = k, then

Rep(µ)V = (

n1⊕

j=1

M
v1,j

c1,j ,m1
) ⊕ . . . ⊕ (

nr⊕

j=1

M
vr,j

cr,j ,mr
)

whereV = (v1,1, . . . , v1,n1
, . . . , vr,1, . . . , vr,nr

) arek distinct natural numbers work-
ing as identifiers of thek conformons inµ. Identifiers of conformons in the initial con-
figurationµ0 are non-deterministically chosen at the beginning of the simulation using
the following rule:

[init] ; [fresh(v)] ⊕ Rep(µ0)
V : {v1,1 < . . . < v1,n1

< vr,1 < vr,nr
< v}

whereV is a vector of variables that denotes conformon indentifiers(as described in
the def. ofRep(µ)V ). Furthermore, we maintain a fresh identifierv in thefresh-term
(used to dynamically create other conformons).

The rules of a restrictedcP-system are simulated via the following CMRS rules
working on CMRS representations of configurations.
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– Creation ofc = [A, x] insidem:

[fresh(x)] ; [fresh(y)] ⊕ M
x
c,m : {x < y}

We simply inject a new multiset of terms with parameterx stored in thefresh-term
and reset the fresh value.

– A andB exchangee units of energy.
For each membranem:

[confA,m(x), confB,m(y)] ⊕ Ox
e ; [confA,m(x), confB,m(y)] ⊕ Oy

e : true

Notice that, by definition of the CMRS operational semantics, the rule is enabled
only when there are at leaste occurrences ofu-terms with parameterx (identifier
of A) and where there exists a conformonB with identifiery (x andy are variables
ranging over natural numbers). The passage of energy fromA (with identifierx) to
B (with identifiery) is simply defined by changing the parameterx of e occurrences
of u-terms intoy.

– Passage rule formm to n conditioned byx ≥ c:
For each membrane valueA:

[confA,m(x)] ⊕ Ox
c ; [confA,n(x)] ⊕ Ox

c

Notice that, by definition of the CMRS operational semantics, the rule is enabled
only when there are at leastc occurrences ofu-terms with parameterx (identifier
of A). The current location ofA is stored in the termconfA,m(x). The passage
to membranen is defined by changing the termconfA,m(x) into confA,n(x). The
u-terms with the same parameter are not consumed (i.e. they occur both in the
left-hand side and in the right-hand side of the rule).

From the results obtained for CMRS [2], we obtain another indirect proof for decid-
ability of coverability of restrictedcP-systems. The connection betweencP-systems
and CMRS can be used to devise extensions of the conformon model in which, e.g.,
conformon have different priorities or ordered with respect to some other parameter.
This can be achieved by ordering the parameters of the multiset of terms used to encode
each conformon. CMRS rules can deal with such an ordering by using conditions on
parameters of terms in a rule of the formx < y.

5 Related Work and Conclusions

In the paper we have investigated the decidability of computational properties of con-
formon P-systems like reachability and coverability. Morespecifically, we have shown
that, although undecidable for the full model, the coverability problem is decidable for
a fragment with restricted types of predicates in passage rules.

To our knowledge, this is the first work devoted to the qualitative analysis of con-
formon P-systems, and to the comparison with other models like nested Petri nets and
CMRS. The expressiveness of the conformon P-systems is studied in [5] by using a re-
duction to counter machines with zero test (Turing equivalent). We use such a result to
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show that coverability is undecidable for the full model. The decidability or reachability
for the full model is not in contrast with its great expressive power. Indeed, in the reach-
ability problem the target configuration contains precise information about the history
of the computation, e.g., the total amount of energy exchanged during the computation.
These information cannot be expressed in the coverability problem, where we can only
fix part of the information of target configurations. In this sense, coverability seems a
better measure for the expressiveness of this kind of computational models.

In the paper we have compared this result with similar results obtained for other
models like nested Petri nets and constrained multiset rewriting systems. The direct
proof presented in the paper and the corresponding algorithm can be viewed however
as a first step towards the development of automated verification tools for biologically
inspired models. The kind of qualitative analysis that can be performed using our al-
gorithm is complementary to the simulation techniques usedin quantitative analysis of
natural and biological systems. Indeeed, in qualitative analysis we consider all possible
executions with no probability distributions on transitions, whereas in quantitative anal-
ysis one often considers a single simulation by associatingprobabilities to each single
transitions. Unfortunately, the rates of reactions are often unknown and, thus, extrap-
olated from known data to make the simulation feasible. Qualitative analysis requires
instead only the knowledge of the dynamics of a given naturalmodel. Automated ver-
ification methods can thus be useful to individuate structural properties of biological
models.
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