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Abstract. We study computational properties of conformon P-systeamexten-

sion of P-systems in which symbol objects are labelled bir therent amount
of energy. We focus here our attention to decision problékesréachability and
coverability of a configuration and give positive and negatesults for the full

model and for some of its fragments. Furthermore, we ingattithe relation be-
tween conformon P-systems and other concurrency modelsdisted Petri nets
andconstrained multiset rewriting systems

1 Introduction

P-systems [10] are a basic model of the living cell defined Isgtaof hierarchically
organized membranes and by rules that dynamically dig&iblementary objects in
the component membranes. Conformon P-Systems [5] are anséah of P-systems in
which symbol objects (conformons) are labelled with theirrent amount of energy. In
a conformon P-system membranes are organized into a dirgcagh. Furthermore, a
symbol objectis a pair name-value, where name ranges ovesa@phabet, and value
is a natural number. The value associated to a conformortekeits current amount of
energy. Conformon P-systems provide rules for the exchahgmergy from a con-
formon to another and for passing through membranes. Rassbgs are conditioned
by predicates defined over the values of conformons. In [BcBrand Corne applied
conformon P-systems to model the dynamics of HIV infecti@ancerning the expres-
sive power of conformon P-systems, in [5] Frisco has shown tthe model is Turing
equivalent even without the use of priority or maximal pliam.

In this paper we investigate restricted fragments of canfor P-systems for which
decision problems related to verification of qualitativeperties are decidable. We
focus our attention to verification of safety properties dadision problems like cov-
erability of a configuration [1]. The fragment we considet pome restrictions on the
form of predicates used as conditions of passage rules. Naweonly admit passage
rules with lower bound constraints as conditions (pe:) = = > ¢ for ¢ € N). The
resulting fragment, we will refer to asstricted conformon P-systepis still interest-
ing as a model of natural processes. Indeed, we can use ietiiggystems in which
conformons pass through a membrane when a given amountgfyeeeeached.

For restricted conformon P-systems, we apply the methgyots [1] to define
an algorithm to decide the coverability problem. This aitpon performs a backward
reachability analysis through the state space of a systamoe $ our model the set of
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configurations is infinite, the analysis is made symbolicriten to finitely represent in-
finite sets of configurations. For this purpose, we use theryhef well-quasi orderings
and its application to verification of concurrent systenis [1

In the paper we also investigate the relation between {cest) conformon P-
systems and other models used in concurrency like Petri[bh&}snested Petri nets
[8], and constrained multiset rewriting systems (CMRS) &jecifically, we show that
conformon P-systems are a special class of nested Petriametsestricted P-systems
are a special class of CMRS. This comparison gives us indireofs for decidability
of coverability in restricted conformon P-systems thalofek from the results obtained
for nested nets and CMRS in [9, 2].

To our knowledge, this is the first work devoted to the analydiproblems like
coverability for conformon P-systems, and to the compar@fithe same models with
other concurrency models like nested Petri nets and CMRS.

Plan of the paperin Section 2 we introduce the conformon P-systems modekttién

3 we study decision problems like reachability and covéitgithh Section 4 we compare
conformon P-systems with nested Petri nets and CMRS. Fjirabection 5 we discuss
related work and address some conclusions.

2 Conformon P-systems

LetV be afinite alphabet ar the set of natural numbers.@nformoris an element
of V' xNy whereN; = NU{0}, denoted by X, x]. We will refer to X as thenameof the
conformon[ X, z] and toz as itsvalue In the rest of the paper we work with multisets
of conformons. We usay, . .., a, }} to indicate a multiset with elementds, . . ., a,,
and symbolst and S to indicate resp. multiset union and difference. We Ggeto
denote the set of conformons defined over alph&bet

Conformons are situated inside a finite set of membranegyars. LetN be the
set of membrane names. donfigurationy is a tuple (indexed om:) of multisets of
conformons. For simplicity we often assume that membrareesambered from to n
and that configurations are tuplégl, . . ., &,) where¢; is a multiset of conformons in
Cy.

The dynamic behavior of conformons is described via a satlegrof the following
form:

— A creationrule has the form%A, whered € V, e € Ny, andm € N and defines
the creation of a conformd, e] inside membrane:. A creation rule for confor-
mon [A, e] in membranen corresponds to a conformdd, e] with cardinalityw
in [5]. The use of creation rules allows us to obtain a betb@ngarison with other
Petri net models as discussed later in the paper.

— Aninternalrule has the form47€n>B, whereA, B € V,e € N,m € N and defines
the passage of a quantityof energy from a conformon of typé to one of typeB
inside membrane:.

— A passageule has the formm<n wherem,n € N andp(z) is a monadic predi-
cate of one of the following forms = a, z > a, x < bfora € Ny andb € N. With
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this rule, a conformofX, x| insidem can move to membraneif p(z) is satisfied
by the current value ok .

As in tissue P-systems, the underlying structure of mengwas here a finite graph
whose nodes are the membranesvirand edges are defined by passage rules. We are
ready now for a formal definition of conformon P-systems.

Definition 1 (Conformon P-system).A basic conformon P-system of degmee> 1

with unbounded valuggP-system for short) is a tuplf = (V, N, R, o), V is a finite

set of conformon name$ is a finite set of membranes names (we assume that each
membrane has a distinct name),is a set of rulesy is an initial configuration.

Given a configuratiom, we say that an internal rule= A-%B is enabled af. if there
exist a conformonA, z] € u(m) and a conformofB,y] € u(m) such thatr > e;
we say in this case thatoperates on conformonsgl, 2] and [B,y] in . A passage

rule r = m<n is enabled a if there exists a conformofd, z] € y(m) such that
p(zx) is satisfied; we say here thatoperates on conformo, z] in u. Notice that
creation rules are always enabled. The evolution of a comforP-systeni! is defined
via a transition relations defined on configurations as follows. A configuratiomay
evolve toy’, written . = 1/, if one of the following conditions is satisfied:

— There exists a rule = A-%B in R which is enabled in: and operates on confor-
mons|A, z] and[B, y], and the following conditions are satisfied:
o p'(m) = (u(m) e {[A,2],[B,y]}) & {[4,z — €], [B,y +e]};
o u/'(n) = p(n) foranyn # m.
— There exists a rule = m<sn in R which is enabled in. and operates on confor-
mon A, z] (i.e. p(z) is true) and the following conditions are satisfied:
o 1/ (m) = u(m) & {[A, ]}
o ' (n) = pu(n) @ {[A,2]};
e 1/ (p) = u(p) foranyp # m,n.
— There exists a rule = -=A in R and the following conditions are satisfied:
o '(m) =p(m) & {[A e]};
e 1/(p) = u(p) foranyp # m.

In the rest of the paper we use* to indicate the reflexive and transitive closure of the
transition relation=-. Furthermore, we say thatevolves intoy’ if © =* 1/, i.e., there
exists a finite sequence of configurations. . ., u, such thajy = p; = ... = u, =
u'. Furthermore, given a set of configuratiofisthe set of successor configurations is
defined as

Post(S) = {1 | p=p', pe S}

and the set of predecessor configurations is defined as
Pre(S) ={y' | ' = p, p € S}

Notice that the transition relatios- defines an interleaving semantics fotR:system
11,i.e., only a single rule among those enabled can be firecchtealution step of /.
This semantics is slightly different from the original senties in [5] where an arbitrary
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subset of all enable rules can be fired at each evolution Ktepimportant to remark
however that the two semantics are equivalent with respettte kind of qualitative
properties (reachability problems) we consider in thisquap

As an example, consider tloP-system with two membranes, andms andN =
{4, B,C%}, and with the ruIeSA A, A*) B, andmy<my wherep(z) is defined by

the equalltya: — 3. In this model the conﬁguratlo«n ({[B,0]},®) may evolve as
follows:

¢ = ({[A,1],[B,01},0) = ({[A,1],[A, 1], [B, 0]}, 0) =

({[A7 ]‘]7 [A7 ]‘]7 [A7 ]‘]7 [B’O]}’Q) = ({[A7 ]‘]7 [A7 ]‘]7 [A7 0]7 [B’ 1]}’®) =
({[A7 ]‘]7 [A7 0]7 [A7 0]7 [B’ 2]}’®) = ({[A7 0]7 [A7 0]7 [A7 0]7 [B’g]}’Q) =
(f14. 0], [A, 0], [A, O}, {[B, 3]})

Finally, notice that both our semantics and Frisco’s serosum [5] do not require all
enabled rules to be fired simultaneously as in the semanti€ssystems (maximal
parallelism). In general, maximal parallelism and intavieg semantics may lead to
models with different computational power.

3 Qualitative analysis ofcP-systems

In [5] Frisco introduced the class oP-systems witthounded value which the only
type of admitted creation rules have the fo%ﬂ, i.e., the only type of conformons
for which there is no upper bound on the number of occurremcesachable config-
urations (finite but unbounded multiplicity) are of the fofrh, 0]. In cP-system with
bounded valuethe total amount of energy in the system is always constamis,with
this restriction, the only dimension of infiniteness of thetes-space is the number of oc-
currences of conformons. This kind of restricted systeagcB-systems with bounded
values, can be represented as Petri nets. Thus, severakiirig qualitative properties
like reachability and coverability of a configuration and &g decided for this fragment
of cP-systems.

In the full model the set of configurations reachable from ritial one may be
infinite in two dimensions, i.e., in the number of conformonsurring in the membrane
system and in the amount of total energy exchanged in themsysh [5] Frisco has
proved that fullcP-systems are a Turing equivalent model. Despite of the pofuhe
model, we prove next that a basic qualitative property daéachabilitycan be decided
for full cP-systems. Let us first define the reachability problem.

Definition 2 (Reachability problem).
The reachability problem is defined as follows: GivecPasystem/I = (V, N, R, uo)
and a configuration:, doesuy =* p1 hold?

The following results then hold.

Theorem 1 (Decidability of reachability for full cP-systems).
The reachability problem (w.r.t. relatios-) is decidable for angP-system.
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Proof. The proof is based on a reduction of reachability of confiongu, in a cP-
systemI] to reachability in a finite-state system extracted frémand p;. The re-
duction is based on the following key observation. For twafigurationsuy and pq
the set( of distinct configurations that may occur in all possible lations from p
to u, is finite. This property is a consequence of the fact thatriveleand passage
rules maintain constant the total number of conformons aediatal amount of en-
ergy of a system (sum of the values of all conformons) wheceeation rules may
only increase both parameters. Thus, the total amount dbomons and of energy
in configurationu; gives us an upper bounids on the possible number of confor-
mons and an upper bourd, on their corresponding values in any evolution from
to 1. Based on this observation, it is simple to define a finitéestaitomatas with
states inR and transition relatiod defined by instantiating the rules i over the el-
ements inS. As an example, iV = {A,B}, N = {m,n}, Uc = 10 andUy = 4
and R contains the rule = A%B. Then, we have to consider a finite state automa-
ton in which the states are all possible multisets of at mostlements taken from
the alphabet = {[X,n] | X € V,0 < n < 4}. The ruler generates a transition
relation § that put in relations two stategsand ¢’ iff ¢ contains a pair of elements
[4,a],[B,b] € X such thatz anda + 2 satisfy the conditioR2 < a,a +2 < 4 and
¢ = (qe{lA,a],[B,b}) ®{[A4,a—2],[B,b+2]}. The finite automat& satisfy the
property thai:, is reachable fromu, if and only if for the states € @ that represents
up ands’ € @ that represents, (s, s’) is in the transitive closure @f. The thesis then
follows from the decidability of configuration reachabjlin a finite-automata. a

In order to study verification of safety properties, we nesdntroduce an ordering
between configurations similar to the coverability ordgrirsed for models like Petri
nets. We use here an orderiagbetween configurations and .’ such that for each
membranen, each conformon ini(m) is mapped to a distinguished conformon in
u'(m) that has the same name and greater or equal value. Thisraydglows us to
reason about the presence of a conformon with a given nameg éast a given amount
of energy inside a configuration.

Example 1.Consider the configurations

pm = (1[4, 2], [A,4],[B, 3]}, {[4,5]})
p2 = (§1A,4],[A,5],[B, 6], [C, 8]}, {[A, 7], [B,5]})

Thenu; C pe, sincelA, 2], [A, 4] and[B, 3] in membrand of 1, can be associated resp.
to the conformong§A4, 4], [A, 5] and[B, 6] in membrané of p; furthermore|A, 5] in
membrane of u can be associated to conformleh 7] in membrane of 15. Consider
now the configurations

H3 = ({[Aa4]a[Aa 5])[371]}}7{{[A77]7[Ba5]}>
e = ({[Aa 5])[376]}}7{{[A77]7[Ba5]}>

Then,u; Z u4 Since there is no conformon in membraria i3 with nameB and value
greater or equal tha® Furthermorey Z u4 Since we cannot associate two different
conformons, namelyA, 2] and [A, 4] in w4, to the same conformon, namdly, 5],
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in u4. Finally, notice that the configuration = ({[A, 0]}, ) is such thaty C p;
fori : 1,...,4. The configuration: can be used to characterize the presence of a
conformon with named in membrand no matter of how energy it has.

The orderingC_ is formally defined as follows.

Definition 3 (Ordering C). Given two configurationg and 1/, p C p/ iff for each
m € N there exists arinjective mappingh,,, from u(m) to u/(m)* that satisfies the
following condition: for eacHA, =] € u(m), if hy([A, z]) = [B,y], thenA = B and
x < y ([A,z] is associated to a conformon with the same name and largeuataf
energy).

A set S of configurations is saidpward closedv.r.t. C if the following condition is
satisfied: for any, € S, if p C u' theny’ € S. In other words if a configuratiop
belongs to an upward closed stthan all configurations greater tharw.r.t. C belong
to S either.

Consider now the following decision problem.

Definition 4 (Coverability problem). The coverability problem is defined as follows:
Given acP-systemiI = (V, N, R, up) and a configurationu,, is there a configuration
wo such thatuy =* ps anduy C po?

Coverability can be viewed as a weak formaainfiguration reachabilityn which we
check whether configurations with certain constraints aarelachable from the initial
configuration. In concurrency theory, the coverabilitylgem is strictly related to the
verification of safety properties. This link can naturally transferred taqualitative
propertiesof natural systems. As an example, checking if a configunatiavhich two
conformons with namel can occur in membrane during the evolution of a system
amounts to checking the coverability problem for the tacgetfiguratiory, defined as
p2(m) = {[4,0],[4, 0]} anduz(m’) = 0 for m’ # m. The following negative result
then holds.

Proposition 1. Coverability is undecidable for fudP-systems.

Proof. The encoding of a counter machiné in cP-systems can be adapted to our for-
mulation with creation rules in a direct way: conformonstwit-cardinality are speci-
fied here by creation rules. In the encoding in [5] an exeoubitthe counter machine
M leading to locatiorf is simulated by the evolution of @-systemil,, that reaches
a configuration containing a conformf 9] in a particular membrane, say. Thus,
coverability of the configuration witft, 9] insidem in II,; corresponds to reachability
of location/ in M. Since location reachability is undecidable for countechires,
coverability is undecidable faP-systems.

3.1 A syntactic fragments ofcP-systems

In this section we show that checking safety properties eaatelzided for a fragment of
cP-systems with a restricted form of passage rules in whicdlditions are only defined
by lower bound constraints.

4 By injective, we mean that two distinct conformons;ifin) cannot be mapped to the same
conformon iny’ (m).
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Definition 5 (Restricted cP-systems)We callrestrictedthe fragment ofcP-systems
in which we forbid the use of predicates of the form= ¢ andz < ¢ as conditions of
passage rules.

Our main result is that, despite of the two dimension of indinéss, the coverability
problemis decidable for restricte-systems with an arbitrary number of conformons.
To prove the result we adopt the methodology proposed in.EL],we first show that
restrictedcP-systems are monotonic w.iZ. We then show that is a well-quasi or-
dering. This implies that any upward closed set is represiria a finite set of minimal
(w.r.t. ©) configurations. Thus, minimal elements can be used to fjnigpresent in-
finite (upward closed) sets of configurations. Finally, weverthat, given an upward
closed setS of configurations, it is possible to compute a finite représtion of the
set of predecessor configurations$fMonotonicity ensures us that such a set is still
upward closed. We compute it by operating on the minimal et@sofS only.

Lemma 1 (Monotonicity). RestrictedcP-systems are monotonic w.(1, i.e., if u; =
w2 andpy C pf, then there existg), such thaty) = ph andus C ph,.

Proof. Let ;1; be a configuration evolving intps, and lety; < u}. The proof is by
case analysis on the type of rules applied in the executegm st

Internal rule.Let us consider a single application of an internal fulee, B) operating
on conformongA, z] and[B, y] in membranen. Since the rule is enabled we have
thatz > e. Furthermore, the application of the rule modifies the valti¢he two
conformons as followg:A, « — e] and[B, y + €].

Sinceu; C ) and by definition of£, we have that there exist conformdus «'] and
[B,y'] in membranen of u} such thatr < 2’ andy < ¢'. Thus, the same rule can
be applied td 4, z'] and[B, ¥’] leading to a configuratiop/, in which the two selected
conformons are updated as folloWd:, ' — ¢] and[B,y’ + ¢]. Finally, we notice that,
sincer’ > x > e, we have that — ¢ < 2/ —eandy + e <y’ + e. Thus,us < puh
Passage rulelet us consider a single application of a passage (ulg), e = (m,n),
operating on the conformomd, z] in membranen such thap(y) = y > e. Since the
rule is enabled we have that> e. Furthermore, the application of the rule moves the
conformon to membranein ps.

Sincep; C p) and by definition ofZ, we have that there exist conformdps '] in
membranen of i} such that: < 2’. Thus, the same passage rule is enablgd iand
can be applied to movel, 2’| in membrane: in 4. Thus, we have that, < p. O

From the monotonicity property, we obtain the following clbeary.

Corollary 1. For any restrictedcP-systems and any upward closed set (W)t.S of
configurations, the set of predecessor configuratiors efamelyPre(S) = {u | p =
w', ' € S}, is upward closed.

It is important to notice that the last two properties do nadtfor full cP-systems. As
an example, a passage rule from membrate2 with predicater = 0 is not mono-
tonic w.r.t. to the configurations; = ({[4,0]},0) andu; = ({[A, 1]}, ). Indeed,

p1 T phandu; = pe = (0, {[A4,0]}) but i} has no successors. Furthermore, the
set of predecessors of the upward closed set with minimedeiéys is the singleton
containingu; (clearly not an upward closed set).
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Let us now go back to the properties of the ordefing/Ne first have the following
property.

Lemma 2. Given acP-systen?] and two configurationgs and ./, checking ifu C p’
holds (i.e. ifu is more general thap') is a decidable problem.

Indeed, to decide it we have to select an appropriate ingectiapping from a a finite
set of mappings from to ’ and, then, to compute a finite set of multiset inclusions.
Let us now recall the notion afell-quasi orderingsee e.g. [7]).

Definition 6 (C is a wgo). A quasi ordering= on a setS is a well-quasi ordering
(wgo) if and only if for any infinite sequenaeg, as, . . . of elements irb (i.e.a; € S for
anyi > 1) there exist indexes< j such thats; < a;.

The following important property then holds.

Lemma 3 (C is awqo).Given acP-systendl = (V, N, R, uo), the orderingC defined
on the set of all configuration df is a wqo.

Proof. AssumeN = {1,...,m} as the set of membrane names. Let us first notice that
a configurationu can be viewed as a multiset of multisets of objects over theadlet
Viu...uv™ whereV? = {v' | v € V}. Indeed,u can be reformulated as the
multiset uniorp, & . . . @ p,,, where for eaci4, z] € u(m), p; contains a multiset with
x occurrences ofA™. E.g.,u1 = ({[A,2],[B, 3]}, {[4, 5]}) can be reformulated as
the multiset of multiset§ { A, A1}, { B, B, B}, { A%, A%, A%, A% A%} ).

When considering the aforementioned reformulation of ¢améitions, the ordering
C corresponds to the composition of multiset embedding (#istence of injective
mappinghq, . . ., h,,) and multiset inclusion (the constraint on values). Sincatiset
inclusion is a well-quasi ordering, we can apply Higman’siea [7] to conclude that
C is a well-quasi ordering. O

As a consequence of the latter property, we have that evemamupclosed sef of
configurations is generated by a finite set of minimal eles\eirg., for any upward
closed sef there exists a finite sét of configurationssuchthat = {u/ | p < u/, p €
F'}. Fis called thefinite basisof S. As proved in the following lemma, given a finite
basis of a sef, it is possible to effectively compute the finite basisFofe(.S).

Lemma 4 (Computing Pre). Given a finite basig' of a setS, there exists an algo-
rithm that computes a finite basig' of Pre(.S).

Proof. The algorithm is defined by cases as follows.

Creation rulesAssume>A € R andu € F. Then,u occurs inF”. Furthermore, sup-
pose thaj:(m) contains a conformop, e]. Then,F’ also contains the configurations
1 that satisfies the following conditions:

— /' (m) =puim)o {[A4,e]};
— /' (n) = p(n) form # n.
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Internal rules Assume a rule = A->B € Randu € F. We have several cases to
consider.

— We first have to consider a possible application-db two conformons that are
not explicitly mentioned inu. This leads to a predecessor configuration in which
we require at least the presenceAhfvith at least value and the presence @8
with any value. ThusF” contains the configurations that satisfies the following
conditions:

o 1/ (m) = pu(m) & {[A,e], [B,0]};
e u/'(n) = p(n) form # n.

— We now have to consider the applicationrafo a conformomA with valuez in u
and to a conformomB not explicitly mentioned iru. This leads to a predecessor
configuration in which we require at least the presencel afith at least value
x + e and the presence @& with any value. Thus, ifA, z] € u(m), F’ contains
the configurationg’ that satisfies the following conditions:

o p'(m) = (u(m) o {[A,z]}) & {[A,z + €], [B,0]};
e u/(n) = p(n) form # n.

— Furthermore, we have to consider the application taf a conformorB with value
y > ein p and to a conformoml not explicitly mentioned inu. This leads to a
predecessor configuration in which we require at least tbegmce ofA with at
least values and the presence @ with valuey — e. Thus, if[B,y] € u(m) and
y > e, F’ contains the configurations that satisfies the following conditions:

o p/(m) = (u(m) e {[B,y]}) & {[A el [B,y —el};
e u/'(n) = p(n) form # n.

— Finally, we have to consider the applicationoto a conformonB with value
y > e and to a conformom with valuex both inu. This leads to a predecessor
configuration in which we require at least the presencé with at least value:+¢e
and the presence @& with valuey — e. Thus, if[4, z], [B, y] € u(m) andy > e,

F’ contains the configurations that satisfies the following conditions:
o 1/ (m) = (u(m) & {[A, 2], [B,yl}) @ {[A,z + ], [B,y — e]};
e u/(n) = p(n) form # n.

Passage ruledAssumen<sn € R with p(z) defined byr > candu € F. We first have
to consider a possible applicationofo a conformon that is not explicitly mentioned
in u. This leads to a predecessor configuration in which we re@iileast the presence
of A with at least value in membranen. Thus,F’ contains the configurations that
satisfies the following conditions:

— /' (m) =puim)® {[A4,e]};
— p/'(n) = p(n) form # n.

Furthermore, suppose thatn) contains a conformofH, x| with « > e. Then,F” also
contains the configurations that satisfies the following conditions:

— W (p) = u(p) form,n # p.
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The correctness follows from a simple case analysis. a

Theorem 2 (Decidability of Coverability for Restricted cP-systems)The coverabil-
ity problem is decidable for restrictezP-systems.

Proof. The thesis follows from Lemmas 1, 3, 4, and from Theorem 4[1]in

4 Relation with other models

In this section we compareP-systems with other models used in the concurrency
field, namely the nested Petri nets of [8] and the constraimaltiset rewriting systems
(CMRS) of [2].

4.1 cP-systems vs nested Petri nets

Let us first recall that a Petri net (P/T system) [11] is a tu@#eT, mo) whereP is a
finite set ofplaces, T' is a finite set otransitions, andmy is the initial marking. Intu-
itively, places correspond to location or states of a giwestesn. Places are populated
with tokens, i.e., indistinguishable objects, that can $edue.g. to mark a given set of
states of to model concurrent processes. Tokens have moahstructure. This means
that we are only interested in the multiplicity of tokensidfesa place. Transitions are
used to control the flow of tokens in the net (they define linksuveen different places
and regulate the movement of tokens along the links). Mona&dly, atransition t
has a pre-seftt and a post-sét both defined by multisets of placesih A marking is
just a multiset with elements iR, a mapping fromP to non-negative integers. Given
a markingm and a place, we say that the plagecontainsm(p) tokens A transition

t is enabled at the marking if *¢ is contained as a sub-multisetsim. If it is the case,
firing ¢ produces a markingy’, writtenm - m/, defined agme*t) @ t*, whered is
multiset union and is multiset difference. A firing sequence is a sequence okings
momy ... such thatn; is obtained fromn;_, by firing a transition inl" at m.

A Petri net with inhibitor arc is a Petri net in which transits can be guarded by an
emptyness test on a subset of the places. For instance sétitranwvith an inhibitor arc
on placep is enabled only whep is empty.

Nested Petri netDifferently from P/T systems, in aested Petri netokens have an
internal structure that can be arbitrarily complex (e.gpkeh can be a P/T system, or
a P/T system with tokens that are in turn P/T systems, and yd-oninstance, 2-
level nested Petri nés defined by a P/T system that describes the whole systeladcal
system netand by a P/T system that describes the internal structutekehs, called
element net

The transitions of the system net can be used to manipulkéascas black boxes,
i.e. without changing their internal structure. These lohttansitions are callettans-
port rules(they move complex objects around the places of the systém ne
Transitions of the element nets can be used to change thraahructure of a token
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without changing the marking of the system net. These kinttasfsitions are called
autonomous rules

Finally, we can use synchronization labels (i.e. labelygteam/element net transitions)
to enforce the simultaneous execution of a transition ofsgrstem net and of an ele-
ment net yertical synchronizatioy or the simultaneous execution of transitions of two
distinct element nets residing in the same system plaagzontal synchronization
Notice that vertical synchronization modifies both the nraglof the system net and
the internal structure of (some) tokens.

cP-systems as nested Petri néisthis section we show thaP-systems can be encoded
as 2-level nested Petri nets in which the system net is a Rf€msyand the element net
is a P/T system with inhibitor arcs.

Assume acP-systemiI = (V, N, R, j19). We build a 2-level nested Petri nets as
follows. The system net is a P/T system with a plaC€sN F' used to contain all con-
formons in a current configuration df, and a place® REAT E,. for each creation
ruler € R. The transitions of the system net are transport rules tloateincreation
rules used to non-deterministically inject new conformomplace CON F. Namely,
for each creation rule € R we add a transport rule with presenf{ CREATE,. } and
postse{ CREATE,,CONF}. We assume here th&tREATE,. is initialized with
a single element net that models the conformon created by-rdiransitiont,, makes
a copy of such an element net and puts it in placaN F'.

An element nefV,. denotes a single conformenlt is defined by a P/T system with
placesP = V U N U {E}. Only one place of those iV and only one place of those
in V can be marked in the same instant. The marked places conepthe hame and
current location ot. Furthermore, the number of tokens in pldcelenotes the current
amount of energy of.

To model an internal rule = A B we use a horizontal step between two distinct
element netsV; and N, i.e., a pair(t,. 1, t- 2) of element net transitions with synchro-
nized labels such that:

— *t.1 has one occurrence of, one ofm, ande of E, i.e., it is enabled itV rep-
resents a conformon with nam¥in membranen and at least units of energy;
those units are subtracted from plageéen N;.

— *t, 2 has one occurrence @& and one ofm, i.e., it is enabled ifV, represents a
conformon with name3 in membranen.

— t», has one occurrence ef and one ofn.

- t;:g has one occurrence @, one ofm, ande of E, i.e., e units of energy are
transferred to plac& in Ns.

To model a passage rute= m<sn with conditionz > e, we use an autonomous
step. Specifically, we define an element net transitissuch that:

— *t, has one occurence ot, ande occurrences oF, i.e., it is enabled ifV; is in
membranen and at least units of energy.

— t» has one occurrences af and ance occurrences of, i.e., N represents now
a conformon (with the same name) in membranés energy is not changed (we
first subtrace tokens to check the conditian> ¢) and then add tokens back to
placeFE in Ny).
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£
q
CREATE
SYSTEM NET \
CONFORMON NAME MEMBRANE NAMES

INT

]
e

ENERGY

PASS

ELEMENT NET: CONFORMON [4, 4] IN MEMBRANE M

Fig. 1. Example of nested Petri net.

To model a passage rutavith conditionz = e, we can add to each transitiogn 4 with

A € V the test= e on placeF. It is easy to define this test by using P/T transitions
with inhibitor arcs. Rules with conditions < e for e > 1 can be encoded by splitting
thetestintar =0,...,z =e¢ — 1.

A marking of the resulting 2-level nested net specifies thmlmer of element nets
inside the system plad@ON F'. Since each element net maintains information about
name, value and location the content of plag@ N F' corresponds to the current con-
figuration of I1.

Example 2.Assume &P-systeml] with V' = {A, B}, N = {M, N, P}, creation rules

2 Aand 2B, internal ruleA-2; B, and passage rul¥ <~ P with conditionz: = 0. The
2-level nested Petri nets that encodesdResystemd] is shown in Fig. 1. We use here
circles to denote places, rectangles to denote transjtamarrow from a circle to a
rectangle to denote places in the pre-set and an arrow frozctangle to a circle to
denote places in the post-sets of transitions; we labehardth numbers to indicate a
multiplicity > 1 of a place in the pre-/post-set. The system net plaBd’ AT E is used
to keep a copy resp. of the conformph, 4] so as to non-deterministically inject new
ones in the current configuration (pla€® N F'). The element net has places to model
names, membranes, and energy. The internal rule is modsflgte pair of transitions
with labelsINT andINT. When executed simultaneously (within plaC®N F of
the system net) by two distinct element net (one execl®E and the other executes
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INT) their effect is to move 3 tokens from tiieplace of an element net markeid M

to the F place of an element net markétl M. Notice that tokens of the element nets
are objects with no structure. The passage rule is modejfititkbelement net transition
with label PASS. It simply checks thaF is empty with an inhibitor arc (arrow with
circle) and then moves a token from the plaédo the placeP (it changes the location
of the element net). Notice that the system net placeV F' may contain an arbitrary
number of element nets (the corresponding P/T system isunds).

It is important to notice that 2-level nested Petri nets iriclkelement nets have in-
hibitor arcs are Turing equivalent [9]. This result is catesint with the analysis of the
expressive power of futP-systems [5]. From the previous observations, restriced
systems are a subclass of nested Petri nets in which botiigtessand the element nets
are defined by P/T systems. From the results obtained forstreittured subclasses of
nested Petri nets in [9], we obtain an indirect proof for dability of coverability of
restrictedcP-systems.

The connection betweerP-systems and nested nets can be exploit to extend the
model in several ways. As an example, for restricted passalgs, coverability re-
mains decidable when extendidg-systems with: conformons defined by a list of pairs
name-value instead of a single pair; rules tinahsferall the energy fromA to B; or
conformons defined by a state machine (i.e. with an interta# snstead of statically
assigned type).

4.2 RestrictedcP-systems vs CMRS

RestrictedcP-systems can also be modelled in CMRS, an extension of iResgiin
which tokens carry natural numbers.

CMRS Constrained multiset rewriting systef@8RS) [2] are inspired to formulations
of colored Petri nets in term rewriting. A token with datan placep is represented
here as a term(d), a marking as a multiset of terms, and a transition as a (tiondl)
multiset rewriting rule. More precisely, léérm be an elemenp(z) wherep belong
to a finite set of predicate symbdPs(places) and: is a variable ranging over natural
numbers. We often call a terp(t) with p € P ap-termor P-term A elementp(v)
with p € P andv € Nat is called aground term
A configuration is a (finite) multiset of ground terms. A CMRSiiset of rewriting rules
with constraints of the form = L ~» R : ¥ that allows to transform (rewrite) multisets
into multisets. More precisely, and R are multisets of terms (with variables) a#ids
a (possibly empty) finite conjunction gfap-orderconstraints of the forme + ¢ < y,
<y x=y,x<cx>cxr=cwherez, yare variables appearing ihand/orR
andc € Nat is a constant.
A rule r is enabled at a configuratianif there exists a valuation of the variabl&s!l
such thatf’al(¥) is satisfied. Firing- atc leads to a new multiset = ¢ & Val(L) &
Val(R) whereVal(L), resp.Val(R), is the multiset of ground terms obtained frdm
resp.R, by replacing each variableby Val(x).

As an example, consider the CMRS rule:

p=[p(), q)] ~ [9(z), r(@), r(w)] : {z+2<y,z+4<z,z<w}
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A valuation which satisfies the condition &al(z) = 1, Val(y) = 4, Val(z) =
8, and Val(w) = 10. A CMRS configuration is a multisets of ground terms, e.g.,
[p(1), p(3), a(4)). Therefore, we have thi(1), p(3), g(4))tp[p(3), a(8), (1), r(10)].

A CMRS is well-structured with respect to the well-quasienidg <. defined as
follows. Given a configuration, let V(c) = {i € Nat | Ip(i) € ¢}, ande=; : P +—
Nat with i € Nat be the multi set such that.;(p) = ¢(p;) for anyp € P. Then, we
have that <. ¢ iff there exists an injective functioh : V(c¢) — Nat such that{) for
anyi € V(c) : c=; < L) (@) foranyi € V(c) s.t.i < cmax : i = h(i); (iii) for
anyi,j € V(c)U{0}s.t.i < jandj > cmax : j —i < h(j) — h(i). A symbolic
algorithm to check coverability — w.r.& . —is described in [2].

RestrictedcP-systems as CMRA cP-configuration. is mapped to a CMRS configu-
ration as follows. A conformon = [A, z] in membranen is represented by means of
a multiset of terms

Mz,m = [Coan,m(U)] © 0y

whereQ? is the multiset withz occurrences of the term(v), i.e.,

05 = [u(v), ..., u(v)]

r—times

wherev is a natural number used as a unique identifier for the cordarmThe u-
terms with parameter are used to count the amount of energy of conformon with
identifierv. E.g. ifc = [AT P, 4] thenM?2 | = [confarpm(2), u(2),u(2),u(2),u(2)]
— 4 occurrences af(2) — where2 is the unique identifier of conforman Furthermore,
if c = [ATP,0],thenM? , = [confarpm(2)]. Thus, we usécon fa n(v)] to model a
conformon with zero energy and identifier

A representatiotRep(n) of acP-configurationu is obtained by assigning a distinct
indentifier to each conformon and by taking the (multiseiparof the representations
of each conformons ip. Formally, letu containsr membranes such that{m;) con-
tains the conformons, ;,...,c;,, fori: 1,...,randn; + ...+ n, = k, then

ni Ny

Rep(n)” = (@M )& ..o (@M ,,)
j=1

J=1

whereV = (v11,...,V1,n45---,0r1,--.,Vrp,) arek distinct natural numbers work-
ing as identifiers of thé conformons inu. Identifiers of conformons in the initial con-
figurationyy are non-deterministically chosen at the beginning of theuation using
the following rule:

[init] ~ [fresh(v)] ® Rep(uo)¥ : {vi1 < ... <vip, <Vp1 < Vpp, <V}

whereV is a vector of variables that denotes conformon indentifi@ssdescribed in
the def. ofRep(1)"'). Furthermore, we maintain a fresh identifiein the fresh-term
(used to dynamically create other conformons).

The rules of a restrictedP-system are simulated via the following CMRS rules
working on CMRS representations of configurations.
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— Creation ofc = [A, z] insidem:
[fresh(z)] ~ [fresh(y)] @M, : {z <y}

We simply inject a new multiset of terms with parametestored in thefresh-term
and reset the fresh value.

— A andB exchange units of energy.
For each membrane:

[confam(x),confpm(y)] ®OF ~ [confam(x),confpm(y)] ®OY : true

Notice that, by definition of the CMRS operational semantiie rule is enabled
only when there are at leastoccurrences ofi-terms with parameter (identifier
of A) and where there exists a conformBrwith identifiery (x andy are variables
ranging over natural numbers). The passage of energy frgwith identifierx) to
B (with identifiery) is simply defined by changing the paramet@f e occurrences
of u-terms intoy.

— Passage rule formm to n conditioned byr > ¢:
For each membrane valug

[confam(x)] ®OF ~ [confan(x)] ®OF

Notice that, by definition of the CMRS operational semantiie rule is enabled
only when there are at leasioccurrences ofi-terms with parameter (identifier
of A). The current location of is stored in the ternzon f4 ,(x). The passage
to membrane: is defined by changing the terean f4 ., (x) into confa . (z). The
u-terms with the same parameter are not consumed (i.e. thay doth in the
left-hand side and in the right-hand side of the rule).

From the results obtained for CMRS [2], we obtain anotheir@u proof for decid-
ability of coverability of restrictedcP-systems. The connection betwehsystems
and CMRS can be used to devise extensions of the conformoelrimodnhich, e.g.,
conformon have different priorities or ordered with redpgecsome other parameter.
This can be achieved by ordering the parameters of the rauttiserms used to encode
each conformon. CMRS rules can deal with such an orderingsingwconditions on
parameters of terms in a rule of the form< y.

5 Related Work and Conclusions

In the paper we have investigated the decidability of comfpanal properties of con-
formon P-systems like reachability and coverability. Mspecifically, we have shown
that, although undecidable for the full model, the covdigtproblem is decidable for
a fragment with restricted types of predicates in passags.ru

To our knowledge, this is the first work devoted to the qualigaanalysis of con-
formon P-systems, and to the comparison with other modedsiéested Petri nets and
CMRS. The expressiveness of the conformon P-systems igedturd[5] by using a re-
duction to counter machines with zero test (Turing equivdléVe use such a result to
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show that coverability is undecidable for the full modeleTdecidability or reachability

for the full model is not in contrast with its great expresgdpower. Indeed, in the reach-
ability problem the target configuration contains precigerimation about the history
of the computation, e.g., the total amount of energy exchdmigiring the computation.
These information cannot be expressed in the coverabiiiglpm, where we can only
fix part of the information of target configurations. In thense, coverability seems a
better measure for the expressiveness of this kind of coatipnal models.

In the paper we have compared this result with similar resafttained for other
models like nested Petri nets and constrained multisetitieg/systems. The direct
proof presented in the paper and the corresponding algoidn be viewed however
as a first step towards the development of automated veidgfictdols for biologically
inspired models. The kind of qualitative analysis that carpbrformed using our al-
gorithm is complementary to the simulation techniques usegiantitative analysis of
natural and biological systems. Indeeed, in qualitativadyeis we consider all possible
executions with no probability distributions on transitsp whereas in quantitative anal-
ysis one often considers a single simulation by associgtingabilities to each single
transitions. Unfortunately, the rates of reactions arerofinknown and, thus, extrap-
olated from known data to make the simulation feasible. {fatale analysis requires
instead only the knowledge of the dynamics of a given natmadel. Automated ver-
ification methods can thus be useful to individuate stradtproperties of biological
models.
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