Computing Simulations over Tree Automata
(Efficient Techniques for Reducing Tree Automata)

Parosh A. Abdulld, Ahmed Bouajjarfi, Lukas Holik, Lisa Kaatt, and Tomas Vojnar

L University of Uppsala, Sweden, emajpar osh, | i sa. kaati }@t . uu. se
2 LIAFA, University Paris 7, France, emadbou@i af a. j ussi eu. fr
3 FIT, Brno University of Technology, Czech Rep., eméilol i k, voj nar Y@i t. vut br. cz

Abstract. We address the problem of computing simulation relatiores tnee

automata. In particular, we consider downward and upwardiisitions on tree
automata, which are, loosely speaking, analogous to fahamad backward rela-
tions over word automata. We provide simple and efficienvratigms for com-

puting these relations based on a reduction to the problecomputing simu-

lations on labelled transition systems. Furthermore, vesvdhat downward and
upward relations can be combined to get relations comgatifith the tree lan-
guage equivalence, which can subsequently be used for eieeffsize reduction
of nondeterministic tree automata. This is of a very higkriest, for instance, for
symbolic verification methods such as regular model chegckivhich use tree
automata to represent infinite sets of reachable configuatiWe provide ex-
perimental results showing the efficiency of our algoritrmnsexamples of tree
automata taken from regular model checking computations.

1 Introduction

Tree automata are widely used for modelling and reasoniagtatarious kinds of struc-
tured objects such as syntactical trees, structured dauggrenfigurations of complex
systems, algebraic term representations of data or cotmmaaetc. (see [9]). For in-
stance, in the framework of regular model checking, treeraata are used to represent
and manipulate sets of configurations of infinite-stateesystsuch as parameterized
networks of processes with a tree-like topology, or prograith dynamic linked data-
structures [7, 3, 5, 6].

In the above context, checking language equivalence anctirggl automata wrt.
the language equivalence is a fundamental issue, and penfgpthese operations effi-
ciently is crucial for all practical applications of treetamata. Computing a minimal
canonical tree automaton is, of course, possible, but itireg determinisation, which
may lead to an exponential blow-up in the size of the automatberefore, even if
the resulting automaton can be small, we may not be able t@uatmit in practice due
to the very expensive determinisation step, which is, iddaemajor bottleneck when
using canonical tree automata.

A reasonable and pragmatic approach is to consider a notieguivalence that
is stronger than language equivalence, but which can bekebeefficiently, using
a polynomial algorithm. Here, a natural trade-off betwd®ss $trength of the consid-
ered equivalence and the cost of its computation arisesiecdse of word automata,
an equivalence which is widely considered as a good trafie-ihiis sense is simulation
equivalence. It can be checked in polynomial time, and efficalgorithms have been
designed for this purpose (see, e.g., [10, 14]). These ighges make the computation

of simulation equivalence quite affordable even in congmariwith the one of bisimu-
lation, which is cheaper [13], but which is also stronged #rerefore leads in general
to less significant reductions in the sizes of the automata.

In this paper, we study notions of entailment and equivaenetween tree au-
tomata, which are suitable in the sense discussed aboveyaatso provide efficient
algorithms for their computation.

We start by considering a basic notion of tree simulatiohedalownward simula-
tion, corresponding to a natural extension of the usual notiagiriilation defined on
or-structures t@nd-orstructures. This relation can be shown to be compatibletivith
tree language equivalence.

The second notion of simulation that we consider, callpadrard simulationcor-
responds intuitively to a generalisation of the notion ofkwveard simulation to and-or
structures. The definition of an upward simulation is paraised by a downward sim-
ulation: Roughly speaking, two statgandq’ are upward similar if whenever one of
them, sayg, considered within some vectgqa,...,0n) at positioni, has an upward
transition to some state thenq’ appears at positionof some vectofd,,...,qy) that
has also an upward transition to a stsltavhich is upward similar t@, and moreover,
for each positionj # i, q; is downward similar taq’j.

Upward simulation is not compatible with the tree languamd\elence. It is rather
compatible with the so-called context language equivaewhere a context of a state
g is a tree with a hole on the leaf level such that if we plug a inethe tree language
of g into this hole, we obtain a tree recognised by the automatonever, we show
an interesting fact that when we restrict ourselves to ugwelations compatible with
the set of final states of automata, the downward and upwardlaiion equivalences
can becombinedn such a way that they give rise to a new equivalence relatioich
is compatible with the tree language equivalence. This déoation is not trivial. It
is based on the idea that two statpsandq, may have different tree languages and
different context languages, but for everipn the tree language of one of them, spy
and eveng in the context language of the other, hasethe treeC[t] (wheret is plugged
into C) is recognised by the automaton. The combined relationasses than (or, in
the worst case, as coarse as) the downward simulation awodditg to our practical
experiments, it usually leads to significantly better reuns of the automata.

In this way, we obtain two candidates for simulation-basgaiwlences for use in
automata reduction. Then, we consider the issue of degjgeffitient algorithms for
computing these relations. A deep examination of downwadiwgpward simulation
equivalences shows that they can be computed using edletiiéasame algorithmic
pattern. Actually, we prove that, surprisingly, computohgwvnward and upward tree
simulations can be reduced in each case to computing siongadn standard labelled
transition systems. These reductions provide a simple keghet way of solving in
a uniform way the problem of computing tree simulations juion to computing
simulations in the word case. The best known algorithm fbrisg the latter problem,
published recently in [14], considers simulation relasi@iefined on Kripke structures.
The use of this algorithm requires its adaptation to lallelansition systems. We pro-
vide such an adaptation and we provide also a proof for tigisrdhm which can be
seen as an alternative, more direct, proof of the algorittfifi4]. The combination
of our reductions with the labelled transition systemseblasimulation algorithm leads

to efficient algorithms for our equivalence relations oreteaitomata, whose precise
complexities are also analysed in the paper.

We have implemented our algorithms and performed expetsmenautomata com-
puted in the context of regular tree model checking (comadng to representations
of the set of reachable configurations of parametrised s\tel he experiments show
that, indeed, the relations proposed in this paper provgitéficant reductions of these
automata and that they perform better than (existing) hikitton-based reductions [11].

Related work As far as we know, this is the first work which addresses theeisd
computing simulation relations for tree automata. The deand and upward simula-
tion relations considered in this work have been introddizetin [4] where they have
been used for proving soundness of some acceleration tpasiused in the context
of regular tree model checking. However, the problem of coting these relations has
not been addressed in that paper. A form of combining dowdwsad upward rela-
tions has also been defined in [4]. However, the combinationsidered in that paper
require some restrictions which are computationally diffito check and that are not
considered in this work. Bisimulations on tree automateehasen considered in [2,
11]. The notion of a backward bisimulation used in [11] cepends to what can be
called a downward bisimulation in our terminology.

Outline The rest of the paper is organised as follows. In the neximecte give some
preliminaries on tree automata, labelled transition sgsteand simulation relations.
Section 3 describes an algorithm for checking simulatiolabelled transition systems.
In Section 4 resp. Section 5, we translate downward resparggimulation on tree
automata into corresponding simulations on labelled ttianssystems. Section 6 gives
methods for reducing tree automata based on equivalengesdi&orm downward and
upward simulation. In Section 7, we report some experinieasalts. Finally, we give
conclusions and directions for future research in Section 8

Remark For space reasons, all proofs are deferred to [1].

2 Preliminaries

In this section, we introduce some preliminaries on trereg dutomata, and labelled
transition systems (LTS). In particular, we recall two slation relations defined on tree
automata in [4], and the classical (word) simulation relatilefined on LTS. Finally,
we will describe an encoding which we use in our algorithmsléscribe pre-order
relations, e.g., simulation relations.

For an equivalence relatioa defined on a seaD, we call each equivalence class of
= ablock and us&)/= to denote the set of blocks ia.

Trees A ranked alphabek is a set of symbols together with a functiBank: ~ — N.
For f € £, the valueRanK f) is said to be theankof f. For anyn > 0, we denote b{,
the set of all symbols of rankfrom Z. Let & denote the empty sequencetrée tover
an alphabek is a partial mapping: N* — X that satisfies the following conditions:

— dom(t) is a finite, prefix-closed subset bf, and
— for eachp € dom(t), if Rankt(p)) =n> 0, then{i | pi e dom(t)} ={1,...,n}.

Each sequencp € dont) is called anodeof t. For a nodep, we define theé'" child
of p to be the nodepi, and we define thé" subtreeof p to be the tre¢’ such that
t'(p) =t(pip) for all p’ € N*. A leafoft is a nodep which does not have any children,
i.e., there is né € N with pi € dom(t). We denote byf (Z) the set of all trees over the
alphabet.

Tree Automata A (finite, non-deterministic, bottom-upjee automator{TA) is a 4-
tupleA= (Q,Z,A,F) whereQ is a finite set of state§; C Q is a set of final stateg,
is a ranked alphabet, addis a set of transition rules. Each transition rule is a trigfle
the form((qs,...,0n), f,q) whereq,...,0n,q € Q, f € Z, andRanKf) = n. We use

(d1,---,0n) - gto denote thaf(qy,...,0n), f,q) € A. In the special case whene=0,

we speak about the so-callhf rules which we sometimes abbreviate a5 g. We
useLhg(A) to denote the set déft-hand sidesf rules, i.e., the set of tuples of the form

(Q,.--,0n) Where(q, .. .,0n) LN g for somef andq. Finally, we denote bjrRankA)
the smallesh € N such thath > m for eachm € N where(qy,...,0m) € Lhs(A) for
somegi € Q,1<i<m.

A run of A over a tree € T(X) is a mappingt: domt) — Q such that for each
nodep € dom(t) whereq = 1i(p), we have that ity = (pi) for 1 <i < n, thenA has

arule(ga,...,0n) o) g. We writet SLLN g to denote thattis a run ofA overt such
thatTi(e) = q. We uset — q to denote that == q for some runr. Thelanguageof

a stateq € Q is defined byL(q) = {t|t = q}, while thelanguageof A is defined by
L(A> = quF L(q>-

Labelled Transition Systems A (finite) labelled transition system (LTS a tuple
T=(Sc,—) whereSis a finite set of states; is a finite set of labels, and> C
Sx £ x Sis atransition relation.

Given an LTST = (S £ ,—), a labela e ., and two stateg,r € S, we denote by
q 2.1 the fact that(g,a,r) € —. We define the set d-predecessoref a stater as
prea(r) = {qe S| q—=r}. GivenX,Y C S, we denotepre,(X) the setl Jsx prea(s),
we writeq — X iff q € prea(X), andY -2 X iff Y npres(X) # 0.

Simulations For a tree automatoA = (Q,Z,A,F), adownward simulation Ds a bi-
nary relation orQ such thatif(q,r) € D and(qa,...,0n) R g, then there arey, ...,

such that(rq,...,rn) R r and(q;,ri) € D for eachi such that I<i < n. Itis easy to
show [4] that any downward simulation can be closed undexxiefty and transitivity.
Moreover, there is a unique maximal downward simulatiorr evgiven tree automaton,
which we denote aggownin the sequel.

Givena TAA= (Q,Z,A,F) and a downward simulatidd, anupward simulation U

induced byD is a binary relation 0@ such thatif(g,r) € U and(qa, . ..,qn) LN g with

g =g, 1<i<n,thenthere arey, ... rn,r’ such thatry,...,ry) N r’ wherer; =,
(d,r') €U, and(qj,r;j) € D for eachj such that 1< j # i < n. In [4], it is shown that
any upward simulation can be closed under reflexivity anasitaity. Moreover, there
is a unigue maximal upward simulation with respect to a fixedmvard simulation
over a given tree automaton, which we denotegsin the sequel.

Given aninitial pre-order C Q x Q, it can be shown that there are unique maxi-
mal downward as well as upward simulations includetiam the given TA, which we
denote<!, in the sequel, fox € {downup}. Further, we use to denote the equiva-
lence relationsy N < * on Q for x € {downup}. Likewise, we define the equivalence
relations=, for an initial pre-ordet on Q andx € {downup}.

Foran LTST = (S £ ,—), a(word) simulationis a binary relatiorR on Ssuch that
if (0,r) € Randq -2 ¢, then there is an’ with r - 1’ and (¢/,r’) € R. In a very
similar way as for simulations on trees, it can be shown thgigiven simulation on an
LTS can be closed under reflexivity and transitivity and thate is a unique maximal
simulation on the given LTS, which will we denote by Moreover, given atnitial
pre-ordeil C Sx S it can be shown that there is a unique maximal simulatioluded
in | on the given LTS, which we denotg' in the sequel. We use to denote the
equivalence relatiors N <~ onSand consequentl' to denotes' N (')~

Encoding Let S be a set. Apartition-relation pair over Sis a pair (P,Rel) where
(1) P C 25 is a partition ofS (i.e., S= UgcpB, and for allB,C € P, if B # C, then
BNC =0), and (2)Rel C P x P. We say that a partition-relation pgiP,Rel) over S
induces(or defines) the relatiod = U c)creB < C.

Let < be a pre-order defined on a sgtand let= be the equivalenc& N <1
defined by<. The pre-orde can be represented—which we will use in our algorithms
below—by a partition-relation pa{iP, Rel) overSsuch thai{B,C) € Reliff s; < s, for
all s; € Bands; € C. In this representation, if the partitidhis as coarse as possible
(i.e., suchthas;, s, € Biff 51 =), then, intuitively, the elements &fare blocks ofs,
while Relreflects the partial order dAcorresponding tex.

3 Computing Simulations on Labelled Transition Systems

We now introduce an algorithm to compute the (unique) makaimaulation relation
<! on anLTSfor a given initial pre-order on states. Our algorithm is a re-formulation
of the algorithm proposed in [14] for computing simulati@verKripke structures

3.1 An Algorithm for Computing Simulations on LTS

For the rest of this section, we assume that we are given anfL¥SS, - ,—) and an
initial pre-ordend C Sx S. We will use Algorithm 1 to compute the maximum simulation
<!'C Sx Sincludedinl. In the algorithm, we use the following notation. Giyea Sx S
and an elemerg € S, we denote(q) the set{r € S| (q,r) € p}.

The algorithm performs a number of iterations computinggusace of relations,
each induced by a partition-relation p&R, Rel). During each iteration, the states be-
longing to a blockB’ € P are those which are currently assumed as capable of simulat-
ing those from anyB with (B,B’) € Rel The algorithm starts with an initial partition-
relation pair(Pnit, Relnit) that induces the initial pre-ordeon S. The partition-relation
pair is then gradually refined by splitting blocks of the i P and by restricting
the relationRel on P. When the algorithm terminates, the final partition-relatpair
(Psim, Rekim) induces the required pre-ordet.

The refinement performed during the iterations consistplitting the blocks inP
and then updating the relatiételaccordingly. For this purpose, the algorithm maintains
a setRemovg(B) for eacha € - andB € P. Such a set contains states that do not have an

a-transition going into states that areBmor to states of any blod®’ with (B,B') € Rel
Clearly, the states iRemovg(B) cannot simulate states that havesamansition going
into g g)crelB'’- Therefore, for anjRemovg(B) # 0, we can split each blod® € P to
CnNRemovg(B) andC\ Removg(B). This is done using the functid®pliton line 6.
After performing theSplit operation, we update the relatiétel and theRemove
sets. This is carried out in two steps. First, we compute gmcegimation of the next
values ofReland RemoveMore precisely, after a split, aRel relations between the
original “parent” blocks of states are inherited to theihildren” resulting from the
split (line 8)—the notatiorparentp _ (C) refers to the parent block from whidh
arose within the split. On line 10, the remove sets are thieerited from parent blocks
to their children. To perform the second step, we observethtwinheritance of the
original relationRel on parent blocks to the children blocks is not consistent e
split we have just performed. Therefore, on line 14, we sgbsetly prundRelsuch that
blocksC that have am-transition going intd states cannot be considered as simulated
by blocksD which do not have am-transition going intd Jg gy crelB'—notice that
due to the split that we have performed, thélocks are now included iRemoveThis
pruning can then cause a necessity of further refinementeasdtes that have sorbe
transition into & block (that was freshly found not to simula@, but not toC nor any
block that is still viewed as capable of simulati@ghave to stop simulating states that
can go intdJ;c ¢/)creiC'- Therefore, such states are added Remnovg(C) on line 17.

3.2 Correctness and Complexity of the Algorithm

Inthe rest of the section, we assume that Algorithm 1is apgih an LTS = (S, 2, —)
with an initial partition-relation paitPyit, Relnit). The correctness of the algorithm is
formalised in Theorem 1.

Theorem 1. Suppose that | is the pre-order induced @i, Relnit). Then, Algo-
rithm 1 terminates and the final partition-relation paiPsim, Rekim) computed by it
induces the simulation relatiog', and, moreover, §,= S/'z'.

A similar correctness result is proved in [14] for the al¢fom on Kripke structures,
using notions from the theory of abstract interpretation1l], we provide an alterna-
tive, more direct proof, which is, however, beyond the sgan#ations of this paper.
Therefore, we will only mention the key idea behind the teration argument. In par-
ticular, the key point is that if we take any bloBKrom Pi; and anya € ¢« , if B or any
of its childrenB’, which arises by splitting, is repeatedly selected to begssed by
the while loop on line 3, then tHRemovg(B) (or Removg(B')) sets can never contain
a single states € Sat an iteratiori of the while loop as well as on a later iteratipn
j > 1. Therefore, as the number of possible partitions as wehastmber of states is
finite, the algorithm must terminate.

The complexity of the algorithm is equal to that of the orajialgorithm from [14],
up to the new factor that is not presentin [14] (or, equivalent]y,| = 1 in [14]). The
complexity is stated in Theorem 2.

Theorem 2. Algorithm 1 has time complexity(@ |.|Psim|-|S| + |Psim|-| — |) and space
complexity @|z |.|Psim|-|S])-

A proof of Theorem 2, based on a similar reasoning as in [ke found in [1]. Here,
let us just mention that the result expects the input LTS hedrtitial partition-relation

Algorithm 1: Computing simulations on states of an LTS
Input: AnLTST = (S £,—), an initial partition-relation pai(Pit, Relnit) on Sinducing
apre-ordet C Sx S
Data: A partition-relation paif(P,Rel) on S and for eactB € P andac ., a set
Removg(B) C S
Output: The partition-relation paifPsim, Rekim) inducing the maximal simulation oh
contained inl.

[* initialisation */
1 (P7 Rel) — (PlnihRelnit);
2 forall a€ ,B e Pdo Removg(B) — S\ prea(URelB));

/* conputation */
3 while Ja € .. 3B € P. Removg(B) # 0 do
4 Remove— Removg(B); Removg(B) — 0;
5 Pprev —P; Bprev —B; Re'prev — Ret
6 P — Split(P,Removg
7 forall C e Pdo
8 Re(C) — {D € P|D C URebrev(parentp, (C))};
9 forall be £ do

10 Removg(C) «— Removg(parentp, _ (C))

11 forall CeP.C -& Bprev do

12 forall D € P. D C Removealo

13 if (C,D) € Relthen

14 Rel— Rel\ {(C,D)};

15 forall be - do

16 forall r € prey(D) \ prep(URelC)) do
17 Removg(C) — Removg(C)U{r}

18 (Psim, Rekim) — (P, Rel);

pair be encoded in suitable data structures. This fact i©itapt for the complexity
analyses presented later on as they build on using Algorithm

In particular, the input LTS is represented as a list of rds@bout its states—we
call this representation as tetate-listrepresentation of the LTS. The record about each
states € Scontains a list of nonempfyre,(s) seté, each of them encoded as a list of its
members. The partitioR;; (and later any of its refinements) is encoded as a doubly-
linked list (DLL) of blocks. Each block is represented as d if (pointers to) states of
the block. The relatioRelyi (and later any of its refinements) is encoded as a Boolean
matrix Pinit X Pnit.

4 Computing Downward Simulation

In this section, we describe algorithms for computing dowrdvsimulation on tree
automata. Our approach consists of two parts: (1) we tren#tee maximal down-
ward simulation problem over tree automata into a corregimgmmaximal simulation

4 We use a list rather than an array having an entry for @aeh in order to avoid a need to
iterate over alphabet symbols for which there is no tramsiti

problem over LTSs (i.e., basically word automata), and (8)cempute the maximal
word simulation on the obtained LTS using Algorithm 1. Belove describe how the
translation is carried out.

We translate the downward simulation problem on a AA= (Q,%,A,F) to the
simulation problem on a derived LTA . Each state and each left hand side of a rule in
Ais represented by one stateAh, while each rule iA is simulated by a set of rules in
A*. Formally, we definé® = (Q*,Z*,A*) as follows:

— The setQ® contains a statg® for each state) € Q, and it also contains a state
(q17 s ;Qn). for eaCh(q17 s ;CIn) € LhS(A)

— The setz® contains each symbale Z and each indeke {1,2,...,n} wheren is
the maximal rank of any symbol .

" f . .
— For each transition ruléys,...,0n) — q of A, the setA® contains both the transi-

tion g°* ! (qs,..-,0n)* and transitiongay . .., gn)* — q° foreachi : 1 <i<n.
— The set€*, 2*, andA*® do not contain any other elements.

The following theorem shows correctness of the translation
Theorem 3. Forall g,r € Q, we have Y=< r® iff g <down-

Due to Theorem 3, we can compute the simulation relat@pwn, on Q by con-
structing the LTSA® and running Algorithm 1 on it with the initial partition-r&ion

pair being simply(P*, Ref) = ({Q°},{(Q",Q")})*.
4.1 Complexity of Computing the Downward Simulation

The complexity naturally consists of the price of compilangiven TAA= (Q,Z,A,F)
into its corresponding LT, the price of building the initial partition-relation pair
(P*,Ref), and the price of running Algorithm 1 o and(P*,Ref).

We assume the automata not to have unreachable states aadetathmost one
(final) state thatis not used in the left-hand side of anysitaom rule—general automata
can be easily pre-processed to satisfy this requirementhé&n) we assume the input
automatonrA to be encoded as a list of statgs Q and a list of the left-hand sides
| =(0g1,...,0n) € Lhs(A). Each left-hand sideis encoded by an array of (pointers to)
the statesy1, ...,dn, plus a list containing a pointer to the so-calliedist for eachf €
such that there is af transition froml in A. Eachf-list is then a list of (pointers to)

all the stateg) € Q such that LN g. We call this representation thies-list automata
encoding. Then, the complexity of preparing the input fompating the downward
simulation onA via Algorithm 1 is given by the following lemma.

Lemma 1. ForaTAA=(Q,X,AF), the LTS Aand the partition-relation paiP*, Rel)
can be derived in time and spacéRanKA) - |Q| + |A] + (RanKA) + |Z|) - [Lhg(A)|).

In order to instantiate the complexity of running Algoritinfor A* and(P*,ReP),
we first introduce some auxiliary notions. First, we extet@wn to the setLhg(A)

5 We initially consider all states of the LTA® equal, and hence they form a single clas®tf
which is related to itself ifReP.

such that(q, . ..,qn) <down(r1,--.,r) iff Gi <downri for eachi : 1 <i < n. We notice
that Psim = Q°/=% From an easy generalisation of Theorem 3 to apply not only fo
states fronQ, but also the left-hand sides of transition rules frohs(A), i.e., from the
fact thatVvly,l2 € Lh(A).l1 <downl2 < 15 <15, we have thalQ*/=| = |Q/Zdown +
ILhs(A) /=downl-

Lemma 2. Given a tree automaton A& (Q,Z,A,F), Algorithm 1 computes the simu-
lation < on the LTS A for the initial partition-relation pair (P*,ReP) with the time
complexity Q(|Z| + RankA)) - [Lhs(A)| - [LhS(A) /~dowr} + |A] - |LhS(A) /Zgour|) and
the space complexity (@%| + RanKA)) - [Lhg(A)| - [Lhs(A) /Zdowr)-

The complexity of computing the downward simulation for@etautomato via
the LTSA® can now be obtained by simply adding the complexities of asing A®
and(P*,ReP) and of running Algorithm 1 on them.

Theorem 4. Given a tree automaton A, the downward simulation on A candme-c
puted in time Q(|Z| + RankA)) - [Lhs(A)| - [Lhs(A) /Zgown| + |A] - [LhS(A) /Zdowr) and
space Q(|Z|+ RanKA)) - [Lhg(A)| - |Lh(A) /Zdown| + [4]). ®

Moreover, under the standard assumption that the maxinn&l aad size of the
alphabet are constants, we get the time comple®it\| - |[Lhs(A)/Zgown]) and the
space complexit(|Lhs(A)| - |Lhs(A) /gowr| + [A]).

5 Computing Upward Simulation

In a similar manner to the downward simulation, we transtaéeupward simulation
problem on a tree automatén= (Q,Z,A, F) to the simulation problem on an LT5".
To define the translation from the upward simulation, we firake the following defini-
tion. Anenvironments a tuple of the forn{(qs,...,0-1,3,0i+1,---,0n), f,q) obtained
by removing a state;, 1 < i < n, from theit" position of the left hand side of a rule
((g1,---,0i-1,0,9+1,---,0n), T,0), and by replacing it by a special symbal ¢ Q

(called aholebelow). Like for transition rules, we writ&, . ..,0,...,0n) N g pro-
vided ((q1,...,0i-1,0,9i+1,---,0n), f,q) € A for someq; € Q. Sometimes, we also

write the environment afy, ...,0i, ..., 0n) LN g to emphasise that the hole is at po-
sitioni. We denote the set of all environmentsfoy Env(A).

The derivation ofA® differs fromA® in two aspects: (1) we encode environments
(rather than left-hand sides of rules) as stateASnand (2) we use a non-trivial ini-
tial partition on the states @, taking into account the downward simulation @n
Formally, we defind® = (Q, 2% A®) as follows:

— The setQ® contains a statg® for each statgj € Q, and it also contains a state
((a1,---,0,...,0n) LN q)® for each environmerty,...,0;,...,0n) LN g.
— The setz® contains each symbale % and also a special symbblk .

6 Note that in the special case BankKA) = 1 (corresponding to a word automaton viewed as
a tree automaton), we hajlehs(A)| = |Q|, which leads to the same complexity as Algorithm 1
has when applied directly on word automata.

o f o . :
— For each transition rul@s, ... ,qn) — g of A, the setA® contains both the transi-
_ . o : .

tionsq” A, ((qa,---,04,...,0n) — q)© for eachi € {1,...,n} and the transition

f) f D)
(GG) 0
— The set©®, =, andA® do not contain any other elements.

We defind to be the smallest binary relation Q¥ containing all pairs of states of the
automatord, i.e., all pairs(q;’,g;) for eachqs, 2 € Q, as well as all pairs of environ-

fo s o
ments(((d,0i,...,00) —)%, ((r1,...,0i,...,rn) —r)®) such thatq;,r;) € D
foreachj:1<j#i<n.
The following theorem shows correctness of the translation

Theorem 5. For all g,r € Q, we have a&ypr iff q® <! r®.

The relationl is clearly a pre-order and so the relatioa | N1~ is an equivalence.
Due to Theorem 5, we can compute the simulation relatigynon Q by constructing the
LTS A® and running Algorithm 1 on it with the initial partition-raion pair(P®,Rel)
inducingl, i.e.,P® = Q%/t andRel’ = {(B,C) € P“ x P® |BxC C | }.

5.1 Complexity of Computing the Upward Simulation

Once the downward simulatioRgown On a given TAA = (Q,Z,A,F) is computed, the
complexity of computing the simulatiogyp naturally consists of the price of compiling
Alinto its corresponding LT®, the price of building the initial partition-relation pair
(P®,Rel”), and the price of running Algorithm 1 o” and(P%,Rel”).

We assume the automatéito be encoded in the same way as in the case of com-
puting the downward simulation. Compared to preparing tipeii for computing the
downward simulation, the main obstacle in the case of theanghgsimulation is the need
to compute the partitioRS’ of the set of environmentny(A) wrt. |, which is a subset
of the partitionP® (formally, PS = P® N 2EM™A))_ If the computation ofS is done
naively (i.e., based on comparing each environment witlyeother environment), it
can introduce a factor gEnv(A)|? into the overall complexity of the procedure. This
would dominate the complexity of computing the simulationAy’ where, as we will
see,|[Env(A)| is only multiplied by|Env(A) /2|

Fortunately, this complexity blowup can be to a large degresded by exploit-
ing the partitionLhs(A) /=4own cOmputed within deriving the downward simulation as
shown in detail in [1]. Here, we give just the basic ideas.

For each 1< i < RanKA), we define an-weakened versio®; of the downward
simulation on left-hand sides @& such that(qy,...,qn), (r1,...,'m)) € Dj <= n=
m>iA(V1<j<n j#i = 0j <down'j). Clearly, eaclD; is a pre-order, and we
can define the equivalence relatioas= D; N D; 1. Now, a crucial observation is that
there exists a simple correspondence betwegrand Lhs(A)/~;. Namely, we have
thatL € Lh(A)/~; iff for each f € Z, there is a blockE ; € PS such thatE ; =

{(q17 7|:||)7qn) 4f)q | qu’qGQ (ql’7q|57qn) G L /\ (ql’7q|77qn) L>q}'

The idea of computing?’ is now to first compute blocks aths(A) /= and then to
derive from them th&’ blocks. The key advantage here is that the computation of the
~zi-blocks can be done on blocks bfig/A) /2~4own instead of directly on elements of

Lhg(A). This is because, for eactblocks ofLhs(A) /2q0wn are sub-blocks of blocks of
Lhs(A)/=;. Moreover, for any blocki, L of Lhs(A) /2own, the test oK x L C D;j can
simply be done by testing whethg,|) € D; for any two representativése K, | € L.
Therefore, alksj-blocks can be computed in time proportionalllhs(A)/%down|2.

From each block € Lh(A) /=, one blockE, ¢ of P’ is generated for each symbol
f € Z. TheE_ ¢ blocks are obtained in such a way that for each left-handlside, we
generate all the environments which arise by replacingfrstate ofl by O, addingf,

and adding a right-hand side state Q which together with form a transitior SN q
of A. This can be done efficiently using the Ihs-list encoding.ofn additional factor
|Al-log|EnV(A)] is, however, introduced due to a need of not having duplcateong
the computed environments, which could result from tréosét that differ just in the
states that are replaced bywhen constructing an environment. The factor|BguA)|
comes from testing a set membership over the computed emeéots to check whether
we have already computed them before or not.

Moreover, it can be shown th&el” can be computed in tim@®|2. The complexity
of constructingA® and(P“, Rel”) is then summarised in the below lemma.

Lemma 3. Given a tree automaton A& (Q,%,A,F), the downward simulatio’qown

on A, and the partition LH#\)/~gown the LTS A and the partition-relation pair
(P®,Rel”) can be derived in time Q% - |Q| + RanKA) - (|Lhs(A)| + |Lhs(A) /Zgown?) +
RankA)? - |A| - log|EnvA)| 4 |P®|?) and in space QX - |Q| + |Env(A)| + RankA) -

ILhS(A)]| + |LhS(A) /Zgownl? + [P?).

In order to instantiate the complexity of running Algoritdnfor A® and(P®, Rel”),
we again first introduce some auxiliary notions. Namely, weerd <p to the set

Env(A) such thatq,...,0i,...,0n) LN q=<up (re,....0j,...,rm) oy <= m=nA
i=jAQ=<upl A(VKE {1,....,n}. K#i=> Ok <downk). We notice thaPsim= Q“/='.
From an easy generalisation of Theorem 5 to apply not onlgtites fronQ, but also
environments fromEnvA), i.e., from the fact thate;,e € EnV(A). e1 Suip & <=
& <' &, we have thalQ” /2| = |Q/=yp| -+ |Lh(A)/=yp].

Lemma 4. Given a tree automaton A (Q,X,A,F), the upward simulatiorgyp on A
can be computed by running Algorithm 1 on the LTSafd the partition-relation pair
(P?,ReP) in time Q(RanKA) - |A| - [ENV(A)/22yp| + |Z] - [ENV(A) | - [ENV(A) /22yp|) and
space Q|Z|-[ENV(A)| - [ENVA) /).

The complexity of computing upward simulation on a #can now be obtained
by simply adding the price of computing downward simulatitve price of computing
A® and(P“,Rel”), and the price of running Algorithm 1 ok and (P, Rel’).

Theorem 6. Given a tree automatonA (Q,Z,A,F), let Tyown(A) and Sown(A) denote
the time and space complexity of computing the downwardation <gown0n A. Then,
the upward simulatios,p on A can be computed in time
O((2]: [EnV(A)|+RanKA)-[A])- [ENY(A) /=yp| +RankA)?- |A] -log [ENY(A) |+ Taowr(A))
and in space Q] - [EN(A)| - [ENA)/=up) + Stour(A)).”

7 Note that in the special case BankKA) = 1 (corresponding to a word automaton viewed as

atree automaton), we hajienv(A)| < |Z| - |Q|, which leads to almost the same complexity (up
to the logarithmic component) as Algorithm 1 has when appfiieectly on word automata.

Finally, from the standard assumption that the maximal eartkthe alphabet size are
constants and from observing thEnVA)| < RanKA) - |A| < RanKA) - |Z| - |Q|RanKAI+1,
we get the time complexit@(|A| - (|ENV(A) /=yp| +109|Q|) + Taown(A)) and the space
complexityO(|ENV(A)| - [EN(A)/Zup| + SaowrlA))-

6 Reducing Tree Automata

In this section, we describe how to reduce tree automatawndserving the language
of the automaton. The idea is to identify suitable equivederelations on states of
tree automata, and then collapse the sets of states whithefguivalence classes. We
will consider two reduction methods: one which uses dowdvgmulation, and one
which is defined in terms of both downward and upward simaitatiThe choice of
the equivalence relation is a trade-off between the amolurgduction achieved and
the cost of computing the relation. The second mentionedvalgmce is heavier to
compute as it requires that both downward and upward siiulatre computed and
then suitably composed. However, it is at least as coarseand-eften significantly
coarser than—the downward simulation equivalence, andehean give much better
reductions as witnessed even in our experiments.

Consider a tree automatédn= (Q,Z,A,F) and an equivalence relatienon Q. The
abstract tree automatatherived fromAand=is A(=) = (Q(=),Z,A(=),F (=)) where:

— Q(=) is the set of blocks i. In other words, we collapse all states which belong
to the same block into one abstract state.

— (Bi,...,Bn) -’ Biff (q1,...,0n) R g for someq; € By,...,0n € By,g € B. This
is, there is a transition in the abstract automaton iff thiera transition between
states in the corresponding blocks.

— F (=) contains a blocB iff BNF # 0. Intuitively, a block is accepting if it contains
at least one state which is accepting.

6.1 Downward Simulation Equivalence

Given a tree automatoh= (Q,Z,A,F), we consider the abstract automat®fyown
constructed by collapsing statesdfwhich are equivalent with respect ®yown We
show that the two automata accept the same languagéd, (¥8.= L (A(=gown)). Ob-
serve that the inclusiob(A) C L (A{=gown)) is straightforward. We can prove the in-
clusion in the other direction as follows. Using a simpleuation on trees, one can
show that downward simulation implies language incluslarother words, for states
a,r € Q, if g <downr, thenL(q) C L(r). This implies that for an € Q(=gown, itis the
case that(B) C L(r) for anyr € B. Now suppose thate L(A(=gown)- It follows that

t € L(B) for someB € F(=gown. SinceB € F (=gown), there is some € Bwith r € F.

It follows thatt € L(r), and henceé € L(A). This gives the following Theorem.

Theorem 7. L(A) = L (A(=gown) for each tree automaton A.

In fact, A(=~4own 1S the minimal automaton which is equivalentAowith respect to
downward simulation and which accepts the same language as

6.2 Composed Equivalence

Consider a tree automatdh= (Q,%,A,F). Let Ir be a partitioning ofQ such that
(a,r) € Ir iff e F = r € F. Consider a reflexive and transitive downward simula-
tion D, and a reflexive and transitive upward simulatidnnduced byD. Assume that
U C Ig. We will reduceA with respect to relations of the formg which preserve lan-
guage equivalence, but which may be much coarser than dawrsivaulations. Here,
each=g is an equivalence relatidRN R~* defined by a pre-ordeR satisfying certain
properties. More precisely, we uBet U to denote the set of relations @nhsuch that
for eachRe (D@ U), the relatiorR satisfies the following two properties: @®is tran-
sitive and (ii)D C RC (DoU1). For a state € Q and a seB C Q of states, we write
(B,r) € D to denote that there is@<c B with (g,r) € D. We defing(B,r) € U analo-
gously. We will now consider the abstract automafdrgr) where the states & are
collapsed according ter. We will relate the languages #fandA(=g).

To do that, we first define the notion ofcantext Intuitively, a context is a tree
with “holes” instead of leaves. Formally, we consider a sgesymbol (O ¢ 2 with
rank 0. AcontextoverZ is a treec overZU {(O} such that for all leavep € c, we
havec(p) = (. For a context with leavesps, ..., pn, and treeds, ..., t,, we define
clt1,...,tn) to be the tre¢, where

— dom(t) = dom(c)U{ps- P'|p’ € dom(t)}U---U{pn- P'| P’ € dom(tn)},
— for eachp = p; - p/, we have(p) =ti(p’), and
— for eachp e dom(c) \ {py,..., pn}, we havet(p) = c(p).

In other wordsglty, . ..,tn] is the result of appending the tregs . ., t to the holes ot.

We extend the notion of runs to contexts. btéte a context with leaves, ..., pn. Arun

mtof Aonc from (qgi,...,0n) is defined in a similar manner to a run on a tree except
that for a leafp;, we haver(p;) = gi, 1 <i <n. In other words, each leaf labelled with
(O is annotated by ong. We usec|qs,. . ., 0n] SLLN g to denote thattis a run ofA on

c from (qy,...,0n) such that(e) = g. The notatiorc|qy,...,0:] = qis explained in

a similar manner to runs on trees.

Using the notion of a context, we can relate runsAokith those of the abstract
automatorA(=g). More precisely, we can show that for blodgs ...,Bn,B € Q(=r)
and a context, if ¢[By,...,By] = B, then there exist states,...,r,,r € Q such that
(B1,r1) € D,...,(Bn,m) € D,(B,r) € U, andc]ry,...,rn] = r. In other words, each
run inA(=g) can be simulated by a run Awhich starts from larger states (with respect
to downward simulation) and which ends up at a larger statth (@spect to upward
simulation). This leads to the following lemma.

Lemma 5. Ift = B, then t=>w for some w witl{B,w) € U. Moreover, if Bc F (=R),
then also we F.

In other words, each tréevhich leads to a blocB in A(=r) will also lead to a state
in Awhich is larger than (some state in) the bl&lwith respect to upward simulation.
Moreover, ift can be accepted &in A(=r) (meaning thaB contains a final state of
A i.e.,BNF #0), then it can be acceptedwtin A (i.e.,w € F) too.

Notice that Lemma 5 holds for any downward and upward siranatsatisfying
the properties mentioned in the definition®f We now instantiate the lemma for the

maximal downward and upward simulation to obtain the masulte We takeD and
U to be<gown and sLFp, respectively, and we letcomp be any relation from the set of
relations(=< down® <LFp). We let=¢ompbe the corresponding equivalence.

Theorem 8. L(A(=comp) = L(A) for each tree automaton A.

Proof. The inclusionL(A(=¢omp) 2 L(A) is trivial. Lett € L(A(=comp), i.€.,t =B
for some blockB whereBNF # 0. Lemma 5 implies that—> wsuchthawe F. O

Note that it is clearly the case tha&djown C =comp Moreover, note that a relation
<compE (<down® <'Jp) can be obtained, e.g., by a simple (random) pruning of ttze rel
tion <down© (4{&,)*1 based on iteratively removing links not being<faown and at the
same time breaking transitivity of the so-far computed cosag relation. Such a way
of computing=<comp does not guarantee that one obtains a relation of the gteates
dinality possible among relations frogyown ® <'Jp, but, on the other hand, it is cheap
(in the worst case, cubic in the number of states). More@arexperiments show that
even this simple way of computing the composed relation dasus a relatiortcomp
that is much coarser (and yields significantly better redas) thar=gown

Remark Our definition of a context coincides with the one of [8] whatkleaves are
holes. On the other hand, a contextin [9] and [3] is a tree a4tinglehole. Considering
single-hole contexts, one can define weguage of contexts.lq) of a state to be the
set of contexts on which there is an accepting run if the roteplaced by. Then, for
all statesy andr, it is the case thag <yp r impliesLc(q) C Le(r).

7 Experiments with Reducing Tree Automata

We have implemented our algorithms in a prototype tool emitin Java. We have run
the prototype on a number of tree automata that arise in &madwork oftree regular
model checkingTree regular model checking is the name of a family of teghes for
analysing infinite-state systems in which states are repted by trees, (infinite) sets
of states by finite tree automata, and transitions by treesthacers. Most of the algo-
rithms in the framework rely crucially on efficient automegduction methods since the
size of the generated automata often explodes, making datigns infeasible without
reduction. The (nondeterministic) tree automata that we ltansidered arose during
verification of thePercolateprotocol, theArbiter protocol, and théeaderelection pro-
tocol [4].

Our experimental evaluation was carried out on an AMD AthidnX2 2.19GHz
PC with 2.0 GB RAM. The time for minimising the tree automasaied from a few
seconds up to few minutes. Table 1 shows the number of statkesibes of the various
considered tree automata before and after comp@tign =comp and the backward
bisimulation from [11]. Backward bisimulation is the bigitation counterpart of down-
ward simulation. The composed simulation equivalefggmp was computed in the
simple way based on the random pruning of the relatiggin o (sLFp)*l as mentioned
at the end of Section 6.2. As Table 1 sho®#gemp achieves the best reduction (often
reducing to less than one-third of the size of the originéaaton). As expected, both
=4own @aNd=compgive better reductions than backward bisimulation in &t tases.

backward
bisimulation
stateg rules| stateg rules| stateg rules| stateq rules
10 72 7 45 7 45 10 72
percolate 20 | 578 | 17 | 392 | 14 | 346 | 20 | 578
28 | 862 | 13 | 272| 13 | 272| 15 | 341
15 | 324 | 10 | 248 7 188 | 11 | 252
arbiter | 41 | 313 | 28 | 273 | 19 | 220 | 33 | 285
109 |1248| 67 |1048| 55 | 950 | 83 |1116
17 | 153 | 11 | 115 6 47 16 | 152
leader| 25 | 384 | 16 | 235 6 59 23 | 382
33 | 876| 10 | 100| 7 67 27 | 754

Protocol| original =down Scomp

Table 1. Reduction of the number of states and rules using differeghiction algorithms.

8 Conclusions and Future Work

We have presented methods for reducing tree automata amdprdge equivalence. For
this purpose, we have considered two kinds of simulaticetias on the states of tree
automata, namely downward and upward simulation. We givequiures for efficient
translation of both kinds of relations into simulations defi on labelled transition sys-
tems. Furthermore, we define a new, language-preserviriggdeuce on tree automata,
derived from compositions of downward and upward simutgtishich (according to
our experiments) usually gives a much better reduction ersthe of automata than
downward simulation.

There are several interesting directions for future workstFwe would like to im-
plement the proposed algorithms in a more efficient way, ggestover automata en-
coded in a symbolic way using BDDs like in MONA [12], in order be able to ex-
periment with bigger automata. Further, for instance, wedsfineupwardanddown-
ward bisimulationfor tree automata in an analogous way to the case of simaldtio
is straightforward to show that the encoding we use in thjgep&an also be used to
translate bisimulation problems on tree automata intoesponding ones for LTSs. Al-
though reducing according to a bisimulation does not gieeséime reduction as for
a simulation, it is relevant since it generates more efficigorithms. Also, we plan to
investigate coarser relations for better reductions & &netomata by refining the ideas
behind the definition of the composed relation introduce8eantion 6. We believe that
it is possible to define a refinement scheme allowing one toeetfi increasing family
of such relations between downward simulation equivalemzktree language equiv-
alence. Finally, we plan to consider extending our redudtszhniques to the class of
unranked trees which are used in applications such as riegsaimout structured docu-
ments or about configurations of dynamic concurrent pr@sess

AcknowledgementThe work was supported by the ANR-06-SETI-001 French ptojec
AVERISS, the Czech Grant Agency (projects 102/07/0322 &240b/H050), the Czech-
French Barrande project 2-06-27, and the Czech Ministrychfdation by the project
MSM 002163052&ecurity-Oriented Research in Information Technology

References

1.

10.

11.

12.

13.

14.

P. Abdulla, A. Bouajjani, L. Holik, L. Kaati, and T. Vojna Computing Simulations over
Tree Automata. Technical report, FIT-TR-2007-001, FITh@tniversity of Technology,
Czech Republic, 2007.

. P. Abdulla, J. Hogberg, and L. Kaati. Bisimulation Minkation of Tree Automata. IRroc.

of CIAA'06 LNCS4094. Springer, 2006.

. P. Abdulla, B. Jonsson, P. Mahata, and J. d’'Orso. Reguégr Model Checking. IRroc. of

CAV'02 LNCS2404. Springer, 2002.

. P.Abdulla, A. Legay, J. d'Orso, and A. Rezine. Tree Ragdiadel Checking: A Simulation-

based ApproachThe Journal of Logic and Algebraic Programmir@f(1-2):93-121, 2006.

. A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojn&bstract Regular Tree Model

Checking. INENTCS149(1):37-48. Elsevier, 2006.

. A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojn&bstract Regular Tree Model

Checking of Complex Dynamic Data StructuresSIAS’06 LNCS 4134. Springer, 2006.

. A. Bouajjani and T. Touili. Extrapolating Tree Transfations. InProc. of CAV’'02 LNCS

2404. Springer, 2002.

. A. Bouajjani and T. Touili. Reachability Analysis of Pess Rewrite Systems. Proc. of

FSTTCS'03LNCS2914. Springer, 2003.

H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lagg Tison, and M. Tommasi.
Tree Automata Techniques and Applications. Available on:

http://ww. grappa.univ-lille3.fr/tata, 1997.

M. Henzinger, T. Henzinger, and P. Kopke. Computing &tmns on finite and infinite
graphs. InProc. of FOCS’95IEEE, 1995.

J. Hogberg, A. Maletti, and J. May. Backward and forwligimulation minimisation of
tree automata. IRre-proceedings of CIAA'0TCzech Technical University in Prague, Czech
Republic, 2007.

N. Klarlund and A. Mgller. MONA Version 1.4 User ManuaQ®.. BRICS, Department of
Computer Science, University of Aarhus, Denmark.

R. Paige and R. Tarjan. Three Partition Refinement Algms. SIAM Journal on Comput-
ing, 16:973-989, 1987.

F. Ranzato and F. Tapparo. A New Efficient Simulation #ajence Algorithm. IrProc. of
LICS'07. IEEE CS, 2007.

A Proofs of the Theorems Presented in the Paper

A.1 Correctness of Computing Simulations on LTS (Algorithm1)

Let us first introduce some notation. By #daration, we will mean a single iteration
of the while loop of the algorithm. For an iteration, the tddg chosen on line 3 (also
referd to ad3.,) will be denoted as thgivot of the iteration. Arancestorof a blockC
is any blockD which appears during the computation and for which D, and on the
contrary,C is adescendentf D. Moreover, ifD is the immediate ancestor 6fsuch
thatC was created while splittin®, thenD is theparentof C andC is achild of D.
Given an LTST = (S,,—) andq,r € S, we will denote byg ~Z 1 the fact that
-(q LN r). Moreover, foranyB,CC S q —% CandB -2 C are defined analogously,
i.e. provided that) ¢ pre;(C) andBNpre,(C) = 0.

Lemma 6. On line 3 of Algorithm 1, the pai(P,Rel is always a partition-relation
pair. The partition P can only be refined during the compuatiMoreover, the relation
induced by the partition-relation pai, Rel) can only shrink during the computation.

Proof. The fact thatP, Rel) is a partition-relation pair can only be temporarily broken
by the Split operation on line 6 but after inheriting dRel links of parent classes to
children classes on lines 7-10, it again holds. The otherdaions of the lemma are
also immediate as the algorithm can only split the class&s(bfit never unites them),
and it can only remove some elements frRwel. a

Lemma 7. The following claims are invariants of the while loop of Aliglom 1:

VB € P.Vae .. Removg(B) — | JRelB) 1)

VB € P. B Re(B) 2
VB,C € P. (B,C) € Rel —
(Vae £.YDeP.B-%D — CC pres(| JRelD))U Removg(D)) 3)

Proof. After the initialization, all the invariants hold. It is neb difficult to see it a$
and therefore alsRelare transitive and reflexive.

— Invariant (1) can never be broken. After the initializatibholds. From there on, it
holds because only such a statzn be moved into thRemovg(C) which is notin
pres(LURelC)) (the test on line 16). Moreover, ifis once not inprey(lJRelC)),
then it will no more be there (Lemma 6).

— Invariant (2) can never be broken as breaking reflexivitiRefrequires choosing
(C,D) on line 14 such tha€ = D. For any such a pair on line 14, it holds that
c-%BandDC Removg(B) whereB is the pivot block. But, thanks to Invariant
(2), this is not possible fa€ = D.

— Invariant (3) can be temporarily broken on three placeseflgorithm:
lines 6—10: LetC be a block ofP on line 7 and le€’ € P,., be its parent. Then it

is easy to see that after finishing the for loop on line 7, itlsdhat JRelC) =
URek (C') and for alla € - , Removg(C) = Removg(C'). Thus after finish-
ing the for loop on line 7, invariant (3) can be broken onlytfuwse(B,C) pairs
such that it was broken even for their parents on line 6.

line 4: Assume that line 4 breaks the invariant andBeby the pivot of the it-
eration of the while loop. Then there a&D € P which break the invariant
such that{C,D) € Rel C -2 B, D C pre,(UURelB)) URemovg(B), andD 4
prea(URelB)). TheSplitoperation on line 6 divided into D1 C pres(lJRelB))
andD; C RemoveThenReland theRemovesets are inherited on lines 7-10.
Now only (C', D) pairs break the invariant whe@is a child ofC which leads
undera into a child ofB. But exactly these pairs will be finally chosen on line
13 and the relatioRelwill be cut on exactly these places.

line 16: The invariant can be broken on this line as there can be satesssuch
thatr -2 D and thus before the update BE| r o, URelC), but after the

removal ofD from RelC), it can happen that—2 URelC). But exactly these
r states are moved infRemovg(C), and so Invariant (3) holds after finishing
the for loop on line 13 again.

O

Lemma 8. If all the Remove sets are empty, then the relaliamduced by the partition
relation pair (P,Rel) is a simulation on T included in I.

Proof. The initial partition-relation pair is required to be subhaté is initially included
in I. We have to show thai is also a simulation oif. Letqe Be P,r e C € P, and
g dr. Then, from the definition 06, (B,C) € Rel Let q — s D, thusB —> D.
Therefore, from Invariant (3) and from the fact that all Removesets are empty, we
getC C pre;(URe(D)). This means that for alle C there isu € E € Re[D) such that
t -2, uandsdubecausel € E € Re(D) ands € D. Asr € C, the lemma holds. O

Lemma 9. Letd be the relation induced by the partition-relation paP,Rel), let <!
be the maximal simulation on T included in |, and 4t C 8. Then, if we are on line
3 of Algorithm 1 and there are statesrge S and blocks BC,D € P such that o' r,
geC,r e Dand(B,C) € Rel, then als¢B,D) € Rel.

Proof. Let us recall the relationship between a partition-refapair (P,Rel) and its
induced relatiord which is: For anyB,C € P andq € B,r € C, it holds thatq & r iff
(B,C) € Rel Therefore, if5 C <!, theng <' r implies(B,C) € Rel

We prove the lemma by induction on the number of iteratiorte@fvhile loop. The
base case: After the initialization, the claim hold$as,;; is transitive (the relatiohis
a pre-order). We prove the induction step by contradict®uppose the lemma might
get broken during the execution of the algorithm. Then, weidantify the first moment
when it is broken.

Let M; be the moment (computation step) when we are on line 3 at thmibg
of thei-th iteration and the lemma is broken for the first time. Atttm@onent, we have
B,C,DcP,qeC,reD,q<'r, (B,C) cRel <' C 8, and(B,D) ¢ Rel Fromg<!'r and
<! C 8, we have(C, D) € Rel Because the induced relation is shrinking only (Lemma
6), we have that at each moment of the computation that pesdéd the relation<!
was a subset of the induced relation, the anceStaf C was over the ancest® of
B (i.e. (B',C') € Re), and also the ancestor Bf was over the ancestor & wrt. the
currentRel Because of this and becaus@Relit) is transitive and the lemma is broken

for the first time atVl;, we know that at each moment precedMg the ancestor ob
was over the ancestor 8f

Let us choose the moment befdvie when(B, D) is going to be removed fromel
(the moment in the iteratioin- 1 precedingM;, just before entering the for loop on line
11). The current partitioP at that moment is the same as\t The situation is such
that(B,C) € Rel, (C,D) € Rel, (B,D) € Rel, and we are going to remoy8,D) from
Rel on line 14. However, we will not touctB,C) and(C,D) during this iteration as
these two pairs will be related at the momht This updateRel — Rel\ {(B,D)}) is
caused by processing tiRemovg(E) set, whereE € Py, is the pivot of the iteration
such thaB -2 E, D C Removg(E) andC N Removg(E) = 0 (we have split according
to Removg(E)).

At the beginning of thei — 1)-th iteration, it still holds for the induced relatidh
that<' C & (this moment preceddd;). LetB',C’,D’ € P,., be the ancestors &,C,D
(thereforeB C B',C C C',D C D’). We have thagj € C C C', Cn Removg(E) = 0,
B -2 E, and(B,D') € Rel,.,, and therefore, from Invariant (3), we have tkatC
prea(URelE)) URemovg(E). This implies thaC C pres(URelE)). Thus,qg — ¢ €
F € Rel,, (E).

Therefore, ag <' r, we haver -2 1’ whereq <' ' and because! C&,r' e Ge
Rel,., (F). Finally, because € D C Removg(E), from Invariant (1), we getE,G) ¢
Rel,.,. However, the stateg,r’, the blocksE,F,G € P,.,, and the partition-relation
pair (Pyrev, Rel,,) (Which is the current partition-relation pair on line 3 iretiteration
i — 1 precedingvi;) now form a situation breaking the lemma, which is the sanméas
situation at the momemd;. This is not possible dgl; was supposed to be the first such
moment. O

rev (

Lemma 10. Letd be the relation induced by the partition-relation p&R, Rel) and let
<! be the maximal simulation on T included in I. Thef\,C .

Proof. By contradiction. We will show that breaking this lemma irua of Algorithm 1
has to be preceded by breaking Lemma 9.

Letqe B€ P,r € C € P such thag <' r. Let us choose the moment whéB, C)
is removed fromRel on line 14. This update oRelis caused by processing the set
Removg(D) whereD € P, is the pivot of the concerned iteration of the while loop,
B-2. D, andC C Removg(D). Let B',C’ € P,., be the ancestors d&,C. From In-
variant (2), we have thaB’,B’) € Re}y.,, and thenB’ 2.D together with Invari-
ant (3) givesB’ C prea(URe}re (D)) URemoveThus, asy ¢ Removeq 2, qcEe
Relrv (D). Fromqg <' r and from the fact thak' is a subset of the current induced
relation (the lemma is going to be broken for the first time argdill holds), we have
r <21’ € F € Relye, (E). However, as € Removg(D) and because of Invariant (1), we
have(D,F) ¢ Rely . Therefore, the statep,r’ and the block®, E,F break Lemma 9
(at the beginning of the given iteration). a

Lemma 11. Let <' be the maximal simulation on T included in I. Then, at any poin
in a run of Algorithm 1, any g € S such that ' r are in the same block of P.

Proof. By contradiction. We will show that breaking this lemma irua of Algorithm 1
has to be preceded by breaking Lemma 9.

After the initialization the lemma holds. Let us choose thist finoment when it
is broken. At that moment, the statqg are separated from each other by it
operation during processing of some pivot bldkvhere, without loss of generality,
at the beginning of the concerned iteration of the while |odop Removg(B) andq ¢
Removg(B).

Let us now consider the moment just before entering the fap n line 11 during
whichr will be added intdRemovg(B') whereB' is an ancestor dB. Let the partition-
relation pair that the algorithm is working with at that mambe (P’,Rel) inducing a
relationd, and letg,r € C € P'. There is an edge— D € Rel(B') such that(B', D)
will be removed fronRel.

Fromr <' gand<' C & (Lemma 10) and because-2- r’ € D, there is an edge
qg->qecEec RelD), ¢ <' r’. Moreover, from Lemma 9 (whose claim holds also for
line 11 just before entering the for loop because lines 4-alidad influence the induced
relation),(B,E) € RelB').

Thus there are edges sucl”qasa—> q € E € Rel(B') before entering the for loop on
line 11. Moreover, at least one such edge™ ' € E’ € Rel(B') will remain also after
finishing the for loop because if all tH&', X) relations such thaj 2 disappeared
from Rel, theng would move toRemovg(B'), which will not happen. Becausge<' r
and<' C 8, we haver -2 r” € F € Rel(E'),q’ <' . But at the end of the for loop
online 11,(B',F) ¢ Rel asr will be added intdRemovg(B') (Invariant (1)). Therefore
statey’,r” and blocksB’,E’, F break Lemma 9 at the beginning of the following iter-
ation of the while loop. a0

Lemma 12. Let B B’ be two blocks appearing during a run of Algorithm 1 such that
B’ is an ancestor of B. Let RemqyB) and RemowgB’) be two Remove sets at the
(different) moments when B, resp’, B chosen as the pivot. Then, Remge N
Removg(B') = 0.

Proof. If qis in Removg(B) after the initialization, themy 2, URehit(B). If qis
added intdRemovg(B) later on, them; —- |JRelB) on line 13 in the while loop itera-
tion wheng is added intdcRemovg(B).8 Moreover, subsequently, after the updat&ef
on line 14,9 LN URelB). From Lemma 6, if once s URel(B), then it will never
happen thag —* | JRelB') whereB' is a descendent d&. Thus,q —— (URelB)) is
a neccesary condition which has to hold on line 13éo be added int&kemovg(B)
on line 17. However, if is really added intdcRemovg(B), then the conditior —
(URel(B) is broken on line 14 and will never hold for any descendef afjain. There-
fore, if g is once inRRemovg(B), then the neccesary conditign->- |RelB) will never
hold and thus it can never happen thas being added into ariRemovg(B') whereB’
is a descendent d&. Then, it cannot happen thBtis chosen as a pivoRemovg(B) is
emptied, and then some of its descend@&tis chosen as a pivot with Removg(B')
set such thaRemovg(B) N Removg(B') # 0 set. O

8 Note that at that timeB is referred to via in the algorithm.

Proof of Theorem 1

Proof. Due to Lemma 12, for any blodR which can arise during the computatid,
can be chosen as a pivot only finitely many times as foraay: , all theRemovg(B)
sets encountered on line 3 are disjoint. There are finitelpympossible blocks and
hence the algorithm terminates.

Lemma 8 implies that the relatiod induced by the final partition-relation pair
(Psim, Rekim) is a simulation included in. Lemma 10 implies that this simulation is
the maximal one. Finally, Lemma 11 implies that the resglfrartition P, equals
s/, o

A.2 Complexity of Computing Simulations on LTS (Algorithm 1)
Data structures and important implementation details

We use resizable arrays (and matrices) which double (orrgpée) their size whenever
needed. The insertion operation over these structures takertised constant (linear)
time.

Each blockB contains for each € - a list of (pointers on) states froRemovg(B).
Each time when any s&emovg(B) becomes nonempty, blodkis moved to the be-
ginning of the list of blocks. Choosing the pivot block on tivee 3 then means just
scanning the head of the list of blocks.

Each block contains, for eaehe - and a statel € S, a counteRelCounj(q,B) =
|{r € S|r € UReh(B) Aq -2 r}|. This counters enables us to perform the test on line
16 inO(1) time.

The Split(P,Removg operation can be implemented as follows: Iterate through al
g € Removelf q € B € P, addq into a blockBgig (if Behiilg does not exist yet, create it
and add it intd®) and remove) from B. If B becomes empty, discard it.

At the initialization phase, we attach to eaglke S an array indexed by symbols
of a € » of pointers topre,(q) lists. This way, we achieve constant time searching for

prea(q) lists (without the arrays, it would b®(|z |)).
Some auxiliary notions

ForB C Sanda € ~, we denote byn,(B) the set{(r,a,q) € — | g € B}, and byin(B)
the setJ,., ina(B). Note that|pres(B)| < |ina(B)|. We also denote by the set of all
a-edges of-.

We denote byAng(B) the set of all ancestors &, and ifB’ is an ancestor d8, then
Bis adescenderdf B'.

Proof of Theorem 2

Proof.

Initial observations

The complexity analysis builds a lot upon Lemma 12 and LemmeoGed within the
proof of correctness of Algorithm 1. Using these lemmas, aresee that:

Observation 1. For anya € » andB € Psjm, the sum of the cardinalities of tiRemovg(B')
sets for allB’ € Ang(B) that are chosen as the pivot is bel{Sk

Observation 2. If a pair (C,D) once appears on line 15, then any &, D) such that
C € Anc(C’) andD € AngD’) cannot appear on line 15 any more.

Most of the remaining complexity analysis then lies in a fidrexploration of ma-
nipulations with the data structures used in the algorithm.

Space complexity

The arrays of pointers on there, lists takeO(|< | - |§)) space, the matrix encoding of
Rel takesO(|Psim?) space, and th®emovesets as well as the counters taRé . | -
|Psim| - |§]) space. Thus the overall asymptotic space complexi®(|s | - |Psim| - |S)-

Time complexity

The initialization of the arrays of pointers to tpes; lists takesO(|z | - |S)) time. The
RelCountcounters are initialized by (1) setting &kelCountto 0, and then (2) for all
B e P, forall g € B, for all r € prea(q), and for allC such tha{C, B) € Rel increment-
ing RelCoung(r,C). This takesO(|Pyit| - |—|) time. TheRemovesets are initialized
by iterating through ala € £ ,q € S B € P, and if RelCoun4(qg,B) = 0, then adding
(appending)y to Removg(B). This takedO(|z | - |Pnit| - |S]) time. Thus the overall ini-
tialization can be done in tim®(|Piit| - |[—|+ |2 | - [Pnit| - |S])-

One singleSplit(P, Removg operation take©(|Removg time. From Observation
1, we have that for a fixed blodR € Psjn anda € -, the sum of cardinalities of all
Removg(B') sets wherd' is an ancestor d8 according to which &plitis being done
is below|S|. Therefore, for all symbols of and all the blocks oPsim, the overall time
complexity of allSplitoperations i©O(|z | - |Psim| - |S))-

The complexity analysis of lines 7-10 is based on the fadtithean happen at
most|Pnit| — |Psim| times that any blocIB is split. Moreover, the presented code can
be optimised by not having the lines 7-10 as a separate lb@pwas chosen just for
clarity of the presentation), but the inheritanceRefi Removeand the counters can be
done within theSplit function, and only for those blocks that were really splbt(for
all the blocks every time).

Whenever a new blocks is generated3plit, we have to do the following: (1) For
eacha € ., copy theRemovg set of the parent block and attach the copy to the child
block. As for alla € £ ,B € P, Removg(B) C S, and a new block will be generated
at most|Pnit| — |Psim| times, the overall time of this copying is @(|z | - |Psim| - |S)-

(2) Add a row and a column to theelmatrix and copy the entries from those of the par-
ent. This operation take3(|Psim|) time for one added block as the size of the rows and
columns of theRetmatrix is bounded byPsim|. Thus. for all newly generated blocks,
we achieve the overall time complexity 6X|Psim|?). (3) Add and copy th&elCount
counters. For one newly generated block, this operatiosstakO(|. | - |S) time and
thus for all generated blocks, it gives i€z | - |Psim| - |S))-

Lines 13 and 14 ar®(1)-time (Relis a boolean matrix). Before we enter the for
loop on line 11 withB being the pivot, we compute a liRemovelLis{B) = {D €
P | D C Removg. This is anO(|Removp operation and by almost the same argu-
ment as in the case of the overall time complexitySpfit, we get also exactly the
same overall time complexity for computing all tRemoveLisgB) lists. On line 11,
for eachq € B, we find thepre,(q) list (in O(1) time using the array of pointers
to the prey(q) lists), and we iterate through all elementspé,(q) and choose ev-
ery C,C - {q}. This takesO(|ina(B)|) time. For anyB € Psm, let RLy(B) be the

set of blocksUg cangp) RemovelLig{B'). Then the overall time complexity of lines
11-14 is at mosO(Y ac, Ypepy,|RLa(B)| - [ina(B)[). From the initial observations,
we can see thgRLa(B)| < |Psim|, and thus we have the overall time complexity of
?j’zaGL 5 BePyn | Psiml - [INa(B)]) = O(F ac. [Psiml - |->]) = O(|Psim| - |—|) for lines 11—

For a singleC, D pair appearing on line 14, we iterate throughogdl D and through
all nonempty listsprea(q), and for eachr € pres(q), we decremenRelCouni(r,C).
If RelCounj(r,C) = 0 after the decrement, we appenthto the Removg(C) list. It
follows from the initial observations that if any pair of koks (C,D) once appears on
line 14, then there will never appear any pair of their dedeats on line 14. Thus, if we
fix a blockC € Psjmand a state, then it can happen at most once that D and the pair
(C',D) (whereC' is an ancestor df) is being separated withiRel (i.e. removed from
Rel) on line 14. Thus, the contribution of the p&rq to th etime complexity of lines
15-17 isO(J acs |Prea(a)|). Therefore, the contribution of th@ r pairs for allr € Sis
O(|—|), and hence the overall time complexity of lines 15-10{sim| - |—|).

From the above analysis, it follows that the overall time pterity of the algorithm
is O(|Psiml - [—=[+ [| |Psim| - [S})- 0

A.3 Correctness of Computing the Downward Simulation via LTS
Proof of Theorem 3

Proof.

(if) Suppose thag® < r®. This means that there is a simulatiBhon Q® such that
(g*,r*) € R*. We defineD to be the smallest binary relation @hsuch thaf{d',r’) € D
if (of*,r"*) € R*. Obviously,(qg,r) € D. We show thab is a downward simulation 0@
which immediately implies the result.

Suppose thatd',r’) € D and(qy,...,qn) LN q. Since(q,r’) € D we know that
(g*,r'*) € R*; and sincg(qy,...,qn) SN g we know by definition ofA® thatq'® -

. f
(41, ---,0n)°. SinceR® is a simulation, there am, ..., rp € Qwith r'* — (rq,...,ry)*®

and((qa,.--,0n)® (r1,...,rn)*) €R®. Sincer’® LN (r1,..., _rn)‘ we have(ry,...,Mm) N

r’. Also, by definition ofA* we know that((qs,...,qn)® L g’ foreachi: 1 <i<n.
We observe that; is the only state such théts, ... rn)® SN r?, and hence it must be
the case thag’,r’) € R*. This means thaf;,ri) € D foreachi : 1 <i <n.

(only if) Suppose that] <gown . This means that there is a simulatiBnon Q
such that(q,r) € D. We defineR® to be the smallest binary relation @t such that
(g*,r'*) e R°if (of,r') € D*, and((a3,...,qn), (r},....rn)) € R*if (qg;,ri) € D for each
i :1<i<n. Obviously,(q,r) € R. We show thalR® is a simulation orQ® which
immediately implies the result. In the proof, we consideo tsorts of states ii®;
namely those corresponding to states and those corresgptedieft hand sides iA.

Suppose that®,r’*) € R* andq’® LN (d1,---,0n)°- Since(q*®,r'*) € R*, we know
that (¢,r") € D, and sinceq® LN (d1,---,0n)*, we know by definition ofA°* that

f
(d1,---,qn) — . SinceD is a downward simulation, there arg,...,r, € Q with

(f1,...,) R r’ and(q;,ri) € D foreachi : 1 <i <n. Since(ry,...,rn) R r’, we have
e L, (r1,...,rn)®. By definition ofR®, it follows that((q3,...,a3), (r3,...,r7)) € R".
Now, suppose thatqs,...,qs), (r$,...,r3)) € R® and that(qy, ...,qn)* — of. By

definition of A* we know that(ry,...,rn)* LN re. Since((qy,....an), (r1,...,ry)) € R,
it follows by definition ofR® that(g;,ri) € D and hence also thég’,r’) € R®. 0

A.4 Complexity of Computing the Downward Simulation via LTS
Proof of Lemma 1

Proof. The state-list encoding of the LTA can be obtained from the Ihs-list encoding
of A by the following steps:

1. forallg € Q, addg® into the state-list encoding &* (and also add an additional
pointer fromq to g*, which we will need later on), and

2. foreach =(qy,...,0n) € Lhs(A),
(a) add'® into the state-list encoding &,
(b) for eachf € X and each right-hand siden the f-list of I, addr*® into pres (1*),

i.e. add the® - |° edges, and _
(c) foreach 1<i < n, addl® into pre(q?), i.e. add thé* — g edges.

In order to have a constant time access to the partiquégrlists fora € Z° in the
state-list encoding oA* being built by the above construction, we may temporarily
replace the state-lists by arrays. This means that we firsttoact, for eacly® € Q°
whereq € Q, a temporary array indexed by >*,1 <i < RankKA), of pointers to the
pre(g*) lists (initialized withnull values), and, for eaclt € Q°* wherel € Lhg(A), a
similar temporary array of pointers to tipee (1)-lists for f € Z. The time and space
needed for creating these temporary array@(RankA) - |Q| + |Z| - [LhgA)]).

After creating the temporary arrays, we traverse the Btseipresentation ok in
time O(|Q| + |A] + RankA) - |Lhs(A)|) while building the state-list representation (with
arrays used instead of state-lists)?dfwith each step done in constant time (due to the
use of the temporary arrays and the auxiliary pointers fgdmg®). In the complexity,
|Q| corresponds to traversing the list of statés$fo traversing the transitions #fwhile
creating thef-labelled transitons oA® for f € Z, andRankA) - |LhgA)| to traversing
the left-hand sides while creating théabelled transitions of® for 1 <i < RankA).
The remaining step is then to convert the auxiliary arrays state-lists which can be
done with the same complexity as initialising the arrays do@ot traverse the contents
of the state-lists, we just leave out the state lists thaearpty).

Thus, using suitable linked data structures, the creatitimeostate-list encoding of
A* is done in timeO(RankA) - |Q| + |A] + (RanKA) + |Z]) - [LhgA)|).

The space complexity corresponds to the size of the tempareays and the size
of the resulting LTSA®, which isO(|Q| + |A| + RanKA) - |Lhs(A)|)). Indeed, we need
spaceO(|Q|) to represent state€)(|A|) to represent thé-labelled transitons of® for

9 Here, we use the pointers frogrto g° introduced at the beginning.

f € 2, andO(RanKA) - [Lhg/A)|) to represent thélabelled transitions of® for 1 <
i <RankA). In total, we obtain the same formula as in the case of the tioneplexity,
i.e.O(RanKA) - |Q| + |A] + (|Z| 4+ |RanKA)|) - ILhg(A)]).

Finally, the creation ofP*,ReF) is trivial, and its complexity is apparently covered
by the complexity of creating®. a

Proof of Lemma 2

Proof. We get the complexity of running Algorithm 1 ok and(P*,ReP) by instan-
tiating the parameters & in the formula of Theorem 2. More precisely, from the
construction ofA°, it follows that (1)|Z°*| = |Z| + RanKA), (2) |Q*| = |Q| + |[LhgA)|,
and (3)|A°| < |A] + RanKA) - [Lhs(A)|. Then the running time of Algorithm 1 with
inputA® and(P*,Ref) is:
O((|2|+ RanKA)) - (|Q| + [Lhs(A)[) - (|Q/=down| + [LhS(A) /= down])
+ (/A + RanKA) - Lh(A)) - (|Q/Zgownl + [LNS(A)/Zgoun])))-

Observe thaLhs(A)| < |A| and thatQ| < |Lhs(A)| + 1%0. Therefore, the time com-
plexity amounts to

O((|2| + RankKA)) - [Lhs(A)| - [Lh(A) /=down| + [A] - [LhLA) /Zdown])

and as the space complexity formula from Theorem 2 equalirttesummand of the
time complexity formula, we are getting the space compjexit

O((|2[+ RankA)) - [Lhs(A)[- [LhS(A) /Zdown)- 0

A.5 Correctness of Computing the Upward Simulation via LTS
Proof of Theorem 5

Proof.

(if) Suppose thal® <' r®. This means that there is a simulatiBi C | on Q%
such thatq®,r®) € R”. We defineU to be the smallest binary relation @hsuch that
(q,r') e U if (d“,r'“) € R®. Obviously,(q,r) € U. We show thatJ is an upward
simulation onQ induced by<4own Which immediately implies the result.

Suppose thatq’,r’) € U and(qs,...,0n) - q’, whereq; = (. Since(d',r’) €
U, we know that(g®,r'®) € R®, and since(qy,...,0n) LN q’, we know by def-
inition of A® that ¢” LN ((a1,-..,0,...,0n) SR g”)®. SinceR® is a simulation,
there argy,...,ri_1,fit1,...,rn, " € Qwith r'® A, ((re,...,0,...,rn) R r")® and
(a1, ---,05, ..., 0n) R a)®,((r1,...,0i,...,rn) - r'")®) € R®. SinceR® C I, we
know that(((qy,...,i,...,0n) LN a®,((ra,...,Di,...,) LN r’)®) € | and hence
(Qj,rj) €<downfor eachj such that i j #i <n. Sincer’® A ((ra,-.,0i,...,rn) !,

10 Recall that we assume the automata not to have unreachabds snd to have at most one
state that is not used in any left-hand side.

- f .
r’)® we have(ry,...,rn) — r” wherer; = r’. Also, by definition ofA” we know that

the only transitions froni(qs,...,Di,...,0n) - q)® resp.((r1,...,0i,...,fn) R

. f of N f of
r'® are((gs,...,0,...,0n) — q")° — d"® resp.((r1,...,0;,...,r) —1")® —

r’®. Consequently, it must be the case tfgt’, r”®) € R”. This means thaty’,r”) €
u.
(only if) Assume that there is an upward simulatidnon Q induced by=qown

such that(q,r) € U. We defineR” to be the smallest binary relation @ such that

(d®,r'®) e RV if (q’,r’)eU,and(((ql,...,Di,...,qn)—f>q”)@,((r1,...,Di,...,rn)—f>

")) e Rif (g”,r") € U andqj <down' j for eachi such that I< j #i < n. Obviously
R” C 1 and(q,r) € R”. We show thaR" is a simulation orQ® which immediately
implies the result. In the proof, we consider two sorts ofestdan A”; namely those
corresponding to states and those corresponding to emaots.

Suppose now thdty®,r'®) € R® andq'® LN ((qa,---,0i,...,0n) LN q’)®. Since
(d“,r'?) € R?, we know that(q/,r’) € U; and sincey® A, ((q1,---,0i,---,0n) LN
q")® we know by definition oA® that(qy,...,qn) LN g’ whered = q;. SinceU is an
upward simulation induced by qown, there ares, ..., ry, r” € Qwith (r1,...,rn) R r,
ri=r, (p’,r") € U andqj <downfj foreachj: 1 < j #i <n. Since(ry,...,rn) LN
r we haver’® ., ((r1,...,0i,...,r) - r")®. By definition of R® it follows that
(s s Dy) —= @), (Faee s, Dy Tn) — 17)9),

Now, suppose tha((qs, ..., ;,...,0n) LN qaH)®,((r1,...,0i,...,rn) LN ") e
R® and that(((qy,...,0i,...,0n) - q’)© N q’®. By definition of A®, we know
that (((r,...,0i,...,r) LN e L, 17, Moeover, sincé ((d,- .., 0i,...,0n) LN

a)®,((re,...,0i,...,rn) LN r’")®) € R, it follows by definition ofR” that(q”,r”) €
U and hence also that’®,r"®) € R®. 0

A.6 Complexity of Computing the Upward Simulation via LTS
Proof of Lemma 3

Proof. We assume to start with the Ihs-list representatioA ef (Q,%,A,F). We need
to derive the LTSA® in the state-list format and the partition-relation pd@f, Rel”).
Algorithm 2 is a simplified encoding of the procedure. We kninat P = {{q® |
g€ Q}}UPY. Algorithm 2 compute®S’ using the partitiol.hs(A) /~gown constructed
within the computation of the downward simulation AnThe state-list representation
of LTS A" is created within this computation without increasing therall asymptotic
time complexity. The last step is then computindRei®.

We denote two sets of environmertsompatibleiff all their elements have the
same symbol and the hole on tifeposition.

Lines 1-3 At the first step (lines 1-3) we compute for eachi1 < RanKA) a bi-
nary relationsRe| on blocks ofLhs(A)/~4own Such that the partition-relation pair

Algorithm 2 : Upward Initialization

Input: A tree automato®h = (Q,Z,A,F) and a partitiorLhs(A) /=~ gown
Data: for each 1< i < RankA), a relationRe| C Lhg(A) /=gownx Lhs(A) /= down
Output: The partition-relation paifP®,Rel”) and the LTSA® = (Q®,Z®,A®)
1 forall K,L € Lhs(A)/~gowndo
forall 1 <i < RankA)do
if K x L C Dj thenRe| — Re| U{(K,L)}
Q¥ —{q”|qe Q}z? — ZU{ALAY 0,
forall 1 <i <RankA)do
foreach equivalence clasély,...,Lm} € (Lhs(A)/Zgown)/(Rel N Rerl) do
mergeL s into a new block oLhg(A)/~, the blockB = U< j<mL;j;
generate all maximatcompatible set& such thagen(E) = B, updateA® within
this procedure. Then adglinto PS;
9 forall 1<i<RankA) and all i-compatible blocks EE’ € P{ do
10 if (gen(E),gen(E’)) € Re| thenRel’ — Rel’ U{(E,E’)}

1 (PY,ReP) — (P U{{q” |qe Q}},RePU({a” |ge Q},{d” |a € Q}));

w N

© N o o b

(Lhs(A) /~40wn, Rel) inducesD;. Here we exploit several properties of the structures
we work with in order to decrease computational complexity:

1. For blocksK, L of Lhs(A)/~qown the test orK x L C D; can be done simply by
testing any two representatives K, € L on (k,I) € D;. (it holds thatK x L C D;
orK x LND; =0)

2. For any left-hand sidds|, there are three possibilities with respect to membership
of (k,1) in D;:

(@) (k,I) € Dj forall i, i.e.k is simulated by on all the positions(k,|) € Zg4own)

(b) (k,1) € Dj for just onei, i.e.k is simulated byl on all positions except thi!
one

(c) (k1) ¢ D;foralli, i.e.kis not simulated by on more than one position.

From item 1. we see that analogical relationships holdsfpKaL € Lhs(A) /~gown

with respect th& x L C Dj inclusions.

From these properties follows that given two blo&kd. € Lhg(A) /~gown the tests
K x L C D; can be done for alil in time O(RankKA)) and, moreover, all the relations
Re} can be stored in one common matrix with cells containingehypes of values:
all, one-i, none. This corresponds to the possibilities (a), (b), (c) from #étbove enu-
meration.

Therefore the line 3 can be done in constant time and thusthiedp on lines 1-3
can be finished in tim®(RankA) - |[Lhs(A) /~gown/?). Furthermore, encoding of all the
Re| relations takes onl@(|Lhs(A) /~gown?) space.

Lines 5-80n lines 5-8 we construct partitid?)’ together with LTSA®. On line 6 we
need to list all equivalence classes(bhs(A)/Zgown)/(Rel NRe[). With the above
matrix encoding of th&e| relations, this operation can be implemented in such a way
that it takesO(RankA) - |Lhs(A) /=gown?) time overall.

Merging of the clasqLj,...,Lm} on line 7 can be done in linear time to the car-
dinality of U;<j<ranka) Lj and therefore the overall time of the mergingRankA) -
O(|Lhg(A)|) (the class{Ly,...,Lm} can be encoded as a list of theblocks and each
L-block can be encoded as a list of states).

On line 8 we generate all the environmentstbfind updateA®. We encode an
environmente as a quadruple consisting of a pointer to any efgen(e), a symbol, a
position of hole and a pointer to its right hand side stater&¥eind that we use the lhs-
list encoding ofA, i.e. eacH is connected to a list indexed by symbols framwhere

the f-indexed element contains the list of staes Q such that - g. Thus for each

| € B, we can effectively iterate through all rules of the formf—> g and for each of
them we: (1.) create a new environment; and (2.) upAati the following way:

(1.) We create a representation of environmeoonsisting of a pointer oh sym-
bol f, hole-indexi and a pointer omg. A problem is that there can be more than one
| € B such thatl € gen(E). Thus we can obtain the same environment more than once
while creating a blocle from a blockB. In order to avoid these duplicities, after having
createde, we test ife has or has not been created before. This can by done by test-
ing each newly created environment on membership in th& séthe so-far created
environments (and adding it there if the membership testmstfalse).

We attempt to create a new environment (and add it to th& séalready known
environments)RanKA) - |A] times. In the end (whe® = EnvA)), we get|EnvA)
different environments. We can assume that testing egualitvo environments takes
O(RankA)) time and that we use a set representation with a logarithreimbership
test and addition. Thus, in total, the tinfdRankA)? - |A| - log|[EnVA)|) is spent by
testing membership of environmentsSrand by extending by the environments not
yet there.

(2.) Having a representation of an environment (qy,...,0i,...,0n) LN g cre-
ated, ife ¢ S (a representation af was created for the first time), we add the s&ite
into Q® and also a pointer o@” into pres (q). Then, regardless on the result of the S
thest, we add the pointer ay’ into prey(e”) (This requires finding there, (e”) set
in the state-set representationAsf. We can use a similar searching structure as in the
case of solving duplicities and then the complexity of tiearehing will be covered the
complexity of solving duplicities.) As creating & state and adding an element into
apre set are constant time, the overall complexity of these wgsiafA® is covered by
the complexity of the above creating of the elements oBHxocks.

Lines 9-10 On lines 9-10 we compute the main part of relatiRal’. We exploit
here the fact that for anycompatible blockE,E’ € Py, (E,E’) € Rel” iff gen(E) x
gen(E’) C D; and moreover that an{B,C) € =; iff for any two L,K € LhgA)/~gown
suchthak CB,L CC,itholdsthaK C L € D;. AsK x L C D; means thafK,L) € Rel,
we can implement the test on line 10 this way:

When creating blocE on line 7, we connect it with a representative blogfre(E) =
Lj (any ofL;...,Lm). Then the test on line 10 can be done in constant time vie et
(repre(E),repre(E’)) € Rel, because we know thétepre(E),repre(E’)) € Re| «<—
(E,E’) € PY. Therefore lines 9—10 can be done in ti@EPS|?).

Finishing construction ofP®,Rel”) on line 11 is already easy. a

Proof of Lemma 4

Proof. We get the complexity of running Algorithm 1 o&” and (P®,Rel”) by in-
stantiating the parameters AF in the formula of Theorem 2. More precisely, from
the construction oA“, it follows that (1)|Z°| = |Z] + 1, (2) |Q”| = |Q| + [EnV(A)|,
and (3)|A”| = RanKA) - |A| + |Env(A)| < 2-RanKkA) - |A|. Then, the running time of
Algorithm 1 with the inputA® and(P®,Rel) is:
O(Z]- (IQI+ [EnV(A)]) - (1Q/=upl + [ENUA) /Zupl)
+ RankA) - A]- (|Q/=up| + [ENUA)/Zup|))-

Observe that, as we suppose the automata not to have unbéastates|Q| < [Env(A)|.
Therefore, the time complexity amounts to

O(|Z|-|EnNV(A)| - |EN(A)/=yp| + RanKA) - |A] - [ENV(A) /2yp|)
and, as the space complexity in Theorem 2 equals the first sunthiof the time com-
plexity formula, we get the space complex@y|Z| - [Env(A)| - [ENVA)/=ypl). O

A.7 Reducing TA Using the Downward Simulation (Theorem 7)
In order to prove Theorem 7, we first show the following lemma.

Lemma 13. For all g and r, if g<gown' then L(q) C L(r).

Proof. Suppose that| <qown andt € L(q). We show that € L(r) using induction
on the structure of. The base case (wherés empty) is trivial. We consider the case

wheret contains at least one node. We know tha¥s g for somert with () = q. Let
t(e) = f. Furthermore, we know that there ayg ..., qn such that(qs,...,qn) LN ad,
andri(i) = q; for eachi : 1 <i < n. In other words, the run labels the root withand
labels the children of the root witly,...,qn respectively. This means thite L(q;)
wheret; is theith subtree ot. Sinceq <down! We know that there argy,...,ry such
that(rs,...,rn) ! r andg; <qown!i for eachi : 1 <i < n. By the induction hypothesis,
it follows thatt; € L(ri), and hencé € L(r). O

Proof of Theorem 7

Proof. The inclusionL(A) C L(A{=gowr) IS obvious. We show tha&(=gown C L(A).
First, we show that for any blodR andr € B it is the case thalt(B) C L(r). Suppose
thatt € L(B). We show that € L(r) using induction on the structure tf The base
case (wheré is empty) is trivial. We consider the case wheteas at least one node.
We know that == B for somert with i(¢) = B. Lett(g) = f. Furthermore, we know
that there are blockBy,...,B, such that(By,...,By) ! B, andm(i) = B; for each

i :1<i<n.Inotherwords, the run labels the root wBhand labels the children of the
root with By, ..., By respectively. This means that L(B;) wheret; is theit" subtree of
t. Since(By,...,Bn) N B we know that there arg; € By, ..., 0y € By, q € B such that

(d1,---,0n) N g. By the induction hypothesis, we know that L(q;). Sinceq,r € B

it follows thatq =gownt and hence) <qownr. It follows that there are,,...,r, such

that(rs,...,r) R r andgi <gown'i for eachi : 1 <i <n. By Lemma 13 it follows that
ti € L(rj) foreachi : 1 <i <n, and hencé € L(r).

Now suppose thate L(A{Zgown))- It follows thatt € L(B) for someB € F (~gown)-
Since SinceB € F(Xgown), there is some € B with r € F. By the above property it
follows thatt € L(r), and hence This implies that L(A). O

A.8 Reducing TA Using the Upward Simulation (Lemma 5)

To prove Lemma 5, we need two auxiliary lemmas. We fix a refesind transitive
downward simulatiod and a reflexive and transitive upward simulatidinduced by

D included inlg. Further, letR € (D @ U) and=g be the equivalence relation defined
by R.

Lemma 14. If c[g1,0p, .. .,qn) = g and(qi,ri) € U for somel <i < n, then there are
statesf,...,r_1,fiy1,...,Mn,r such that(qj,rj) € D for each jsuchthat < j#i<n,
(g,r) €U, anddrq,...,r] =r.

Proof. To simplify the notation, we assume (without loss of gerigfathati = 1. We
use induction on the structure @fThe base case is trivial since the contegonsists of
a single hole. For the induction step, we assumedighot only a single hole. Suppose
thatcld, 0z, - - - ,Gn] == q for some runmand that(qs,r1) € U. Let py, ..., pj be the
left-most leaves o€ with a common parent. Lgb be the parent opy, ..., pj. Notice
thata: = 1(p1),...,q; = 11(p;). Letq = 1i(p) and letc’ be the context with the leaves
P1,...,Pp; deleted. In other wordglom(c’) = dom(c) \ {p1,...,pj}, ¢ (P) = c(p') if

p' € domcd)\ {p,p1,...,pj}, andc'(p) = O. Observe that'[(f,qj+1,...,0n] = ¢

and that(q,dp,...,q;j) LN g for some f. By definition of the upward simulation
and the premiséqs,ri1) € U, it follows that there are,, ..., ry,r’ such thatgp,rz) €

D,...,(qj,rj) € D,(d,r") e U,and(ry,ra,...,rj) . V. Sincec is smaller thart, we
can apply the induction hypothesis and conclude that therg aq, ..., rn,r such that
(Qj+1,rj+1) €D,...,(an,rn) €D, (q,r) €U, andc'[r',rj1,...,rn| =>r. The claim fol-
lows immediately. a

Lemma 15. For blocks B,...,Bn,B € Q(=gr) and a context c, if B1,...,B)] = B,
then there exist stateg,r...,rn,r € Q suchthatBy,r1) €D,...,(Bn,m) €D, (B,r) €U,
and dry,...,rn) = r. Moreover, if Be F(=g), then also re F.

Proof. The claim is shown by induction on the structurecofin the base case, the
contextc consists of a single hole. We choose any BNF provided thaBNF +# 0,
and anyg € B otherwise. The claim holds obviously by reflexivityBfandU .

For the induction step, we assume tlaas not only a single hole. Suppose that
c[Bi,...,Bn] =L B for some runm Let p1,...,Pj be the left-most leaves afwith a
common parent. Lep be the parent ofy,..., p;. Notice thatB; = 1(p1),...,Bj =
T(p;j). Let B' = 1(p) and letc’ be the context with the leavesy, ..., pj deleted. In
other wordsdom(c’) = dom(c) \ {ps,...,pj}, ¢ (p') = c(p’) providedp’ € dom(c’) \
{p,p1,...,pj}, andc(p) = O. Observe that'(B’,Bj;1,...,Bn] = B. Sincec’ is

smaller thanc, we can apply the induction hypothesis and conclude thatthee
v, q’Hl,...,q’n,q’ such that(B',v) € D,(BHl,q’Hl) eD,...,(Bnq,) €D,(B,d) €U,
¢V Gjq,---,00 = o, and ifBNF # 0, thenq’ € F. It follows that there ares
B'.0j+1 € Bj+1,...,0n € Bn,q € B with (u,v) € D,(qu,q’Hl) eD,...,(th,q,) €D,
and(q,q’) € U. By definition ofA(=g), there are states € By,...,q; € Bj, andze B/

such that(qy,...,q;) " Zfor somef. SinceD C Rand(u,v) € D, we get(u,v) € R
Sinceu,z € B, it follows thatu =g z and hencgz u) € R. From transitivity ofR,
we get(z,v) € R. From the definition ofR, there is a statev such that(z,w) € D
and (v,w) € U. By the definition of downward simulation and premigesw) € D

and(qy,...,q;) $z, there are states,...,r; with (gi,r1) € D,...,(q;j,rj) € D, and

(Fi,....rj) w By Lemma 14 and premis¢s,w) € U andc'[v,d], 4,...,qy =,
there are states;1,...,r, andr with (q’Hl,rHl) €D,...,(qn,r) € D,(d,r) €U,
andc'[w,rj;1,...,ra] = r. Finally, by transitivity ofD andU, we get(qj;1,rj+1) €
D,...,(gn,rn) € D, (g,r) € U. Moreover, by definition o) and the fact thatf € F if
BNF #£ 0, we get that € F if B < F(=g). The claim thus holds. O

Now we can give the proof of Lemma 5.
Proof of Lemma 5

Proof. Suppose that=s B for somer. Let P1,-. .., pn be the leafs of, and letr(p;) =
B; for eachi: 1 <i < n. Let c be the context we get fromby deleting the leaves
P1,.-.,Pn. Observe that[By,...,By] =L B. It follows from Lemma 15 that there exist
states,...,r,r €e Qandag: € By,...,qn € By,q€ Bsuchthatqi,ri1) €D, ..., (0On,Mn) €
D,(q,r) €U, c[r4,...,ra)) =>r, and ifBNF = 0, thenr € F. By definition of A(=r),

it follows that there are € By,...,q, € By andfy,..., fy such thatL qi for eachi
such that I< i < n. We show by induction onthat for each such that < i < nthere
are statesl;,...,ul,vl_,...,vh,w such thatdj,u}) € D,....(qf,u}) € D,(Gis1,V, ;) €
D,...,(agn,Vh)) € D, (r,W)) € U, andc[uy,...,ul, V. 4,...,vi] = W. The base case
wherei = 0 is trivial. We consider the induction step. Sifg&- Rand(qgjt1,Vi+1) € D,
we get(dit1,Vi+1) € R Sinceqi; 1,4, ; € Bi11, we have that , =r gi+1 and hence
(0 11,0+1) € R By transitivity of R, it follows that (¢f,;,vi+1) € R By the defini-
tion of R, there isz 1 such that(q/, ,z+1) € D and(vi1,z+1) € U. By Lemma 14,
there arez,...,7,%2,...,Z,z such that(u},z;) € D,...,(u,z) € D,(V|,,z:2) €
D,...,(Vy,zn) € D,(W,2) € U, andc[z, ...,z = z By transitivity of D and the
premises(q’j,u‘j) and(uij,zj) € D, we have(d],zj) € D for eachj : 1< j <i. By tran-
sitivity of D and the premise@qj,vij) and(v‘j,zj) € D, we have(qj,zj) € D for each
jri+2<j<n. Defineuij“:zj forj:1<j §i+1;\/ij+1:Zj forj:i+2<j<nm
andwtl =z

The induction proof above implies thefu?, . .., uj] = w". From the definition of

downward simulation and the premisefé» g and(qg,ul) € D, it follows that ' uf
for eachi : 1 <i <n. It follows thatt = ¢[fy,..., fy) = w". By definition ofU and the
factthatr € F if BNF # 0, it follows thatv1 < i < n.w ¢ F provided thaB € F (=g).
Thus, in the claim of the lemma, it suffices to take= w". a

