
Computing Simulations over Tree Automata
(Efficient Techniques for Reducing Tree Automata)

Parosh A. Abdulla1, Ahmed Bouajjani2, Lukáš Holı́k3, Lisa Kaati1, and Tomáš Vojnar3
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Abstract. We address the problem of computing simulation relations over tree
automata. In particular, we consider downward and upward simulations on tree
automata, which are, loosely speaking, analogous to forward and backward rela-
tions over word automata. We provide simple and efficient algorithms for com-
puting these relations based on a reduction to the problem ofcomputing simu-
lations on labelled transition systems. Furthermore, we show that downward and
upward relations can be combined to get relations compatible with the tree lan-
guage equivalence, which can subsequently be used for an efficient size reduction
of nondeterministic tree automata. This is of a very high interest, for instance, for
symbolic verification methods such as regular model checking, which use tree
automata to represent infinite sets of reachable configurations. We provide ex-
perimental results showing the efficiency of our algorithmson examples of tree
automata taken from regular model checking computations.

1 Introduction

Tree automata are widely used for modelling and reasoning about various kinds of struc-
tured objects such as syntactical trees, structured documents, configurations of complex
systems, algebraic term representations of data or computations, etc. (see [9]). For in-
stance, in the framework of regular model checking, tree automata are used to represent
and manipulate sets of configurations of infinite-state systems such as parameterized
networks of processes with a tree-like topology, or programs with dynamic linked data-
structures [7, 3, 5, 6].

In the above context, checking language equivalence and reducing automata wrt.
the language equivalence is a fundamental issue, and performing these operations effi-
ciently is crucial for all practical applications of tree automata. Computing a minimal
canonical tree automaton is, of course, possible, but it requires determinisation, which
may lead to an exponential blow-up in the size of the automaton. Therefore, even if
the resulting automaton can be small, we may not be able to compute it in practice due
to the very expensive determinisation step, which is, indeed, a major bottleneck when
using canonical tree automata.

A reasonable and pragmatic approach is to consider a notion of equivalence that
is stronger than language equivalence, but which can be checked efficiently, using
a polynomial algorithm. Here, a natural trade-off between the strength of the consid-
ered equivalence and the cost of its computation arises. In the case of word automata,
an equivalence which is widely considered as a good trade-off in this sense is simulation
equivalence. It can be checked in polynomial time, and efficient algorithms have been
designed for this purpose (see, e.g., [10, 14]). These algorithms make the computation



of simulation equivalence quite affordable even in comparison with the one of bisimu-
lation, which is cheaper [13], but which is also stronger, and therefore leads in general
to less significant reductions in the sizes of the automata.

In this paper, we study notions of entailment and equivalence between tree au-
tomata, which are suitable in the sense discussed above, andwe also provide efficient
algorithms for their computation.

We start by considering a basic notion of tree simulation, called downward simula-
tion, corresponding to a natural extension of the usual notion ofsimulation defined on
or-structures toand-orstructures. This relation can be shown to be compatible withthe
tree language equivalence.

The second notion of simulation that we consider, calledupward simulation, cor-
responds intuitively to a generalisation of the notion of backward simulation to and-or
structures. The definition of an upward simulation is parametrised by a downward sim-
ulation: Roughly speaking, two statesq andq′ are upward similar if whenever one of
them, sayq, considered within some vector(q1, . . . ,qn) at positioni, has an upward
transition to some states, thenq′ appears at positioni of some vector(q′1, . . . ,q

′
n) that

has also an upward transition to a states′, which is upward similar tos, and moreover,
for each positionj 6= i, q j is downward similar toq′j .

Upward simulation is not compatible with the tree language equivalence. It is rather
compatible with the so-called context language equivalence, where a context of a state
q is a tree with a hole on the leaf level such that if we plug a treein the tree language
of q into this hole, we obtain a tree recognised by the automaton.However, we show
an interesting fact that when we restrict ourselves to upward relations compatible with
the set of final states of automata, the downward and upward simulation equivalences
can becombinedin such a way that they give rise to a new equivalence relationwhich
is compatible with the tree language equivalence. This combination is not trivial. It
is based on the idea that two statesq1 andq2 may have different tree languages and
different context languages, but for everyt in the tree language of one of them, sayq1,
and everyC in the context language of the other, hereq2, the treeC[t] (wheret is plugged
into C) is recognised by the automaton. The combined relation is coarser than (or, in
the worst case, as coarse as) the downward simulation and according to our practical
experiments, it usually leads to significantly better reductions of the automata.

In this way, we obtain two candidates for simulation-based equivalences for use in
automata reduction. Then, we consider the issue of designing efficient algorithms for
computing these relations. A deep examination of downward and upward simulation
equivalences shows that they can be computed using essentially the same algorithmic
pattern. Actually, we prove that, surprisingly, computingdownward and upward tree
simulations can be reduced in each case to computing simulations on standard labelled
transition systems. These reductions provide a simple and elegant way of solving in
a uniform way the problem of computing tree simulations by reduction to computing
simulations in the word case. The best known algorithm for solving the latter problem,
published recently in [14], considers simulation relations defined on Kripke structures.
The use of this algorithm requires its adaptation to labelled transition systems. We pro-
vide such an adaptation and we provide also a proof for this algorithm which can be
seen as an alternative, more direct, proof of the algorithm of [14]. The combination
of our reductions with the labelled transition systems-based simulation algorithm leads



to efficient algorithms for our equivalence relations on tree automata, whose precise
complexities are also analysed in the paper.

We have implemented our algorithms and performed experiments on automata com-
puted in the context of regular tree model checking (corresponding to representations
of the set of reachable configurations of parametrised systems). The experiments show
that, indeed, the relations proposed in this paper provide significant reductions of these
automata and that they perform better than (existing) bisimulation-based reductions [11].

Related work As far as we know, this is the first work which addresses the issue of
computing simulation relations for tree automata. The downward and upward simula-
tion relations considered in this work have been introducedfirst in [4] where they have
been used for proving soundness of some acceleration techniques used in the context
of regular tree model checking. However, the problem of computing these relations has
not been addressed in that paper. A form of combining downward and upward rela-
tions has also been defined in [4]. However, the combinationsconsidered in that paper
require some restrictions which are computationally difficult to check and that are not
considered in this work. Bisimulations on tree automata have been considered in [2,
11]. The notion of a backward bisimulation used in [11] corresponds to what can be
called a downward bisimulation in our terminology.

Outline The rest of the paper is organised as follows. In the next section, we give some
preliminaries on tree automata, labelled transition systems, and simulation relations.
Section 3 describes an algorithm for checking simulation onlabelled transition systems.
In Section 4 resp. Section 5, we translate downward resp. upward simulation on tree
automata into corresponding simulations on labelled transition systems. Section 6 gives
methods for reducing tree automata based on equivalences derived form downward and
upward simulation. In Section 7, we report some experimental results. Finally, we give
conclusions and directions for future research in Section 8.

Remark For space reasons, all proofs are deferred to [1].

2 Preliminaries

In this section, we introduce some preliminaries on trees, tree automata, and labelled
transition systems (LTS). In particular, we recall two simulation relations defined on tree
automata in [4], and the classical (word) simulation relation defined on LTS. Finally,
we will describe an encoding which we use in our algorithms todescribe pre-order
relations, e.g., simulation relations.

For an equivalence relation≡ defined on a setQ, we call each equivalence class of
≡ a block, and useQ/≡ to denote the set of blocks in≡.

Trees A ranked alphabetΣ is a set of symbols together with a functionRank: Σ→N.
For f ∈ Σ, the valueRank( f ) is said to be therankof f . For anyn≥ 0, we denote byΣn

the set of all symbols of rankn from Σ. Let ε denote the empty sequence. Atree t over
an alphabetΣ is a partial mappingt : N∗→ Σ that satisfies the following conditions:

– dom(t) is a finite, prefix-closed subset ofN∗, and
– for eachp∈ dom(t), if Rank(t(p)) = n > 0, then{i | pi ∈ dom(t)}= {1, . . . ,n}.



Each sequencep ∈ dom(t) is called anodeof t. For a nodep, we define theith child
of p to be the nodepi, and we define theith subtreeof p to be the treet ′ such that
t ′(p′) = t(pip′) for all p′ ∈N∗. A leafof t is a nodep which does not have any children,
i.e., there is noi ∈ N with pi ∈ dom(t). We denote byT(Σ) the set of all trees over the
alphabetΣ.

Tree Automata A (finite, non-deterministic, bottom-up)tree automaton(TA) is a 4-
tupleA = (Q,Σ,∆,F) whereQ is a finite set of states,F ⊆ Q is a set of final states,Σ
is a ranked alphabet, and∆ is a set of transition rules. Each transition rule is a tripleof
the form((q1, . . . ,qn), f ,q) whereq1, . . . ,qn,q ∈ Q, f ∈ Σ, andRank( f ) = n. We use

(q1, . . . ,qn)
f
−→ q to denote that((q1, . . . ,qn), f ,q) ∈ ∆. In the special case wheren= 0,

we speak about the so-calledleaf rules, which we sometimes abbreviate as
f
−→ q. We

useLhs(A) to denote the set ofleft-hand sidesof rules, i.e., the set of tuples of the form

(q1, . . . ,qn) where(q1, . . . ,qn)
f
−→ q for somef andq. Finally, we denote byRank(A)

the smallestn ∈ N such thatn≥ m for eachm∈ N where(q1, . . . ,qm) ∈ Lhs(A) for
someqi ∈Q, 1≤ i ≤m.

A run of A over a treet ∈ T(Σ) is a mappingπ : dom(t)→ Q such that for each
nodep∈ dom(t) whereq = π(p), we have that ifqi = π(pi) for 1≤ i ≤ n, then∆ has

a rule(q1, . . . ,qn)
t(p)
−→ q. We write t

π
=⇒ q to denote thatπ is a run ofA over t such

thatπ(ε) = q. We uset =⇒ q to denote thatt
π

=⇒ q for some runπ. The languageof
a stateq∈ Q is defined byL(q) = {t|t =⇒ q}, while thelanguageof A is defined by
L(A) =

S

q∈F L(q).

Labelled Transition Systems A (finite) labelled transition system (LTS)is a tuple
T = (S,L ,→) whereS is a finite set of states,L is a finite set of labels, and→ ⊆
S×L ×S is a transition relation.

Given an LTST = (S,L ,→), a labela∈ L , and two statesq, r ∈ S, we denote by
q

a
−→ r the fact that(q,a, r) ∈ →. We define the set ofa-predecessorsof a stater as

prea(r) = {q∈ S | q
a
−→ r}. GivenX,Y ⊆ S, we denoteprea(X) the set

S

s∈X prea(s),
we writeq

a
−→ X iff q∈ prea(X), andY

a
−→ X iff Y∩prea(X) 6= /0.

Simulations For a tree automatonA = (Q,Σ,∆,F), a downward simulation Dis a bi-

nary relation onQ such that if(q, r) ∈D and(q1, . . . ,qn)
f
−→ q, then there arer1, . . . , rn

such that(r1, . . . , rn)
f
−→ r and(qi , r i) ∈ D for eachi such that 1≤ i ≤ n. It is easy to

show [4] that any downward simulation can be closed under reflexivity and transitivity.
Moreover, there is a unique maximal downward simulation over a given tree automaton,
which we denote as4down in the sequel.

Given a TAA= (Q,Σ,∆,F) and a downward simulationD, anupward simulation U

induced byD is a binary relation onQ such that if(q, r)∈U and(q1, . . . ,qn)
f
−→ q′ with

qi = q, 1≤ i ≤ n, then there arer1, . . . , rn, r ′ such that(r1, . . . , rn)
f
−→ r ′ wherer i = r,

(q′, r ′) ∈U , and(q j , r j) ∈ D for each j such that 1≤ j 6= i ≤ n. In [4], it is shown that
any upward simulation can be closed under reflexivity and transitivity. Moreover, there
is a unique maximal upward simulation with respect to a fixed downward simulation
over a given tree automaton, which we denote as4up in the sequel.



Given aninitial pre-orderI ⊆ Q×Q, it can be shown that there are unique maxi-
mal downward as well as upward simulations included inI on the given TA, which we
denote4I

x in the sequel, forx∈ {down,up}. Further, we use∼=x to denote the equiva-
lence relation4x ∩4−1

x on Q for x∈ {down,up}. Likewise, we define the equivalence
relations∼=I

x for an initial pre-orderI onQ andx∈ {down,up}.
For an LTST = (S,L ,→), a (word) simulationis a binary relationRonSsuch that

if (q, r) ∈ R andq
a
−→ q′, then there is anr ′ with r

a
−→ r ′ and(q′, r ′) ∈ R. In a very

similar way as for simulations on trees, it can be shown that any given simulation on an
LTS can be closed under reflexivity and transitivity and thatthere is a unique maximal
simulation on the given LTS, which will we denote by4. Moreover, given aninitial
pre-orderI ⊆ S×S, it can be shown that there is a unique maximal simulation included
in I on the given LTS, which we denote4I in the sequel. We use∼= to denote the
equivalence relation4 ∩4−1 onSand consequently∼=I to denote4I ∩ (4I )−1.

Encoding Let S be a set. Apartition-relation pair over S is a pair(P,Rel) where
(1) P ⊆ 2S is a partition ofS (i.e., S= ∪B∈PB, and for allB,C ∈ P, if B 6= C, then
B∩C = /0), and (2)Rel⊆ P×P. We say that a partition-relation pair(P,Rel) over S
induces(or defines) the relationδ =

S

(B,C)∈RelB×C.
Let � be a pre-order defined on a setS, and let≡ be the equivalence� ∩ �−1

defined by�. The pre-order� can be represented—which we will use in our algorithms
below—by a partition-relation pair(P,Rel) overSsuch that(B,C) ∈ Rel iff s1 � s2 for
all s1 ∈ B ands2 ∈C. In this representation, if the partitionP is as coarse as possible
(i.e., such thats1,s2 ∈ B iff s1≡ s2), then, intuitively, the elements ofP are blocks of≡,
while Rel reflects the partial order onP corresponding to�.

3 Computing Simulations on Labelled Transition Systems

We now introduce an algorithm to compute the (unique) maximal simulation relation
4I on anLTSfor a given initial pre-orderI on states. Our algorithm is a re-formulation
of the algorithm proposed in [14] for computing simulationsoverKripke structures.

3.1 An Algorithm for Computing Simulations on LTS

For the rest of this section, we assume that we are given an LTST = (S,L ,→) and an
initial pre-orderI ⊆S×S. We will use Algorithm 1 to compute the maximum simulation
4I⊆S×Sincluded inI . In the algorithm, we use the following notation. Givenρ⊆S×S
and an elementq∈ S, we denoteρ(q) the set{r ∈ S| (q, r) ∈ ρ}.

The algorithm performs a number of iterations computing a sequence of relations,
each induced by a partition-relation pair(P,Rel). During each iteration, the states be-
longing to a blockB′ ∈ P are those which are currently assumed as capable of simulat-
ing those from anyB with (B,B′) ∈ Rel. The algorithm starts with an initial partition-
relation pair(Pinit ,Relinit ) that induces the initial pre-orderI onS. The partition-relation
pair is then gradually refined by splitting blocks of the partition P and by restricting
the relationRel on P. When the algorithm terminates, the final partition-relation pair
(Psim,Relsim) induces the required pre-order4I .

The refinement performed during the iterations consists of splitting the blocks inP
and then updating the relationRelaccordingly. For this purpose, the algorithm maintains
a setRemovea(B) for eacha∈ L andB∈P. Such a set contains states that do not have an



a-transition going into states that are inB nor to states of any blockB′ with (B,B′)∈Rel.
Clearly, the states inRemovea(B) cannot simulate states that have ana-transition going
into

S

(B,B′)∈RelB
′. Therefore, for anyRemovea(B) 6= /0, we can split each blockC∈P to

C∩Removea(B) andC\Removea(B). This is done using the functionSplit on line 6.
After performing theSplit operation, we update the relationRel and theRemove

sets. This is carried out in two steps. First, we compute an approximation of the next
values ofRel andRemove. More precisely, after a split, allRel relations between the
original “parent” blocks of states are inherited to their “children” resulting from the
split (line 8)—the notationparentPprev(C) refers to the parent block from whichC
arose within the split. On line 10, the remove sets are then inherited from parent blocks
to their children. To perform the second step, we observe that the inheritance of the
original relationRelon parent blocks to the children blocks is not consistent with the
split we have just performed. Therefore, on line 14, we subsequently pruneRelsuch that
blocksC that have ana-transition going intoB states cannot be considered as simulated
by blocksD which do not have ana-transition going into

S

(B,B′)∈RelB
′—notice that

due to the split that we have performed, theD blocks are now included inRemove. This
pruning can then cause a necessity of further refinements as the states that have someb-
transition into aD block (that was freshly found not to simulateC), but not toC nor any
block that is still viewed as capable of simulatingC, have to stop simulating states that
can go into

S

(C,C′)∈RelC
′. Therefore, such states are added intoRemoveb(C) on line 17.

3.2 Correctness and Complexity of the Algorithm

In the rest of the section, we assume that Algorithm 1 is applied on an LTST = (S,L ,→)
with an initial partition-relation pair(Pinit ,Relinit ). The correctness of the algorithm is
formalised in Theorem 1.

Theorem 1. Suppose that I is the pre-order induced by(Pinit ,Relinit ). Then, Algo-
rithm 1 terminates and the final partition-relation pair(Psim,Relsim) computed by it
induces the simulation relation4I , and, moreover, Psim = S/∼=I .

A similar correctness result is proved in [14] for the algorithm on Kripke structures,
using notions from the theory of abstract interpretation. In [1], we provide an alterna-
tive, more direct proof, which is, however, beyond the spacelimitations of this paper.
Therefore, we will only mention the key idea behind the termination argument. In par-
ticular, the key point is that if we take any blockB from Pinit and anya∈ L , if B or any
of its childrenB′, which arises by splitting, is repeatedly selected to be processed by
the while loop on line 3, then theRemovea(B) (or Removea(B′)) sets can never contain
a single states∈ S at an iterationi of the while loop as well as on a later iterationj,
j > i. Therefore, as the number of possible partitions as well as the number of states is
finite, the algorithm must terminate.

The complexity of the algorithm is equal to that of the original algorithm from [14],
up to the new factorL that is not present in [14] (or, equivalently,|L |= 1 in [14]). The
complexity is stated in Theorem 2.

Theorem 2. Algorithm 1 has time complexity O(|L |.|Psim|.|S|+ |Psim|.| → |) and space
complexity O(|L |.|Psim|.|S|).

A proof of Theorem 2, based on a similar reasoning as in [14], can be found in [1]. Here,
let us just mention that the result expects the input LTS and the initial partition-relation



Algorithm 1 : Computing simulations on states of an LTS
Input : An LTS T = (S,L ,→), an initial partition-relation pair(Pinit ,Relinit ) onS inducing

a pre-orderI ⊆ S×S.
Data: A partition-relation pair(P,Rel) onS, and for eachB∈ P anda∈ L , a set

Removea(B)⊆ S.
Output : The partition-relation pair(Psim,Relsim) inducing the maximal simulation onT

contained inI .

/* initialisation */
(P,Rel)← (Pinit ,Relinit );1

forall a∈ L ,B∈ P do Removea(B)← S\prea(
S

Rel(B));2

/* computation */
while ∃a∈ L . ∃B∈ P. Removea(B) 6= /0 do3

Remove← Removea(B);Removea(B)← /0;4

Pprev← P;Bprev ← B;Relprev ← Rel;5

P← Split(P,Remove);6

forall C ∈ P do7

Rel(C)←{D ∈ P | D⊆
S

Relprev(parentPprev
(C))};8

forall b∈ L do9

Removeb(C)← Removeb(parentPprev
(C))10

forall C ∈ P. C
a
−→ Bprev do11

forall D ∈ P. D⊆ Removedo12

if (C,D) ∈Rel then13

Rel← Rel\{(C,D)};14

forall b∈ L do15

forall r ∈ preb(D)\preb(
S

Rel(C)) do16

Removeb(C)← Removeb(C)∪{r}17

(Psim,Relsim)← (P,Rel);18

pair be encoded in suitable data structures. This fact is important for the complexity
analyses presented later on as they build on using Algorithm1.

In particular, the input LTS is represented as a list of records about its states—we
call this representation as thestate-listrepresentation of the LTS. The record about each
states∈ Scontains a list of nonemptyprea(s) sets4, each of them encoded as a list of its
members. The partitionPinit (and later any of its refinements) is encoded as a doubly-
linked list (DLL) of blocks. Each block is represented as a DLL of (pointers to) states of
the block. The relationRelinit (and later any of its refinements) is encoded as a Boolean
matrixPinit ×Pinit .

4 Computing Downward Simulation

In this section, we describe algorithms for computing downward simulation on tree
automata. Our approach consists of two parts: (1) we translate the maximal down-
ward simulation problem over tree automata into a corresponding maximal simulation

4 We use a list rather than an array having an entry for eacha∈ L in order to avoid a need to
iterate over alphabet symbols for which there is no transition.



problem over LTSs (i.e., basically word automata), and (2) we compute the maximal
word simulation on the obtained LTS using Algorithm 1. Below, we describe how the
translation is carried out.

We translate the downward simulation problem on a TAA = (Q,Σ,∆,F) to the
simulation problem on a derived LTSA•. Each state and each left hand side of a rule in
A is represented by one state inA•, while each rule inA is simulated by a set of rules in
A•. Formally, we defineA• = (Q•,Σ•,∆•) as follows:

– The setQ• contains a stateq• for each stateq ∈ Q, and it also contains a state
(q1, . . . ,qn)

• for each(q1, . . . ,qn) ∈ Lhs(A).
– The setΣ• contains each symbola∈ Σ and each indexi ∈ {1,2, . . . ,n} wheren is

the maximal rank of any symbol inΣ.

– For each transition rule(q1, . . . ,qn)
f
−→ q of A, the set∆• contains both the transi-

tion q•
f
−→ (q1, . . . ,qn)

• and transitions(q1, . . . ,qn)
• i
−→ q•i for eachi : 1≤ i ≤ n.

– The setsQ•, Σ•, and∆• do not contain any other elements.

The following theorem shows correctness of the translation.

Theorem 3. For all q, r ∈Q, we have q• 4 r• iff q 4downr.

Due to Theorem 3, we can compute the simulation relation4down on Q by con-
structing the LTSA• and running Algorithm 1 on it with the initial partition-relation
pair being simply(P•,Rel•) = ({Q•},{(Q•,Q•)})5.

4.1 Complexity of Computing the Downward Simulation

The complexity naturally consists of the price of compilinga given TAA= (Q,Σ,∆,F)
into its corresponding LTSA•, the price of building the initial partition-relation pair
(P•,Rel•), and the price of running Algorithm 1 onA• and(P•,Rel•).

We assume the automata not to have unreachable states and to have at most one
(final) state that is not used in the left-hand side of any transition rule—general automata
can be easily pre-processed to satisfy this requirement. Further, we assume the input
automatonA to be encoded as a list of statesq ∈ Q and a list of the left-hand sides
l = (q1, ...,qn) ∈ Lhs(A). Each left-hand sidel is encoded by an array of (pointers to)
the statesq1, ...,qn, plus a list containing a pointer to the so-calledf -list for eachf ∈ Σ
such that there is anf transition froml in ∆. Each f -list is then a list of (pointers to)

all the statesq∈ Q such thatl
f
−→ q. We call this representation thelhs-list automata

encoding. Then, the complexity of preparing the input for computing the downward
simulation onA via Algorithm 1 is given by the following lemma.

Lemma 1. For a TA A= (Q,Σ,∆,F), the LTS A• and the partition-relation pair(P•,Rel•)
can be derived in time and space O(Rank(A) · |Q|+ |∆|+(Rank(A)+ |Σ|) · |Lhs(A)|).

In order to instantiate the complexity of running Algorithm1 for A• and(P•,Rel•),
we first introduce some auxiliary notions. First, we extend4down to the setLhs(A)

5 We initially consider all states of the LTSA• equal, and hence they form a single class ofP•,
which is related to itself inRel•.



such that(q1, . . . ,qn) 4down(r1, . . . , rn) iff qi 4down r i for eachi : 1≤ i ≤ n. We notice
that Psim = Q•/∼=. From an easy generalisation of Theorem 3 to apply not only for
states fromQ, but also the left-hand sides of transition rules fromLhs(A), i.e., from the
fact that∀l1, l2 ∈ Lhs(A).l1 4down l2 ⇔ l•1 4 l•2, we have that|Q•/∼=| = |Q/∼=down|+
|Lhs(A)/∼=down|.

Lemma 2. Given a tree automaton A= (Q,Σ,∆,F), Algorithm 1 computes the simu-
lation 4 on the LTS A• for the initial partition-relation pair(P•,Rel•) with the time
complexity O((|Σ|+ Rank(A)) · |Lhs(A)| · |Lhs(A)/∼=down|+ |∆| · |Lhs(A)/∼=down|) and
the space complexity O((|Σ|+Rank(A)) · |Lhs(A)| · |Lhs(A)/∼=down|).

The complexity of computing the downward simulation for a tree automatonA via
the LTSA• can now be obtained by simply adding the complexities of computing A•

and(P•,Rel•) and of running Algorithm 1 on them.

Theorem 4. Given a tree automaton A, the downward simulation on A can be com-
puted in time O((|Σ|+Rank(A)) · |Lhs(A)| · |Lhs(A)/∼=down|+ |∆| · |Lhs(A)/∼=down|) and
space O((|Σ|+Rank(A)) · |Lhs(A)| · |Lhs(A)/∼=down|+ |∆|). 6

Moreover, under the standard assumption that the maximal rank and size of the
alphabet are constants, we get the time complexityO(|∆| · |Lhs(A)/∼=down|) and the
space complexityO(|Lhs(A)| · |Lhs(A)/∼=down|+ |∆|).

5 Computing Upward Simulation

In a similar manner to the downward simulation, we translatethe upward simulation
problem on a tree automatonA= (Q,Σ,∆,F) to the simulation problem on an LTSA�.
To define the translation from the upward simulation, we firstmake the following defini-
tion. Anenvironmentis a tuple of the form((q1, . . . ,qi−1,�,qi+1, . . . ,qn), f ,q) obtained
by removing a stateqi , 1≤ i ≤ n, from theith position of the left hand side of a rule
((q1, . . . ,qi−1,qi ,qi+1, . . . ,qn), f ,q), and by replacing it by a special symbol� 6∈ Q

(called aholebelow). Like for transition rules, we write(q1, . . . ,�, . . . ,qn)
f
−→ q pro-

vided ((q1, . . . ,qi−1,qi ,qi+1, . . . ,qn), f ,q) ∈ ∆ for someqi ∈ Q. Sometimes, we also

write the environment as(q1, . . . ,�i , . . . ,qn)
f
−→ q to emphasise that the hole is at po-

sition i. We denote the set of all environments ofA by Env(A).
The derivation ofA� differs fromA• in two aspects: (1) we encode environments

(rather than left-hand sides of rules) as states inA�, and (2) we use a non-trivial ini-
tial partition on the states ofA�, taking into account the downward simulation onQ.
Formally, we defineA� = (Q�,Σ�,∆�) as follows:

– The setQ� contains a stateq� for each stateq ∈ Q, and it also contains a state

((q1, . . . ,�i , . . . ,qn)
f
−→ q)� for each environment(q1, . . . ,�i , . . . ,qn)

f
−→ q.

– The setΣ� contains each symbola∈ Σ and also a special symbolλ 6∈ Σ.

6 Note that in the special case ofRank(A) = 1 (corresponding to a word automaton viewed as
a tree automaton), we have|Lhs(A)|= |Q|, which leads to the same complexity as Algorithm 1
has when applied directly on word automata.



– For each transition rule(q1, . . . ,qn)
f
−→ q of A, the set∆� contains both the transi-

tionsq�i
λ
−→ ((q1, . . . ,�i , . . . ,qn)

f
−→ q)� for eachi ∈ {1, ...,n} and the transition

((q1, . . . ,�i , . . . ,qn)
f
−→ q)�

f
−→ q�.

– The setsQ�, Σ�, and∆� do not contain any other elements.

We defineI to be the smallest binary relation onQ� containing all pairs of states of the
automatonA, i.e., all pairs(q�1 ,q�2 ) for eachq1,q2 ∈Q, as well as all pairs of environ-

ments(((q1, . . . ,�i , . . . ,qn)
f
−→ q)�,((r1, . . . ,�i , . . . , rn)

f
−→ r)�) such that(q j , r j)∈D

for eachj : 1≤ j 6= i ≤ n.
The following theorem shows correctness of the translation.

Theorem 5. For all q, r ∈Q, we have q4up r iff q� 4I r�.

The relationI is clearly a pre-order and so the relationι = I ∩ I−1 is an equivalence.
Due to Theorem 5, we can compute the simulation relation4up onQby constructing the
LTS A� and running Algorithm 1 on it with the initial partition-relation pair(P�,Rel�)
inducingI , i.e.,P� = Q�/ι andRel� = {(B,C) ∈ P�×P� | B×C⊆ I}.

5.1 Complexity of Computing the Upward Simulation

Once the downward simulation4down on a given TAA = (Q,Σ,∆,F) is computed, the
complexity of computing the simulation4up naturally consists of the price of compiling
A into its corresponding LTSA�, the price of building the initial partition-relation pair
(P�,Rel�), and the price of running Algorithm 1 onA� and(P�,Rel�).

We assume the automatonA to be encoded in the same way as in the case of com-
puting the downward simulation. Compared to preparing the input for computing the
downward simulation, the main obstacle in the case of the upward simulation is the need
to compute the partitionP�e of the set of environmentsEnv(A) wrt. I , which is a subset
of the partitionP� (formally, P�e = P� ∩ 2Env(A)). If the computation ofP�e is done
naively (i.e., based on comparing each environment with every other environment), it
can introduce a factor of|Env(A)|2 into the overall complexity of the procedure. This
would dominate the complexity of computing the simulation on A� where, as we will
see,|Env(A)| is only multiplied by|Env(A)/∼=up|.

Fortunately, this complexity blowup can be to a large degreeavoided by exploit-
ing the partitionLhs(A)/∼=down computed within deriving the downward simulation as
shown in detail in [1]. Here, we give just the basic ideas.

For each 1≤ i ≤ Rank(A), we define ani-weakened versionDi of the downward
simulation on left-hand sides ofA such that((q1, . . . ,qn),(r1, . . . , rm)) ∈ Di ⇐⇒ n =
m≥ i ∧ (∀1≤ j ≤ n. j 6= i =⇒ q j 4down r j). Clearly, eachDi is a pre-order, and we
can define the equivalence relations≈i = Di ∩D−1

i . Now, a crucial observation is that
there exists a simple correspondence betweenP�e and Lhs(A)/≈i. Namely, we have
that L ∈ Lhs(A)/≈i iff for each f ∈ Σ, there is a blockEL, f ∈ P�e such thatEL, f =

{(q1, . . . ,�i , . . . ,qn)
f
−→ q | ∃qi,q∈Q. (q1, ...,qi , ...,qn)∈L ∧ (q1, ...,qi , ...,qn)

f
−→ q}.

The idea of computingP�e is now to first compute blocks ofLhs(A)/≈i and then to
derive from them theP�e blocks. The key advantage here is that the computation of the
≈i-blocks can be done on blocks ofLhs(A)/∼=down instead of directly on elements of



Lhs(A). This is because, for eachi, blocks ofLhs(A)/∼=downare sub-blocks of blocks of
Lhs(A)/≈i. Moreover, for any blocksK,L of Lhs(A)/∼=down, the test ofK×L⊆Di can
simply be done by testing whether(k, l) ∈ Di for any two representativesk∈ K, l ∈ L.
Therefore, all≈i-blocks can be computed in time proportional to|Lhs(A)/∼=down|

2.
From each blockL ∈ Lhs(A)/≈i, one blockEL, f of P�e is generated for each symbol

f ∈ Σ. TheEL, f blocks are obtained in such a way that for each left-hand sidel ∈ L, we
generate all the environments which arise by replacing theith state ofl by 2, addingf ,

and adding a right-hand side stateq∈Q which together withl form a transitionl
f
−→ q

of A. This can be done efficiently using the lhs-list encoding ofA. An additional factor
|∆| · log|Env(A)| is, however, introduced due to a need of not having duplicates among
the computed environments, which could result from transitions that differ just in the
states that are replaced by� when constructing an environment. The factor log|Env(A)|
comes from testing a set membership over the computed environments to check whether
we have already computed them before or not.

Moreover, it can be shown thatRel� can be computed in time|P�|2. The complexity
of constructingA� and(P�,Rel�) is then summarised in the below lemma.

Lemma 3. Given a tree automaton A= (Q,Σ,∆,F), the downward simulation4down

on A, and the partition Lhs(A)/∼=down, the LTS A� and the partition-relation pair
(P�,Rel�) can be derived in time O(|Σ| · |Q|+Rank(A)·(|Lhs(A)|+ |Lhs(A)/∼=down|

2)+
Rank(A)2 · |∆| · log|Env(A)|+ |P�|2) and in space O(|Σ| · |Q|+ |Env(A)|+ Rank(A) ·
|Lhs(A)|+ |Lhs(A)/∼=down|

2 + |P�|2).

In order to instantiate the complexity of running Algorithm1 forA� and(P�,Rel�),
we again first introduce some auxiliary notions. Namely, we extend 4up to the set

Env(A) such that(q1, . . . ,�i , . . . ,qn)
f
−→ q 4up (r1, . . . ,� j , . . . , rm)

f
−→ r⇐⇒m= n∧

i = j∧q 4up r∧(∀k∈ {1, ...,n}. k 6= i =⇒ qk 4downrk). We notice thatPsim= Q�/∼=I .
From an easy generalisation of Theorem 5 to apply not only forstates fromQ, but also
environments fromEnv(A), i.e., from the fact that∀e1,e2 ∈ Env(A). e1 4up e2 ⇐⇒
e�1 4I e�2 , we have that|Q�/∼=I |= |Q/∼=up|+ |Lhs(A)/∼=up|.

Lemma 4. Given a tree automaton A= (Q,Σ,∆,F), the upward simulation4up on A
can be computed by running Algorithm 1 on the LTS A� and the partition-relation pair
(P�,Rel�) in time O(Rank(A) · |∆| · |Env(A)/∼=up|+ |Σ| · |Env(A)| · |Env(A)/∼=up|) and
space O(|Σ| · |Env(A)| · |Env(A)/∼=up|).

The complexity of computing upward simulation on a TAA can now be obtained
by simply adding the price of computing downward simulation, the price of computing
A� and(P�,Rel�), and the price of running Algorithm 1 onA� and(P�,Rel�).

Theorem 6. Given a tree automaton A= (Q,Σ,∆,F), let Tdown(A) and Sdown(A) denote
the time and space complexity of computing the downward simulation4downon A. Then,
the upward simulation4up on A can be computed in time

O((|Σ| · |Env(A)|+Rank(A)· |∆|)· |Env(A)/∼=up|+Rank(A)2· |∆| · log|Env(A)|+Tdown(A))

and in space O(|Σ| · |Env(A)| · |Env(A)/∼=up|+Sdown(A)).7

7 Note that in the special case ofRank(A) = 1 (corresponding to a word automaton viewed as
a tree automaton), we have|Env(A)| ≤ |Σ| · |Q|, which leads to almost the same complexity (up
to the logarithmic component) as Algorithm 1 has when applied directly on word automata.



Finally, from the standard assumption that the maximal rankand the alphabet size are
constants and from observing that|Env(A)| ≤Rank(A)· |∆| ≤Rank(A)· |Σ| · |Q|Rank(A)+1,
we get the time complexityO(|∆| · (|Env(A)/∼=up|+ log|Q|)+Tdown(A)) and the space
complexityO(|Env(A)| · |Env(A)/∼=up|+Sdown(A)).

6 Reducing Tree Automata

In this section, we describe how to reduce tree automata while preserving the language
of the automaton. The idea is to identify suitable equivalence relations on states of
tree automata, and then collapse the sets of states which form equivalence classes. We
will consider two reduction methods: one which uses downward simulation, and one
which is defined in terms of both downward and upward simulation. The choice of
the equivalence relation is a trade-off between the amount of reduction achieved and
the cost of computing the relation. The second mentioned equivalence is heavier to
compute as it requires that both downward and upward simulation are computed and
then suitably composed. However, it is at least as coarse as—and often significantly
coarser than—the downward simulation equivalence, and hence can give much better
reductions as witnessed even in our experiments.

Consider a tree automatonA= (Q,Σ,∆,F) and an equivalence relation≡ onQ. The
abstract tree automatonderived fromA and≡ is A〈≡〉= (Q〈≡〉,Σ,∆〈≡〉,F〈≡〉) where:

– Q〈≡〉 is the set of blocks in≡. In other words, we collapse all states which belong
to the same block into one abstract state.

– (B1, . . . ,Bn)
f
−→ B iff (q1, . . . ,qn)

f
−→ q for someq1 ∈ B1, . . . ,qn ∈ Bn,q∈ B. This

is, there is a transition in the abstract automaton iff thereis a transition between
states in the corresponding blocks.

– F〈≡〉 contains a blockB iff B∩F 6= /0. Intuitively, a block is accepting if it contains
at least one state which is accepting.

6.1 Downward Simulation Equivalence

Given a tree automatonA = (Q,Σ,∆,F), we consider the abstract automatonA〈∼=down〉
constructed by collapsing states ofA which are equivalent with respect to∼=down. We
show that the two automata accept the same language, i.e.,L(A) = L(A〈∼=down〉). Ob-
serve that the inclusionL(A) ⊆ L(A〈∼=down〉) is straightforward. We can prove the in-
clusion in the other direction as follows. Using a simple induction on trees, one can
show that downward simulation implies language inclusion.In other words, for states
q, r ∈Q, if q4downr, thenL(q)⊆ L(r). This implies that for anyB∈Q〈∼=down〉, it is the
case thatL(B)⊆ L(r) for anyr ∈ B. Now suppose thatt ∈ L(A〈∼=down〉). It follows that
t ∈ L(B) for someB∈ F〈∼=down〉. SinceB∈ F〈∼=down〉, there is somer ∈ B with r ∈ F .
It follows thatt ∈ L(r), and hencet ∈ L(A). This gives the following Theorem.

Theorem 7. L(A) = L(A〈∼=down〉) for each tree automaton A.

In fact, A〈∼=down〉 is the minimal automaton which is equivalent toA with respect to
downward simulation and which accepts the same language asA.



6.2 Composed Equivalence

Consider a tree automatonA = (Q,Σ,∆,F). Let IF be a partitioning ofQ such that
(q, r) ∈ IF iff q∈ F =⇒ r ∈ F . Consider a reflexive and transitive downward simula-
tion D, and a reflexive and transitive upward simulationU induced byD. Assume that
U ⊆ IF . We will reduceA with respect to relations of the form≡R which preserve lan-
guage equivalence, but which may be much coarser than downward simulations. Here,
each≡R is an equivalence relationR∩R−1 defined by a pre-orderR satisfying certain
properties. More precisely, we useD⊕U to denote the set of relations onQ such that
for eachR∈ (D⊕U), the relationRsatisfies the following two properties: (i)R is tran-
sitive and (ii)D⊆R⊆

(

D◦U−1
)

. For a stater ∈Q and a setB⊆Q of states, we write
(B, r) ∈ D to denote that there is aq∈ B with (q, r) ∈ D. We define(B, r) ∈U analo-
gously. We will now consider the abstract automatonA〈≡R〉 where the states ofA are
collapsed according to≡R. We will relate the languages ofA andA〈≡R〉.

To do that, we first define the notion of acontext. Intuitively, a context is a tree
with “holes” instead of leaves. Formally, we consider a special symbol© 6∈ Σ with
rank 0. A contextover Σ is a treec over Σ∪ {©} such that for all leavesp ∈ c, we
havec(p) =©. For a contextc with leavesp1, . . . , pn, and treest1, . . . ,tn, we define
c[t1, . . . ,tn] to be the treet, where

– dom(t) = dom(c)
S

{p1 · p′| p′ ∈ dom(ti)}
S

· · ·
S

{pn · p′| p′ ∈ dom(tn)},
– for eachp = pi · p′, we havet(p) = ti(p′), and
– for eachp∈ dom(c)\ {p1, . . . , pn}, we havet(p) = c(p).

In other words,c[t1, . . . ,tn] is the result of appending the treest1, . . . ,tk to the holes ofc.
We extend the notion of runs to contexts. Letc be a context with leavesp1, . . . , pn. A run
π of A on c from (q1, . . . ,qn) is defined in a similar manner to a run on a tree except
that for a leafpi , we haveπ(pi) = qi, 1≤ i ≤ n. In other words, each leaf labelled with
© is annotated by oneqi . We usec[q1, . . . ,qn]

π
=⇒ q to denote thatπ is a run ofA on

c from (q1, . . . ,qn) such thatπ(ε) = q. The notationc[q1, . . . ,qn] =⇒ q is explained in
a similar manner to runs on trees.

Using the notion of a context, we can relate runs ofA with those of the abstract
automatonA〈≡R〉. More precisely, we can show that for blocksB1, . . . ,Bn,B∈ Q〈≡R〉
and a contextc, if c[B1, . . . ,Bn] =⇒ B, then there exist statesr1, . . . , rn, r ∈ Q such that
(B1, r1) ∈ D, . . . ,(Bn, rn) ∈ D,(B, r) ∈U , andc[r1, . . . , rn] =⇒ r. In other words, each
run inA〈≡R〉 can be simulated by a run inA which starts from larger states (with respect
to downward simulation) and which ends up at a larger state (with respect to upward
simulation). This leads to the following lemma.

Lemma 5. If t =⇒B, then t=⇒w for some w with(B,w)∈U. Moreover, if B∈F〈≡R〉,
then also w∈ F.

In other words, each treet which leads to a blockB in A〈≡R〉will also lead to a state
in A which is larger than (some state in) the blockB with respect to upward simulation.
Moreover, ift can be accepted atB in A〈≡R〉 (meaning thatB contains a final state of
A, i.e.,B∩F 6= /0), then it can be accepted atw in A (i.e.,w∈ F) too.

Notice that Lemma 5 holds for any downward and upward simulations satisfying
the properties mentioned in the definition of⊕. We now instantiate the lemma for the



maximal downward and upward simulation to obtain the main result. We takeD and
U to be4down and4

IF
up, respectively, and we let4comp be any relation from the set of

relations(4down⊕4
IF
up). We let∼=compbe the corresponding equivalence.

Theorem 8. L(A〈∼=comp〉) = L(A) for each tree automaton A.

Proof. The inclusionL(A〈∼=comp〉) ⊇ L(A) is trivial. Let t ∈ L(A〈∼=comp〉), i.e., t =⇒ B
for some blockB whereB∩F 6= /0. Lemma 5 implies thatt =⇒w such thatw∈ F . ut

Note that it is clearly the case that∼=down⊆ ∼=comp. Moreover, note that a relation
4comp∈ (4down⊕4

IF
up) can be obtained, e.g., by a simple (random) pruning of the rela-

tion 4down◦ (4IF
up)−1 based on iteratively removing links not being in4down and at the

same time breaking transitivity of the so-far computed composed relation. Such a way
of computing4comp does not guarantee that one obtains a relation of the greatest car-
dinality possible among relations from4down⊕4

IF
up, but, on the other hand, it is cheap

(in the worst case, cubic in the number of states). Moreover,our experiments show that
even this simple way of computing the composed relation can give us a relation∼=comp

that is much coarser (and yields significantly better reductions) than∼=down.

Remark Our definition of a context coincides with the one of [8] whereall leaves are
holes. On the other hand, a context in [9] and [3] is a tree withasinglehole. Considering
single-hole contexts, one can define thelanguage of contexts Lc(q) of a stateq to be the
set of contexts on which there is an accepting run if the hole is replaced byq. Then, for
all statesq andr, it is the case thatq 4up r impliesLc(q)⊆ Lc(r).

7 Experiments with Reducing Tree Automata

We have implemented our algorithms in a prototype tool written in Java. We have run
the prototype on a number of tree automata that arise in the framework oftree regular
model checking. Tree regular model checking is the name of a family of techniques for
analysing infinite-state systems in which states are represented by trees, (infinite) sets
of states by finite tree automata, and transitions by tree transducers. Most of the algo-
rithms in the framework rely crucially on efficient automatareduction methods since the
size of the generated automata often explodes, making computations infeasible without
reduction. The (nondeterministic) tree automata that we have considered arose during
verification of thePercolateprotocol, theArbiter protocol, and theLeaderelection pro-
tocol [4].

Our experimental evaluation was carried out on an AMD Athlon64 X2 2.19GHz
PC with 2.0 GB RAM. The time for minimising the tree automata varied from a few
seconds up to few minutes. Table 1 shows the number of states and rules of the various
considered tree automata before and after computing∼=down, ∼=comp, and the backward
bisimulation from [11]. Backward bisimulation is the bisimulation counterpart of down-
ward simulation. The composed simulation equivalence∼=comp was computed in the
simple way based on the random pruning of the relation4down◦ (4IF

up)−1 as mentioned
at the end of Section 6.2. As Table 1 shows,∼=comp achieves the best reduction (often
reducing to less than one-third of the size of the original automaton). As expected, both
∼=down and∼=compgive better reductions than backward bisimulation in all test cases.



Protocol original ∼=down
∼=comp

backward
bisimulation

states rules states rules states rules states rules

percolate
10 72 7 45 7 45 10 72
20 578 17 392 14 346 20 578
28 862 13 272 13 272 15 341

arbiter
15 324 10 248 7 188 11 252
41 313 28 273 19 220 33 285
109 1248 67 1048 55 950 83 1116

leader
17 153 11 115 6 47 16 152
25 384 16 235 6 59 23 382
33 876 10 100 7 67 27 754

Table 1.Reduction of the number of states and rules using different reduction algorithms.

8 Conclusions and Future Work

We have presented methods for reducing tree automata under language equivalence. For
this purpose, we have considered two kinds of simulation relations on the states of tree
automata, namely downward and upward simulation. We give procedures for efficient
translation of both kinds of relations into simulations defined on labelled transition sys-
tems. Furthermore, we define a new, language-preserving equivalence on tree automata,
derived from compositions of downward and upward simulation, which (according to
our experiments) usually gives a much better reduction on the size of automata than
downward simulation.

There are several interesting directions for future work. First, we would like to im-
plement the proposed algorithms in a more efficient way, perhaps over automata en-
coded in a symbolic way using BDDs like in MONA [12], in order to be able to ex-
periment with bigger automata. Further, for instance, we can defineupwardanddown-
ward bisimulationfor tree automata in an analogous way to the case of simulation. It
is straightforward to show that the encoding we use in this paper can also be used to
translate bisimulation problems on tree automata into corresponding ones for LTSs. Al-
though reducing according to a bisimulation does not give the same reduction as for
a simulation, it is relevant since it generates more efficient algorithms. Also, we plan to
investigate coarser relations for better reductions of tree automata by refining the ideas
behind the definition of the composed relation introduced inSection 6. We believe that
it is possible to define a refinement scheme allowing one to define an increasing family
of such relations between downward simulation equivalenceand tree language equiv-
alence. Finally, we plan to consider extending our reduction techniques to the class of
unranked trees which are used in applications such as reasoning about structured docu-
ments or about configurations of dynamic concurrent processes.
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A Proofs of the Theorems Presented in the Paper

A.1 Correctness of Computing Simulations on LTS (Algorithm1)

Let us first introduce some notation. By aniteration, we will mean a single iteration
of the while loop of the algorithm. For an iteration, the block B chosen on line 3 (also
referd to asBprev) will be denoted as thepivotof the iteration. Anancestorof a blockC
is any blockD which appears during the computation and for whichC⊆ D, and on the
contrary,C is a descendentof D. Moreover, ifD is the immediate ancestor ofC such
thatC was created while splittingD, thenD is theparentof C andC is achild of D.

Given an LTST = (S,L ,→) andq, r ∈ S, we will denote byq−
a
9 r the fact that

¬(q
a
−→ r). Moreover, for anyB,C⊆ S, q−

a
9 C andB

a
−→C are defined analogously,

i.e. provided thatq 6∈ prea(C) andB∩prea(C) = /0.

Lemma 6. On line 3 of Algorithm 1, the pair(P,Rel) is always a partition-relation
pair. The partition P can only be refined during the computation. Moreover, the relation
induced by the partition-relation pair(P,Rel) can only shrink during the computation.

Proof. The fact that(P,Rel) is a partition-relation pair can only be temporarily broken
by theSplit operation on line 6 but after inheriting allRel links of parent classes to
children classes on lines 7–10, it again holds. The other twoclaims of the lemma are
also immediate as the algorithm can only split the classes ofP (but never unites them),
and it can only remove some elements fromRel. ut

Lemma 7. The following claims are invariants of the while loop of Algorithm 1:

∀B∈ P. ∀a∈ L . Removea(B)−
a
9

[

Rel(B) (1)

∀B∈ P. B∈ Rel(B) (2)

∀B,C∈ P. (B,C) ∈ Rel =⇒
(

∀a∈ L . ∀D ∈ P. B
a
−→ D =⇒ C⊆ prea(

[

Rel(D))∪Removea(D)
)

(3)

Proof. After the initialization, all the invariants hold. It is notso difficult to see it asI
and therefore alsoRelare transitive and reflexive.

– Invariant (1) can never be broken. After the initializationit holds. From there on, it
holds because only such a stater can be moved into theRemoveb(C) which is not in
preb(

S

Rel(C)) (the test on line 16). Moreover, ifr is once not inpreb(
S

Rel(C)),
then it will no more be there (Lemma 6).

– Invariant (2) can never be broken as breaking reflexivity ofRel requires choosing
(C,D) on line 14 such thatC = D. For any such a pair on line 14, it holds that
C

a
−→ B andD ⊆ Removea(B) whereB is the pivot block. But, thanks to Invariant

(1), this is not possible forC = D.
– Invariant (3) can be temporarily broken on three places of the algorithm:

lines 6–10: Let C be a block ofP on line 7 and letC′ ∈ Pprev be its parent. Then it
is easy to see that after finishing the for loop on line 7, it holds that

S

Rel(C) =
S

Relprev(C′) and for alla∈ L , Removea(C) = Removea(C′). Thus after finish-
ing the for loop on line 7, invariant (3) can be broken only forthose(B,C) pairs
such that it was broken even for their parents on line 6.



line 4: Assume that line 4 breaks the invariant and letB by the pivot of the it-
eration of the while loop. Then there areC,D ∈ P which break the invariant
such that(C,D) ∈ Rel, C

a
−→ B, D ⊆ prea(

S

Rel(B))∪Removea(B), andD *
prea(

S

Rel(B)). TheSplitoperation on line 6 dividesD intoD1⊆ prea(
S

Rel(B))
andD2 ⊆ Remove. ThenReland theRemovesets are inherited on lines 7–10.
Now only(C′,D2) pairs break the invariant whereC′ is a child ofC which leads
undera into a child ofB. But exactly these pairs will be finally chosen on line
13 and the relationRelwill be cut on exactly these places.

line 16: The invariant can be broken on this line as there can be some statesr such
that r

b
−→ D and thus before the update ofRel, r

b
−→

S

Rel(C), but after the

removal ofD from Rel(C), it can happen thatr −
b
9

S

Rel(C). But exactly these
r states are moved intoRemoveb(C), and so Invariant (3) holds after finishing
the for loop on line 13 again.

ut

Lemma 8. If all the Remove sets are empty, then the relationδ induced by the partition
relation pair (P,Rel) is a simulation on T included in I.

Proof. The initial partition-relation pair is required to be such thatδ is initially included
in I . We have to show thatδ is also a simulation onT. Let q∈ B ∈ P, r ∈C ∈ P, and
q δ r. Then, from the definition ofδ, (B,C) ∈ Rel. Let q

a
−→ s∈ D, thusB

a
−→ D.

Therefore, from Invariant (3) and from the fact that all theRemovesets are empty, we
getC⊆ prea(

S

Rel(D)). This means that for allt ∈C there isu∈ E ∈ Rel(D) such that
t

a
−→ u andsδ u becauseu∈ E ∈ Rel(D) ands∈ D. As r ∈C, the lemma holds. ut

Lemma 9. Let δ be the relation induced by the partition-relation pair(P,Rel), let 4I

be the maximal simulation on T included in I, and let4I ⊆ δ. Then, if we are on line
3 of Algorithm 1 and there are states q, r ∈ S and blocks B,C,D ∈ P such that q4I r,
q∈C, r ∈D and(B,C) ∈ Rel, then also(B,D) ∈ Rel.

Proof. Let us recall the relationship between a partition-relation pair (P,Rel) and its
induced relationδ which is: For anyB,C ∈ P andq ∈ B, r ∈ C, it holds thatq δ r iff
(B,C) ∈ Rel. Therefore, ifδ⊆4I , thenq 4I r implies(B,C) ∈ Rel.

We prove the lemma by induction on the number of iterations ofthe while loop. The
base case: After the initialization, the claim holds asRelinit is transitive (the relationI is
a pre-order). We prove the induction step by contradiction.Suppose the lemma might
get broken during the execution of the algorithm. Then, we can identify the first moment
when it is broken.

Let Mi be the moment (computation step) when we are on line 3 at the begining
of the i-th iteration and the lemma is broken for the first time. At that monent, we have
B,C,D∈P, q∈C, r ∈D, q4I r, (B,C)∈Rel, 4I ⊆ δ, and(B,D) 6∈Rel. Fromq4I r and
4I ⊆ δ, we have(C,D) ∈ Rel. Because the induced relation is shrinking only (Lemma
6), we have that at each moment of the computation that precedesMi , the relation4I

was a subset of the induced relation, the ancestorC′ of C was over the ancestorB′ of
B (i.e. (B′,C′) ∈ Rel), and also the ancestor ofD was over the ancestor ofC wrt. the
currentRel. Because of this and becauseI (Relinit ) is transitive and the lemma is broken



for the first time atMi , we know that at each moment precedingMi , the ancestor ofD
was over the ancestor ofB.

Let us choose the moment beforeMi when(B,D) is going to be removed fromRel′

(the moment in the iterationi−1 precedingMi , just before entering the for loop on line
11). The current partitionP at that moment is the same as atMi . The situation is such
that(B,C) ∈Rel′, (C,D) ∈Rel′, (B,D) ∈Rel′, and we are going to remove(B,D) from
Rel′ on line 14. However, we will not touch(B,C) and(C,D) during this iteration as
these two pairs will be related at the momentMi . This update (Rel′←Rel′ \{(B,D)}) is
caused by processing theRemovea(E) set, whereE ∈ Pprev is the pivot of the iteration
such thatB

a
−→ E,D⊆ Removea(E) andC∩Removea(E) = /0 (we have split according

to Removea(E)).
At the beginning of the(i−1)-th iteration, it still holds for the induced relationδ′

that4I ⊆ δ′ (this moment precedesMi). Let B′,C′,D′ ∈Pprev be the ancestors ofB,C,D
(thereforeB ⊆ B′,C ⊆ C′,D ⊆ D′). We have thatq ∈ C ⊆ C′, C∩Removea(E) = /0,
B′

a
−→ E, and(B′,D′) ∈ Rel′

prev
, and therefore, from Invariant (3), we have thatC′ ⊆

prea(
S

Rel(E))∪Removea(E). This implies thatC⊆ prea(
S

Rel(E)). Thus,q
a
−→ q′ ∈

F ∈ Rel′
prev

(E).

Therefore, asq 4I r, we haver
a
−→ r ′ whereq′ 4I r ′ and because4I ⊆ δ′, r ′ ∈G∈

Rel′
prev

(F). Finally, becauser ∈ D⊆ Removeb(E), from Invariant (1), we get(E,G) 6∈
Rel′

prev
. However, the statesq′, r ′, the blocksE,F,G∈ Pprev, and the partition-relation

pair (Pprev,Rel′
prev

) (which is the current partition-relation pair on line 3 in the iteration
i−1 precedingMi ) now form a situation breaking the lemma, which is the same asthe
situation at the momentMi . This is not possible asMi was supposed to be the first such
moment. ut

Lemma 10. Let δ be the relation induced by the partition-relation pair(P,Rel) and let
4I be the maximal simulation on T included in I. Then,4I ⊆ δ.

Proof. By contradiction. We will show that breaking this lemma in a run of Algorithm 1
has to be preceded by breaking Lemma 9.

Let q∈ B∈ P, r ∈C ∈ P such thatq 4I r. Let us choose the moment when(B,C)
is removed fromRel on line 14. This update ofRel is caused by processing the set
Removea(D) whereD ∈ Pprev is the pivot of the concerned iteration of the while loop,
B

a
−→ D, andC ⊆ Removea(D). Let B′,C′ ∈ Pprev be the ancestors ofB,C. From In-

variant (2), we have that(B′,B′) ∈ Relprev, and thenB′
a
−→ D together with Invari-

ant (3) givesB′ ⊆ prea(
S

Relprev(D))∪Remove. Thus, asq 6∈ Remove, q
a
−→ q′ ∈ E ∈

Relprev(D). Fromq 4I r and from the fact that4I is a subset of the current induced
relation (the lemma is going to be broken for the first time andit still holds), we have
r

a
−→ r ′ ∈ F ∈Relprev(E). However, asr ∈Removea(D) and because of Invariant (1), we

have(D,F) 6∈Relprev. Therefore, the statesq′, r ′ and the blocksD,E,F break Lemma 9
(at the beginning of the given iteration). ut

Lemma 11. Let 4I be the maximal simulation on T included in I. Then, at any point
in a run of Algorithm 1, any q, r ∈ S such that q∼=I r are in the same block of P.



Proof. By contradiction. We will show that breaking this lemma in a run of Algorithm 1
has to be preceded by breaking Lemma 9.

After the initialization the lemma holds. Let us choose the first moment when it
is broken. At that moment, the statesq, r are separated from each other by theSplit
operation during processing of some pivot blockB where, without loss of generality,
at the beginning of the concerned iteration of the while loop, r ∈ Removea(B) andq 6∈
Removea(B).

Let us now consider the moment just before entering the for loop on line 11 during
which r will be added intoRemovea(B′) whereB′ is an ancestor ofB. Let the partition-
relation pair that the algorithm is working with at that moment be(P′,Rel′) inducing a
relationδ, and letq, r ∈C ∈ P′. There is an edger

a
−→ D ∈ Rel′(B′) such that(B′,D)

will be removed fromRel′.
From r 4I q and4I ⊆ δ (Lemma 10) and becauser

a
−→ r ′ ∈ D, there is an edge

q
a
−→ q′ ∈ E ∈ Rel(D), q′ 4I r ′. Moreover, from Lemma 9 (whose claim holds also for

line 11 just before entering the for loop because lines 4–10 do not influence the induced
relation),(B,E) ∈ Rel(B′).

Thus there are edges such asq
a
−→ q′ ∈ E ∈Rel′(B′) before entering the for loop on

line 11. Moreover, at least one such edgeq
a
−→ q′′ ∈ E′ ∈Rel(B′) will remain also after

finishing the for loop because if all the(B′,X) relations such thatq
a
−→ X disappeared

from Rel′, thenq would move toRemovea(B′), which will not happen. Becauseq 4I r
and4I ⊆ δ, we haver

a
−→ r ′′ ∈ F ∈ Rel′(E′),q′′ 4I r ′′. But at the end of the for loop

on line 11,(B′,F) 6∈Rel′ asr will be added intoRemovea(B′) (Invariant (1)). Therefore
statesq′′, r ′′ and blocksB′,E′,F break Lemma 9 at the beginning of the following iter-
ation of the while loop. ut

Lemma 12. Let B,B′ be two blocks appearing during a run of Algorithm 1 such that
B′ is an ancestor of B. Let Removea(B) and Removea(B′) be two Remove sets at the
(different) moments when B, resp. B′, is chosen as the pivot. Then, Removea(B) ∩
Removea(B′) = /0.

Proof. If q is in Removea(B) after the initialization, thenq −
a
9

S

Relinit (B). If q is
added intoRemovea(B) later on, thenq

a
−→

S

Rel(B) on line 13 in the while loop itera-
tion whenq is added intoRemovea(B).8 Moreover, subsequently, after the update ofRel
on line 14,q−

a
9

S

Rel(B). From Lemma 6, if onceq−
a
9

S

Rel(B), then it will never
happen thatq

a
−→

S

Rel(B′) whereB′ is a descendent ofB. Thus,q
a
−→ (

S

Rel(B)) is
a neccesary condition which has to hold on line 13 forq to be added intoRemovea(B)

on line 17. However, ifq is really added intoRemovea(B), then the conditionq
a
−→

S

Rel(B) is broken on line 14 and will never hold for any descendent ofB again. There-
fore, if q is once inRemovea(B), then the neccesary conditionq

a
−→

S

Rel(B) will never
hold and thus it can never happen thatq is being added into anyRemovea(B′) whereB′

is a descendent ofB. Then, it cannot happen thatB is chosen as a pivot,Removea(B) is
emptied, and then some of its descendentsB′ is chosen as a pivot with aRemovea(B′)
set such thatRemovea(B)∩Removea(B′) 6= /0 set. ut

8 Note that at that time,B is referred to viaC in the algorithm.



Proof of Theorem 1

Proof. Due to Lemma 12, for any blockB which can arise during the computation,B
can be chosen as a pivot only finitely many times as for anya∈ L , all theRemovea(B)
sets encountered on line 3 are disjoint. There are finitely many possible blocks and
hence the algorithm terminates.

Lemma 8 implies that the relationδ induced by the final partition-relation pair
(Psim,Relsim) is a simulation included inI . Lemma 10 implies that this simulation is
the maximal one. Finally, Lemma 11 implies that the resulting partition Psim equals
S/∼=I . ut

A.2 Complexity of Computing Simulations on LTS (Algorithm 1)

Data structures and important implementation details

We use resizable arrays (and matrices) which double (or quadruple) their size whenever
needed. The insertion operation over these structures takes amortised constant (linear)
time.

Each blockB contains for eacha∈ L a list of (pointers on) states fromRemovea(B).
Each time when any setRemovea(B) becomes nonempty, blockB is moved to the be-
ginning of the list of blocks. Choosing the pivot block on theline 3 then means just
scanning the head of the list of blocks.

Each block contains, for eacha∈ L and a stateq∈ S, a counterRelCounta(q,B) =

|{r ∈ S| r ∈
S

Rela(B)∧q
a
−→ r}|. This counters enables us to perform the test on line

16 inO(1) time.
TheSplit(P,Remove) operation can be implemented as follows: Iterate through all

q∈Remove. If q∈ B∈ P, addq into a blockBchild (if Bchild does not exist yet, create it
and add it intoP) and removeq from B. If B becomes empty, discard it.

At the initialization phase, we attach to eachq ∈ S an array indexed by symbols
of a∈ L of pointers toprea(q) lists. This way, we achieve constant time searching for
prea(q) lists (without the arrays, it would beO(|L |)).
Some auxiliary notions

For B⊆ Sanda∈ L , we denote byina(B) the set{(r,a,q) ∈→ | q∈ B}, and byin(B)

the set
S

a∈L ina(B). Note that|prea(B)| ≤ |ina(B)|. We also denote by
a
→ the set of all

a-edges of→.
We denote byAnc(B) the set of all ancestors ofB, and ifB′ is an ancestor ofB, then

B is adescendentof B′.

Proof of Theorem 2

Proof.

Initial observations

The complexity analysis builds a lot upon Lemma 12 and Lemma 6proved within the
proof of correctness of Algorithm 1. Using these lemmas, we can see that:

Observation 1. For anya∈ L andB∈Psim, the sum of the cardinalities of theRemovea(B′)
sets for allB′ ∈ Anc(B) that are chosen as the pivot is below|S|.

Observation 2. If a pair(C,D) once appears on line 15, then any pair(C′,D′) such that
C∈ Anc(C′) andD ∈ Anc(D′) cannot appear on line 15 any more.



Most of the remaining complexity analysis then lies in a careful exploration of ma-
nipulations with the data structures used in the algorithm.

Space complexity

The arrays of pointers on theprea lists takeO(|L | · |S|) space, the matrix encoding of
Rel takesO(|Psim|

2) space, and theRemovesets as well as the counters takeO(|L | ·
|Psim| · |S|) space. Thus the overall asymptotic space complexity isO(|L | · |Psim| · |S|).

Time complexity

The initialization of the arrays of pointers to theprea lists takesO(|L | · |S|) time. The
RelCountcounters are initialized by (1) setting allRelCountto 0, and then (2) for all
B∈ P, for all q∈ B, for all r ∈ prea(q), and for allC such that(C,B) ∈ Rel, increment-
ing RelCounta(r,C). This takesO(|Pinit | · |→|) time. TheRemovesets are initialized
by iterating through alla ∈ L ,q ∈ S,B ∈ P, and if RelCounta(q,B) = 0, then adding
(appending)q to Removea(B). This takesO(|L | · |Pinit | · |S|) time. Thus the overall ini-
tialization can be done in timeO(|Pinit | · |→|+ |L | · |Pinit | · |S|).

One singleSplit(P,Remove) operation takesO(|Remove|) time. From Observation
1, we have that for a fixed blockB ∈ Psim anda ∈ L , the sum of cardinalities of all
Removea(B′) sets whereB′ is an ancestor ofB according to which aSplit is being done
is below|S|. Therefore, for all symbols ofL and all the blocks ofPsim, the overall time
complexity of allSplit operations isO(|L | · |Psim| · |S|).

The complexity analysis of lines 7–10 is based on the fact that it can happen at
most |Pinit | − |Psim| times that any blockB is split. Moreover, the presented code can
be optimised by not having the lines 7–10 as a separate loop (this was chosen just for
clarity of the presentation), but the inheritance ofRel, Remove, and the counters can be
done within theSplit function, and only for those blocks that were really split (not for
all the blocks every time).

Whenever a new blocks is generated bySplit, we have to do the following: (1) For
eacha∈ L , copy theRemovea set of the parent block and attach the copy to the child
block. As for all a ∈ L ,B ∈ P, Removea(B) ⊆ S, and a new block will be generated
at most|Pinit | − |Psim| times, the overall time of this copying is inO(|L | · |Psim| · |S|).
(2) Add a row and a column to theRelmatrix and copy the entries from those of the par-
ent. This operation takesO(|Psim|) time for one added block as the size of the rows and
columns of theRel-matrix is bounded by|Psim|. Thus. for all newly generated blocks,
we achieve the overall time complexity ofO(|Psim|

2). (3) Add and copy theRelCount
counters. For one newly generated block, this operation takes anO(|L | · |S|) time and
thus for all generated blocks, it gives timeO(|L | · |Psim| · |S|).

Lines 13 and 14 areO(1)-time (Rel is a boolean matrix). Before we enter the for
loop on line 11 withB being the pivot, we compute a listRemoveLista(B) = {D ∈
P | D ⊆ Remove}. This is anO(|Remove|) operation and by almost the same argu-
ment as in the case of the overall time complexity ofSplit, we get also exactly the
same overall time complexity for computing all theRemoveLista(B) lists. On line 11,
for eachq ∈ B, we find theprea(q) list (in O(1) time using the array of pointers
to the prea(q) lists), and we iterate through all elements ofprea(q) and choose ev-
ery C,C

a
−→ {q}. This takesO(|ina(B)|) time. For anyB ∈ Psim, let RLa(B) be the



set of blocks
S

B′∈Anc(B) RemoveLista(B′). Then the overall time complexity of lines
11–14 is at mostO(∑a∈L ∑B∈Psim

|RLa(B)| · |ina(B)|). From the initial observations,
we can see that|RLa(B)| ≤ |Psim|, and thus we have the overall time complexity of
O(∑a∈L ∑B∈Psim

|Psim| · |ina(B)|) = O(∑a∈L |Psim| · |
a
→|) = O(|Psim| · |→|) for lines 11–

14.
For a singleC,D pair appearing on line 14, we iterate through allq∈D and through

all nonempty listsprea(q), and for eachr ∈ prea(q), we decrementRelCounta(r,C).
If RelCounta(r,C) = 0 after the decrement, we appendr into theRemovea(C) list. It
follows from the initial observations that if any pair of blocks(C,D) once appears on
line 14, then there will never appear any pair of their descendants on line 14. Thus, if we
fix a blockC∈ Psim and a stateq, then it can happen at most once thatq∈D and the pair
(C′,D) (whereC′ is an ancestor ofC) is being separated withinRel (i.e. removed from
Rel) on line 14. Thus, the contribution of the pairC,q to th etime complexity of lines
15–17 isO(∑a∈Σ |prea(q)|). Therefore, the contribution of theC, r pairs for allr ∈ S is
O(|→|), and hence the overall time complexity of lines 15–17 isO(|Psim| · |→|).

From the above analysis, it follows that the overall time complexity of the algorithm
is O(|Psim| · |→|+ |L | · |Psim| · |S|). ut

A.3 Correctness of Computing the Downward Simulation via LTS

Proof of Theorem 3

Proof.
(if) Suppose thatq• 4 r•. This means that there is a simulationR• on Q• such that

(q•, r•) ∈ R•. We defineD to be the smallest binary relation onQ such that(q′, r ′) ∈ D
if (q′•, r ′•) ∈R•. Obviously,(q, r) ∈D. We show thatD is a downward simulation onQ
which immediately implies the result.

Suppose that(q′, r ′) ∈ D and(q1, . . . ,qn)
f
−→ q′. Since(q′, r ′) ∈ D we know that

(q′•, r ′•) ∈ R•; and since(q1, . . . ,qn)
f
−→ q′ we know by definition ofA• that q′•

f
−→

(q1, . . . ,qn)
•. SinceR• is a simulation, there arer1, . . . , rn ∈Q with r ′•

f
−→ (r1, . . . , rn)

•

and((q1, . . . ,qn)
•,(r1, . . . , rn)

•)∈R•. Sincer ′•
f
−→ (r1, . . . , rn)

• we have(r1, . . . , rn)
f
−→

r ′. Also, by definition ofA• we know that((q1, . . . ,qn)
• i
−→ q•i for eachi : 1≤ i ≤ n.

We observe thatr i is the only state such that(r1, . . . , rn)
• i
−→ r•i , and hence it must be

the case that(q•i , r
•
i ) ∈R•. This means that(qi , r i) ∈ D for eachi : 1≤ i ≤ n.

(only if) Suppose thatq 4down r. This means that there is a simulationD on Q
such that(q, r) ∈ D. We defineR• to be the smallest binary relation onQ• such that
(q′•, r ′•) ∈R• if (q′, r ′) ∈D•, and((q•1, . . . ,q

•
n),(r

•
1, . . . , r

•
n)) ∈R• if (qi , r i) ∈D for each

i : 1 ≤ i ≤ n. Obviously,(q, r) ∈ R•. We show thatR• is a simulation onQ• which
immediately implies the result. In the proof, we consider two sorts of states inA•;
namely those corresponding to states and those corresponding to left hand sides inA.

Suppose that(q′•, r ′•) ∈R• andq′•
f
−→ (q1, . . . ,qn)

•. Since(q′•, r ′•) ∈R•, we know

that (q′, r ′) ∈ D, and sinceq′•
f
−→ (q1, . . . ,qn)

•, we know by definition ofA• that

(q1, . . . ,qn)
f
−→ q′. SinceD is a downward simulation, there arer1, . . . , rn ∈ Q with



(r1, . . . , rn)
f
−→ r ′ and(qi , r i)∈D for eachi : 1≤ i ≤ n. Since(r1, . . . , rn)

f
−→ r ′, we have

r ′•
f
−→ (r1, . . . , rn)

•. By definition ofR•, it follows that((q•1, . . . ,q
•
n),(r

•
1, . . . , r

•
n)) ∈ R•.

Now, suppose that((q•1, . . . ,q
•
n),(r

•
1, . . . , r

•
n)) ∈ R• and that(q1, . . . ,qn)

• i
−→ q•i . By

definition ofA• we know that(r1, . . . , rn)
• i
−→ r•i . Since((q•1, . . . ,q

•
n),(r

•
1, . . . , r

•
n))∈R•,

it follows by definition ofR• that(qi , r i) ∈ D and hence also that(q•i , r
•
i ) ∈ R•. ut

A.4 Complexity of Computing the Downward Simulation via LTS

Proof of Lemma 1

Proof. The state-list encoding of the LTSA• can be obtained from the lhs-list encoding
of A by the following steps:

1. for all q∈ Q, addq• into the state-list encoding ofA• (and also add an additional
pointer fromq to q•, which we will need later on), and

2. for eachl = (q1, . . . ,qn) ∈ Lhs(A),
(a) addl• into the state-list encoding ofA•,
(b) for eachf ∈ Σ and each right-hand sider in the f -list of l , addr• into pref (l•),

i.e. add ther•
f
−→ l• edges, and

(c) for each 1≤ i ≤ n, addl• into prei(q•i ), i.e. add thel•
i
−→ q•i edges9.

In order to have a constant time access to the particularprea-lists for a∈ Σ• in the
state-list encoding ofA• being built by the above construction, we may temporarily
replace the state-lists by arrays. This means that we first construct, for eachq• ∈ Q•

whereq∈ Q, a temporary array indexed byi ∈ Σ•,1≤ i ≤ Rank(A), of pointers to the
prei(q•) lists (initialized withnull values), and, for eachl• ∈ Q• wherel ∈ Lhs(A), a
similar temporary array of pointers to thepref (l)-lists for f ∈ Σ. The time and space
needed for creating these temporary arrays isO(Rank(A) · |Q|+ |Σ| · |Lhs(A)|).

After creating the temporary arrays, we traverse the lhs-list representation ofA in
timeO(|Q|+ |∆|+Rank(A) · |Lhs(A)|) while building the state-list representation (with
arrays used instead of state-lists) ofA• with each step done in constant time (due to the
use of the temporary arrays and the auxiliary pointers fromq to q•). In the complexity,
|Q| corresponds to traversing the list of states,|∆| to traversing the transitions ofA while
creating thef -labelled transitons ofA• for f ∈ Σ, andRank(A) · |Lhs(A)| to traversing
the left-hand sides while creating thei-labelled transitions ofA• for 1≤ i ≤ Rank(A).
The remaining step is then to convert the auxiliary arrays into state-lists which can be
done with the same complexity as initialising the arrays (wedo not traverse the contents
of the state-lists, we just leave out the state lists that areempty).

Thus, using suitable linked data structures, the creation of the state-list encoding of
A• is done in timeO(Rank(A) · |Q|+ |∆|+(Rank(A)+ |Σ|) · |Lhs(A)|).

The space complexity corresponds to the size of the temporary arrays and the size
of the resulting LTSA•, which isO(|Q|+ |∆|+ Rank(A) · |Lhs(A)|)). Indeed, we need
spaceO(|Q|) to represent states,O(|∆|) to represent thef -labelled transitons ofA• for

9 Here, we use the pointers fromq to q• introduced at the beginning.



f ∈ Σ, andO(Rank(A) · |Lhs(A)|) to represent thei-labelled transitions ofA• for 1≤
i ≤Rank(A). In total, we obtain the same formula as in the case of the timecomplexity,
i.e.O(Rank(A) · |Q|+ |∆|+(|Σ|+ |Rank(A)|) · |Lhs(A)|).

Finally, the creation of(P•,Rel•) is trivial, and its complexity is apparently covered
by the complexity of creatingA•. ut

Proof of Lemma 2

Proof. We get the complexity of running Algorithm 1 onA• and(P•,Rel•) by instan-
tiating the parameters ofA• in the formula of Theorem 2. More precisely, from the
construction ofA•, it follows that (1)|Σ•| = |Σ|+ Rank(A), (2) |Q•| = |Q|+ |Lhs(A)|,
and (3) |∆•| ≤ |∆|+ Rank(A) · |Lhs(A)|. Then the running time of Algorithm 1 with
inputA• and(P•,Rel•) is:

O((|Σ|+Rank(A)) · (|Q|+ |Lhs(A)|) · (|Q/∼=down|+ |Lhs(A)/∼=down|)

+ ((|∆|+Rank(A) ·Lhs(A)) · (|Q/∼=down|+ |Lhs(A)/∼=down|))).

Observe that|Lhs(A)| ≤ |∆| and that|Q| ≤ |Lhs(A)|+110. Therefore, the time com-
plexity amounts to

O((|Σ|+Rank(A)) · |Lhs(A)| · |Lhs(A)/∼=down|+ |∆| · |Lhs(A)/∼=down|)

and as the space complexity formula from Theorem 2 equals thefirst summand of the
time complexity formula, we are getting the space complexity

O((|Σ|+Rank(A)) · |Lhs(A)| · |Lhs(A)/∼=down|). ut

A.5 Correctness of Computing the Upward Simulation via LTS

Proof of Theorem 5

Proof.
(if) Suppose thatq� 4I r�. This means that there is a simulationR� ⊆ I on Q�

such that(q�, r�) ∈ R�. We defineU to be the smallest binary relation onQ such that
(q′, r ′) ∈ U if (q′�, r ′�) ∈ R�. Obviously,(q, r) ∈ U . We show thatU is an upward
simulation onQ induced by4down, which immediately implies the result.

Suppose that(q′, r ′) ∈ U and (q1, . . . ,qn)
f
−→ q′′, whereqi = q′. Since(q′, r ′) ∈

U , we know that(q′�, r ′�) ∈ R�, and since(q1, . . . ,qn)
f
−→ q′′, we know by def-

inition of A� that q�i
λ
−→ ((q1, . . . ,�i , . . . ,qn)

f
−→ q′′)�. SinceR� is a simulation,

there arer1, . . . , r i−1, r i+1, . . . , rn, r ′′ ∈Q with r ′�
λ
−→ ((r1, . . . ,�i , . . . , rn)

f
−→ r ′′)� and

(((q1, . . . ,�i , . . . ,qn)
f
−→ q′′)�,((r1, . . . ,�i , . . . , rn)

f
−→ r ′′)�) ∈ R�. SinceR� ⊆ I , we

know that(((q1, . . . ,�i , . . . ,qn)
f
−→ q′′)�,((r1, . . . ,�i , . . . , rn)

f
−→ r ′′)�) ∈ I and hence

(q j , r j)∈4downfor eachj such that 1≤ j 6= i ≤ n. Sincer ′�
λ
−→ ((r1, . . . ,�i , . . . , rn)

f
−→

10 Recall that we assume the automata not to have unreachable states and to have at most one
state that is not used in any left-hand side.



r ′′)� we have(r1, . . . , rn)
f
−→ r ′′ wherer i = r ′. Also, by definition ofA� we know that

the only transitions from((q1, . . . ,�i , . . . ,qn)
f
−→ q′′)� resp.((r1, . . . ,�i , . . . , rn)

f
−→

r ′′)� are((q1, . . . ,�, . . . ,qn)
f
−→ q′′)�

f
−→ q′′� resp.((r1, . . . ,�i , . . . , rn)

f
−→ r ′′)�

f
−→

r ′′�. Consequently, it must be the case that(q′′�, r ′′�) ∈R�. This means that(q′′, r ′′) ∈
U .

(only if) Assume that there is an upward simulationU on Q induced by4down

such that(q, r) ∈U . We defineR� to be the smallest binary relation onQ� such that

(q′�, r ′�)∈R� if (q′, r ′)∈U , and(((q1, . . . ,�i , . . . ,qn)
f
−→ q′′)�,((r1, . . . ,�i , . . . , rn)

f
−→

r ′′)�) ∈R� if (q′′, r ′′) ∈U andq j 4downr j for eachi such that 1≤ j 6= i ≤ n. Obviously
R� ⊆ I and(q, r) ∈ R�. We show thatR� is a simulation onQ� which immediately
implies the result. In the proof, we consider two sorts of states inA�; namely those
corresponding to states and those corresponding to environments.

Suppose now that(q′�, r ′�) ∈R� andq′�
λ
−→ ((q1, . . . ,�i , . . . ,qn)

f
−→ q′′)�. Since

(q′�, r ′�) ∈ R�, we know that(q′, r ′) ∈U ; and sinceq′�
λ
−→ ((q1, . . . ,�i , . . . ,qn)

f
−→

q′′)� we know by definition ofA� that(q1, . . . ,qn)
f
−→ q′′ whereq′ = qi . SinceU is an

upward simulation induced by4down, there arer1, . . . , rn, r ′′ ∈Qwith (r1, . . . , rn)
f
−→ r ′′,

r i = r ′, (p′′, r ′′) ∈U andq j 4down r j for each j : 1≤ j 6= i ≤ n. Since(r1, . . . , rn)
f
−→

r ′′ we haver ′�
λ
−→ ((r1, . . . ,�i , . . . , rn)

f
−→ r ′′)�. By definition ofR� it follows that

(((q1, . . . ,�i , . . . ,qn)
f
−→ q′′)�,((r1, . . . ,�i , . . . , rn)

f
−→ r ′′)�).

Now, suppose that(((q1, . . . ,�i , . . . ,qn)
f
−→ q′′)�,((r1, . . . ,�i , . . . , rn)

f
−→ r ′′)�) ∈

R� and that(((q1, . . . ,�i , . . . ,qn)
f
−→ q′′)�

f
−→ q′′�. By definition of A�, we know

that (((r1, . . . ,�i , . . . , rn)
f
−→ r ′′)�

f
−→ r ′′�. Moeover, since(((q1, . . . ,�i , . . . ,qn)

f
−→

q′′)�,((r1, . . . ,�i , . . . , rn)
f
−→ r ′′)�) ∈R�, it follows by definition ofR� that(q′′, r ′′) ∈

U and hence also that(q′′�, r ′′�) ∈ R�. ut

A.6 Complexity of Computing the Upward Simulation via LTS

Proof of Lemma 3

Proof. We assume to start with the lhs-list representation ofA = (Q,Σ,∆,F). We need
to derive the LTSA� in the state-list format and the partition-relation pair(P�,Rel�).
Algorithm 2 is a simplified encoding of the procedure. We knowthat P� = {{q� |
q∈Q}}∪P�e . Algorithm 2 computesP�e using the partitionLhs(A)/∼=downconstructed
within the computation of the downward simulation onA. The state-list representation
of LTS A� is created within this computation without increasing the overall asymptotic
time complexity. The last step is then computing ofRel�.

We denote two sets of environmentsi-compatibleiff all their elements have the
same symbol and the hole on theith position.

Lines 1–3 At the first step (lines 1–3) we compute for each 1≤ i ≤ Rank(A) a bi-
nary relationsReli on blocks ofLhs(A)/∼=down such that the partition-relation pair



Algorithm 2 : Upward Initialization
Input : A tree automatonA = (Q,Σ,∆,F) and a partitionLhs(A)/∼=down
Data: for each 1≤ i ≤ Rank(A), a relationReli ⊆ Lhs(A)/∼=down×Lhs(A)/∼=down
Output : The partition-relation pair(P�,Rel�) and the LTSA� = (Q�,Σ�,∆�)
forall K,L ∈ Lhs(A)/∼=down do1

forall 1≤ i ≤ Rank(A) do2

if K×L ⊆ Di then Reli ← Reli ∪{(K,L)}3

Q�← {q� | q∈Q};Σ�← Σ∪{λ};∆�← /0;4

forall 1≤ i ≤Rank(A) do5

foreach equivalence class{L1, . . . ,Lm} ∈ (Lhs(A)/∼=down)/(Reli ∩Rel−1
i ) do6

mergeL js into a new block ofLhs(A)/≈i , the blockB =
S

1≤ j≤mL j ;7

generate all maximali-compatible setsE such thatgen(E) = B, updateA� within8

this procedure. Then addE into P�e ;

forall 1≤ i ≤Rank(A) and all i-compatible blocks E,E′ ∈ P�e do9

if (gen(E),gen(E′)) ∈Reli then Rel�← Rel�∪{(E,E′)}10

(P�,Rel�)← (P�e ∪{{q
� | q∈Q}},Rel�∪ ({q� | q∈Q},{q� | q∈Q}));11

(Lhs(A)/∼=down,Reli) inducesDi . Here we exploit several properties of the structures
we work with in order to decrease computational complexity:

1. For blocksK,L of Lhs(A)/∼=down, the test onK×L ⊆ Di can be done simply by
testing any two representativesk∈ K, l ∈ L on (k, l) ∈Di . (it holds thatK×L⊆ Di

or K×L∩Di = /0)
2. For any left-hand sidesk, l , there are three possibilities with respect to membership

of (k, l) in Di :
(a) (k, l) ∈ Di for all i, i.e.k is simulated byl on all the positions ((k, l) ∈ ∼=down)
(b) (k, l) ∈ Di for just onei, i.e. k is simulated byl on all positions except theith

one
(c) (k, l) 6∈ Di for all i, i.e.k is not simulated byl on more than one position.
From item 1. we see that analogical relationships holds for anyK,L∈Lhs(A)/∼=down

with respect theK×L⊆ Di inclusions.

From these properties follows that given two blocksK,L ∈ Lhs(A)/∼=down, the tests
K× L ⊆ Di can be done for alli in time O(Rank(A)) and, moreover, all the relations
Reli can be stored in one common matrix with cells containing three types of values:
all, one-i, none. This corresponds to the possibilities (a), (b), (c) from the above enu-
meration.

Therefore the line 3 can be done in constant time and thus the for loop on lines 1–3
can be finished in timeO(Rank(A) · |Lhs(A)/∼=down|

2). Furthermore, encoding of all the
Reli relations takes onlyO(|Lhs(A)/∼=down|

2) space.

Lines 5–8On lines 5–8 we construct partitionP�e together with LTSA�. On line 6 we
need to list all equivalence classes of(Lhs(A)/∼=down)/(Reli ∩Rel−1

i ). With the above
matrix encoding of theReli relations, this operation can be implemented in such a way
that it takesO(Rank(A) · |Lhs(A)/∼=down|

2) time overall.



Merging of the class{L1, . . . ,Lm} on line 7 can be done in linear time to the car-
dinality of

S

1≤ j≤Rank(A) L j and therefore the overall time of the merging isRank(A) ·
O(|Lhs(A)|) (the class{L1, . . . ,Lm} can be encoded as a list of theL-blocks and each
L-block can be encoded as a list of states).

On line 8 we generate all the environments ofE and updateA�. We encode an
environmente as a quadruple consisting of a pointer to any ofl ∈ gen(e), a symbol, a
position of hole and a pointer to its right hand side state. Weremind that we use the lhs-
list encoding ofA, i.e. eachl is connected to a list indexed by symbols fromΣ, where

the f -indexed element contains the list of statesq∈Q such thatl
f
−→ q. Thus for each

l ∈ B, we can effectively iterate through all rules of the forml
f
−→ q and for each of

them we: (1.) create a new environment; and (2.) updateA� in the following way:
(1.) We create a representation of environmente consisting of a pointer onl , sym-

bol f , hole-indexi and a pointer onq. A problem is that there can be more than one
l ∈ B such thatl ∈ gen(E). Thus we can obtain the same environment more than once
while creating a blockE from a blockB. In order to avoid these duplicities, after having
createde, we test ife has or has not been created before. This can by done by test-
ing each newly created environment on membership in the setS of the so-far created
environments (and adding it there if the membership test returns false).

We attempt to create a new environment (and add it to the setS of already known
environments)Rank(A) · |∆| times. In the end (whenS= Env(A)), we get|Env(A)|
different environments. We can assume that testing equality of two environments takes
O(Rank(A)) time and that we use a set representation with a logarithmic membership
test and addition. Thus, in total, the timeO(Rank(A)2 · |∆| · log|Env(A)|) is spent by
testing membership of environments inS and by extendingSby the environments not
yet there.

(2.) Having a representation of an environmente= (q1, . . . ,�i , . . . ,qn)
f
−→ q cre-

ated, ife 6∈ S (a representation ofe was created for the first time), we add the statee�

into Q� and also a pointer one� into pref (q). Then, regardless on the result of thee∈ S
thest, we add the pointer onq�i into preλ(e

�) (This requires finding thepreλ(e
�) set

in the state-set representation ofA�. We can use a similar searching structure as in the
case of solving duplicities and then the complexity of this searching will be covered the
complexity of solving duplicities.) As creating ane� state and adding an element into
apre set are constant time, the overall complexity of these updates ofA� is covered by
the complexity of the above creating of the elements of theE blocks.

Lines 9–10 On lines 9-10 we compute the main part of relationRel�. We exploit
here the fact that for anyi-compatible blocksE,E′ ∈ P�e , (E,E′) ∈ Rel� iff gen(E)×
gen(E′) ⊆ Di and moreover that any(B,C) ∈ ≈i iff for any two L,K ∈ Lhs(A)/∼=down

such thatK ⊆B,L⊆C, it holds thatK ⊆ L∈Di . AsK×L⊆Di means that(K,L)∈Reli ,
we can implement the test on line 10 this way:

When creating blockE on line 7, we connect it with a representative blockrepre(E)=
L j (any ofL1 . . . ,Lm). Then the test on line 10 can be done in constant time via testing if
(repre(E), repre(E′)) ∈ Reli , because we know that(repre(E), repre(E′)) ∈ Reli ⇐⇒
(E,E′) ∈ P�e . Therefore lines 9–10 can be done in timeO(|P�e |

2).
Finishing construction of(P�,Rel�) on line 11 is already easy. ut



Proof of Lemma 4

Proof. We get the complexity of running Algorithm 1 onA� and (P�,Rel�) by in-
stantiating the parameters ofA� in the formula of Theorem 2. More precisely, from
the construction ofA�, it follows that (1)|Σ�| = |Σ|+ 1, (2) |Q�| = |Q|+ |Env(A)|,
and (3)|∆�| = Rank(A) · |∆|+ |Env(A)| ≤ 2 ·Rank(A) · |∆|. Then, the running time of
Algorithm 1 with the inputA� and(P�,Rel�) is:

O(|Σ| · (|Q|+ |Env(A)|) · (|Q/∼=up|+ |Env(A)/∼=up|)

+Rank(A) · |∆| · (|Q/∼=up|+ |Env(A)/∼=up|)).

Observe that, as we suppose the automata not to have unreachable states,|Q| ≤ |Env(A)|.
Therefore, the time complexity amounts to

O(|Σ| · |Env(A)| · |Env(A)/∼=up|+Rank(A) · |∆| · |Env(A)/∼=up|)

and, as the space complexity in Theorem 2 equals the first summand of the time com-
plexity formula, we get the space complexityO(|Σ| · |Env(A)| · |Env(A)/∼=up|). ut

A.7 Reducing TA Using the Downward Simulation (Theorem 7)

In order to prove Theorem 7, we first show the following lemma.

Lemma 13. For all q and r, if q4down r then L(q)⊆ L(r).

Proof. Suppose thatq 4down r and t ∈ L(q). We show thatt ∈ L(r) using induction
on the structure oft. The base case (wheret is empty) is trivial. We consider the case
wheret contains at least one node. We know thatt

π
=⇒ q for someπ. with π(ε) = q. Let

t(ε) = f . Furthermore, we know that there areq1, . . . ,qn such that(q1, . . . ,qn)
f
−→ q,

andπ(i) = qi for eachi : 1≤ i ≤ n. In other words, the run labels the root withq, and
labels the children of the root withq1, . . . ,qn respectively. This means thatti ∈ L(qi)
whereti is the ith subtree oft. Sinceq 4down r we know that there arer1, . . . , rn such

that(r1, . . . , rn)
f
−→ r andqi 4downr i for eachi : 1≤ i ≤ n. By the induction hypothesis,

it follows thatti ∈ L(r i), and hencet ∈ L(r). ut

Proof of Theorem 7

Proof. The inclusionL(A)⊆ L(A〈∼=down〉) is obvious. We show thatA〈∼=down〉 ⊆ L(A).
First, we show that for any blockB andr ∈ B it is the case thatL(B) ⊆ L(r). Suppose
that t ∈ L(B). We show thatt ∈ L(r) using induction on the structure oft. The base
case (wheret is empty) is trivial. We consider the case wheret has at least one node.
We know thatt

π
=⇒ B for someπ with π(ε) = B. Let t(ε) = f . Furthermore, we know

that there are blocksB1, . . . ,Bn such that(B1, . . . ,Bn)
f
−→ B, andπ(i) = Bi for each

i : 1≤ i ≤ n. In other words, the run labels the root withB, and labels the children of the
root withB1, . . . ,Bn respectively. This means thatti ∈ L(Bi) whereti is theith subtree of

t. Since(B1, . . . ,Bn)
f
−→ B we know that there areq1 ∈ B1, . . . ,qn ∈ Bn,q∈ B such that

(q1, . . . ,qn)
f
−→ q. By the induction hypothesis, we know thatti ∈ L(qi). Sinceq, r ∈ B



it follows that q∼=down r and henceq 4down r. It follows that there arer1, . . . , rn such

that(r1, . . . , rn)
f
−→ r andqi 4downr i for eachi : 1≤ i ≤ n. By Lemma 13 it follows that

ti ∈ L(r i) for eachi : 1≤ i ≤ n, and hencet ∈ L(r).
Now suppose thatt ∈ L(A〈∼=down〉). It follows thatt ∈ L(B) for someB∈ F〈∼=down〉.

Since SinceB ∈ F〈∼=down〉, there is somer ∈ B with r ∈ F . By the above property it
follows thatt ∈ L(r), and hence This implies thatt ∈ L(A). ut

A.8 Reducing TA Using the Upward Simulation (Lemma 5)

To prove Lemma 5, we need two auxiliary lemmas. We fix a reflexive and transitive
downward simulationD and a reflexive and transitive upward simulationU induced by
D included inIF . Further, letR∈ (D⊕U) and≡R be the equivalence relation defined
by R.

Lemma 14. If c[q1,q2, . . . ,qn] =⇒ q and(qi , r i) ∈U for some1≤ i ≤ n, then there are
states r1, . . . , r i−1, r i+1, . . . , rn, r such that(q j , r j )∈D for each j such that1≤ j 6= i ≤ n,
(q, r) ∈U, and c[r1, . . . , rn] =⇒ r.

Proof. To simplify the notation, we assume (without loss of generality) that i = 1. We
use induction on the structure ofc. The base case is trivial since the contextc consists of
a single hole. For the induction step, we assume thatc is not only a single hole. Suppose
that c[q1,q2, . . . ,qn]

π
=⇒ q for some runπ and that(q1, r1) ∈U . Let p1, . . . , p j be the

left-most leaves ofc with a common parent. Letp be the parent ofp1, . . . , p j . Notice
thatq1 = π(p1), . . . ,q j = π(p j). Letq′ = π(p) and letc′ be the contextc with the leaves
p1, . . . , p j deleted. In other words,dom(c′) = dom(c) \ {p1, . . . , p j}, c′(p′) = c(p′) if
p′ ∈ dom(c′) \ {p, p1, . . . , p j}, andc′(p) =©. Observe thatc′[q′,q j+1, . . . ,qn] =⇒ q

and that(q1,q2, . . . ,q j)
f
−→ q′ for some f . By definition of the upward simulation

and the premise(q1, r1) ∈U , it follows that there arer2, . . . , rn, r ′ such that(q2, r2) ∈

D, . . . ,(q j , r j) ∈ D,(q′, r ′) ∈U , and(r1, r2, . . . , r j )
f
−→ r ′. Sincec′ is smaller thanc, we

can apply the induction hypothesis and conclude that there are r j+1, . . . , rn, r such that
(q j+1, r j+1)∈D, . . . ,(qn, rn)∈D,(q, r)∈U , andc′[r ′, r j+1, . . . , rn] =⇒ r. The claim fol-
lows immediately. ut

Lemma 15. For blocks B1, . . . ,Bn,B ∈ Q〈≡R〉 and a context c, if c[B1, . . . ,Bn] =⇒ B,
then there exist states r1, . . . , rn, r ∈Q such that(B1, r1)∈D, . . . ,(Bn, rn)∈D,(B, r)∈U,
and c[r1, . . . , rn] =⇒ r. Moreover, if B∈ F〈≡R〉, then also r∈ F.

Proof. The claim is shown by induction on the structure ofc. In the base case, the
contextc consists of a single hole. We choose anyq∈ B∩F provided thatB∩F 6= /0,
and anyq∈ B otherwise. The claim holds obviously by reflexivity ofD andU .

For the induction step, we assume thatc is not only a single hole. Suppose that
c[B1, . . . ,Bn]

π
=⇒ B for some runπ. Let p1, . . . , p j be the left-most leaves ofc with a

common parent. Letp be the parent ofp1, . . . , p j . Notice thatB1 = π(p1), . . . ,B j =
π(p j). Let B′ = π(p) and letc′ be the contextc with the leavesp1, . . . , p j deleted. In
other words,dom(c′) = dom(c) \ {p1, . . . , p j}, c′(p′) = c(p′) providedp′ ∈ dom(c′) \
{p, p1, . . . , p j}, and c′(p) = ©. Observe thatc′[B′,B j+1, . . . ,Bn] =⇒ B. Sincec′ is



smaller thanc, we can apply the induction hypothesis and conclude that there are
v,q′j+1, . . . ,q

′
n,q
′ such that(B′,v) ∈ D,(B j+1,q′j+1) ∈ D, . . . ,(Bn,q′n) ∈ D,(B,q′) ∈ U ,

c′[v,q′j+1, . . . ,q
′
n] =⇒ q′, and if B∩F 6= /0, thenq′ ∈ F . It follows that there areu ∈

B′,q j+1 ∈ B j+1, . . . ,qn ∈ Bn,q ∈ B with (u,v) ∈ D,(q j+1,q′j+1) ∈ D, . . . ,(qn,q′n) ∈ D,
and(q,q′) ∈U . By definition ofA〈≡R〉, there are statesq1 ∈ B1, . . . ,q j ∈ B j , andz∈ B′

such that(q1, . . . ,q j)
f
−→ z for somef . SinceD ⊆ R and(u,v) ∈ D, we get(u,v) ∈ R.

Sinceu,z∈ B′, it follows that u ≡R z and hence(z,u) ∈ R. From transitivity ofR,
we get(z,v) ∈ R. From the definition ofR, there is a statew such that(z,w) ∈ D
and (v,w) ∈ U . By the definition of downward simulation and premises(z,w) ∈ D

and(q1, . . . ,q j)
f
−→ z, there are statesr1, . . . , r j with (q1, r1) ∈ D, . . . ,(q j , r j ) ∈ D, and

(r1, . . . , r j )
f
−→w. By Lemma 14 and premises(v,w) ∈U andc′[v,q′j+1, . . . ,q

′
n] =⇒ q′,

there are statesr j+1, . . . , rn, and r with (q′j+1, r j+1) ∈ D, . . . ,(q′n, rn) ∈ D,(q′, r) ∈ U ,
andc′[w, r j+1, . . . , rn] =⇒ r. Finally, by transitivity ofD andU , we get(q j+1, r j+1) ∈
D, . . . ,(qn, rn) ∈ D, (q, r) ∈U . Moreover, by definition ofU and the fact thatq′ ∈ F if
B∩F 6= /0, we get thatr ∈ F if B∈ F〈≡R〉. The claim thus holds. ut

Now we can give the proof of Lemma 5.

Proof of Lemma 5

Proof. Suppose thatt
π

=⇒ B for someπ. Let p1, . . . , pn be the leafs oft, and letπ(pi) =
Bi for eachi : 1 ≤ i ≤ n. Let c be the context we get fromt by deleting the leaves
p1, . . . , pn. Observe thatc[B1, . . . ,Bn]

π
=⇒ B. It follows from Lemma 15 that there exist

statesr1, . . . , rn, r ∈Qandq1∈B1, . . . ,qn∈Bn,q∈B such that(q1, r1)∈D, . . . ,(qn, rn)∈
D,(q, r) ∈U , c[r1, . . . , rn] =⇒ r, and ifB∩F 6= /0, thenr ∈ F . By definition ofA〈≡R〉,

it follows that there areq′1 ∈ B1, . . . ,q′n ∈ Bn and f1, . . . , fn such that
fi
−→ q′i for eachi

such that 1≤ i ≤ n. We show by induction oni that for eachi such that 1≤ i ≤ n there
are statesui

1, . . . ,u
i
i ,v

i
i+1, . . . ,v

i
n,w

i such that(q′1,u
i
1) ∈D, . . . ,(q′i ,u

i
i) ∈D,(qi+1,vi

i+1) ∈

D, . . . ,(qn,vi
n)) ∈ D,(r,wi)) ∈ U , andc[ui

1, . . . ,u
i
i ,v

i
i+1, . . . ,v

i
n] =⇒ wi . The base case

wherei = 0 is trivial. We consider the induction step. SinceD⊆Rand(qi+1,vi+1) ∈D,
we get(qi+1,vi+1) ∈ R. Sinceqi+1,q′i+1 ∈ Bi+1, we have thatq′i+1 ≡R qi+1 and hence
(q′i+1,qi+1) ∈ R. By transitivity of R, it follows that (q′i+1,vi+1) ∈ R. By the defini-
tion of R, there iszi+1 such that(q′i+1,zi+1) ∈ D and(vi+1,zi+1) ∈U . By Lemma 14,
there arez1, . . . ,zi ,zi+2, . . . ,zn,z such that(ui

1,z1) ∈ D, . . . ,(ui
i ,zi) ∈ D,(vi

i+2,zi+2) ∈

D, . . . ,(vi
n,zn) ∈ D,(wi ,z) ∈ U , and c[z1, . . . ,zn] =⇒ z. By transitivity of D and the

premises(q′j ,u
i
j) and(ui

j ,zj ) ∈ D, we have(q′j ,zj ) ∈ D for each j : 1≤ j ≤ i. By tran-
sitivity of D and the premises(q j ,vi

j) and(vi
j ,zj) ∈ D, we have(q j ,zj ) ∈ D for each

j : i +2≤ j ≤ n. Defineui+1
j = zj for j : 1≤ j ≤ i +1; vi+1

j = zj for j : i +2≤ j ≤ n;

andwi+1 = z.
The induction proof above implies thatc[un

1, . . . ,u
n
n] =⇒ wn. From the definition of

downward simulation and the premises
fi−→ q′i and(q′i ,u

n
i ) ∈ D, it follows that

fi−→ un
i

for eachi : 1≤ i ≤ n. It follows thatt = c[ f1, . . . , fn] =⇒wn. By definition ofU and the
fact thatr ∈ F if B∩F 6= /0, it follows that∀1≤ i ≤ n. wi ∈ F provided thatB∈ F〈≡R〉.
Thus, in the claim of the lemma, it suffices to takew = wn. ut


