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Abstract. We present a tutorial on verification of safety properties for
parameterized systems. Such a system consists of an arbitrary number of
processes; the aim is to prove correctness of the system regardless of the
number of processes inside the system. First, we consider a class of pa-
rameterized systems whose behaviours can be captured exactly as Petri
nets using counter abstraction. This allows analysis using the framework
of monotonic transition systems introduced in [1]. Then, we consider pa-
rameterized systems for which there is no natural ordering which allows
monotonicity. We describe the method of monotonic abstraction which
provides an over-approximation of the transition system. We consider
both systems where the over-approximation gives rise to reset Petri nets,
and systems where the abstract transition relation is a set of rewriting
rules on words over a finite alphabet.

1 Introduction

One of the widely adopted frameworks in the context of infinite-state verifica-
tion is based on the concept of monotonic systems wrt. a well-quasi ordering [1],
which provides a scheme for proving the termination of backward reachability
analysis. The method was first used for the verification of lossy channel systems
[6] and then extended to a general methodology in [1]. Since its introduction
in [1], the framework has been extended and used for the design of verification
algorithms for various models including Petri nets, cache protocols, timed Petri
nets, broadcast protocols, etc. (see, e.g., [2, 11, 9, 10, 7]). The idea is to define, for
a given class of models, a preorder � on the configuration space such that (1) �
is a simulation relation on the considered models, and (2) � is a well-quasi order-
ing (wqo for short). If such a preorder can be defined, then it can be proved that
the reachability problem of an upward-closed set of configurations (w.r.t. �) is
decidable. Indeed, (1) monotonicity implies that for any upward-closed set, the
set of its predecessors is an upward-closed set, and (2) the fact that � is a wqo
implies that every upward-closed set can be characterized by a finite set of mini-
mal elements. Therefore, starting from an upward-closed set of configurations U ,



the iterative computation of the backward reachable configurations from U nec-
essarily terminates since only a finite number of steps are needed to capture all
minimal elements of the set of predecessors of U . Obviously, this requires that
upward-closed sets can be effectively represented and manipulated (i.e., there
are procedures for, e.g., computing immediate predecessors and unions, and for
checking entailment). This general scheme can be applied for the verification of
safety properties since this problem can be reduced to checking the reachability
of a set of bad configurations which is typically an upward-closed set w.r.t. the
considered preorder. (For instance, mutual exclusion is violated as soon as there
are (at least) two processes in the critical section.)

Unfortunately, many systems do not fit into this framework, in the sense
that there is no nontrivial (useful) wqo for which these systems are monotonic.
Nevertheless, a natural approach to overcome this problem is monotonic ab-
straction. Given a preorder �, we consider an abstract semantics which forces
monotonicity for the considered system. In this paper, we introduce the basic
ideas through a sequence of simple parameterized systems. A parameterized sys-
tem consists of an arbitrary number of processes. Consequently, it represents
an infinite family of systems, namely one for each size of the system. We are
interested in parameterized verification, i.e., verifying correctness regardless of
the number of processes inside the system. The term parameterized refers to
the fact that the size of the system is (implicitly) a parameter of the verifi-
cation problem. Examples of parameterized systems include mutual exclusion
algorithms, bus protocols, telecommunication protocols, and cache coherence
protocols. Parametrized systems do not quite fit into the wqo framework since
they induce transition relations which are not monotonic. The main obstacle is
that they usually use universal global conditions in which a process may need
to check the states of all the other processes inside the system. Universal con-
ditions are inherently non-monotonic, since having larger configurations may
lead to the violation of the universal condition. In the case of parametrized sys-
tems, monotonic abstraction amounts to killing (deleting) all the processes inside
the configuration which violate the universal condition. The abstract transition
relation is an over-approximation of the original one. Hence, proving a safety
property in the abstract system implies that the property also holds in the orig-
inal system. For a more technical description of the method and its application
to non-trivial examples see, e.g., [4, 3, 13, 5].

2 Parameterized Systems

In this section, we introduce the concept of parameterized systems. For this pur-
pose, we use a simple example of a protocol which implements mutual exclusion
among an arbitrary number of processes. A parameterized system consists of an
arbitrary number of components each of which is a finite-state process. In our
example, access to the critical section is controlled by a global lock. The system
is supposed to satisfy mutual exclusion, i.e., at most one process may have access
to the global resource at any given time. In each step in the execution of a param-



eterized system, one process, called the active process performs a local transition
changing its state. The rest of the processes, called the passive processes, do not
change states. A process (depicted in Figure 1) has two local states, namely I

where the process is idle and C where the process is in its critical section. The
resource is guarded by a lock L whose value is equal to 1 when the lock is free
and 0 otherwise. When a process wants to access the critical section, it must first
acquire the lock. This can be done only if no other process has already acquired
the lock. Concretely, when the process moves from I to C it checks whether the
lock is free, makes the move and at the same time acquires the lock (makes it
busy). Acquiring the lock is encoded by decrementing the value of the lock (the
value of the lock is not allowed to become negative, and hence the process is
blocked in case L = 0). From the critical section, the process eventually releases
the lock moving back to the idle state I. We require that the system should never
reach a configuration where two or more processes are in the state C. Recall that
we are interested in parameterized verification, i.e., verifying that this property
is satisfied regardless of the number of competing processes.

I C

L := L − 1

L := L + 1

Fig. 1. One process in the simple protocol.

P0 P1 Pn

Fig. 2. A parameterized system consisting
of an arbitrary number of processes.

3 Counter Abstraction

In this section, we describe how to capture the behaviour of certain classes of
parameterized systems by Petri nets through the use of counter abstraction.

3.1 Petri Nets

A Petri net N is a tuple (P, T, F ), where P is a finite set of places, T is a finite
set of transitions, and F ⊆ (P × T ) ∪ (T × P ) is the flow relation. If (p, t) ∈ F
then p is said to be an input place of t; and if (t, p) ∈ F then p is said to be an
output place of t. We use In (t) := {p| (p, t) ∈ F} and Out (t) := {p| (t, p) ∈ F}
to denote the sets of input places and output places of t respectively.

Figure 3 shows an example of a Petri net with three places (drawn as circles),
namely L, W, and C; and two transitions (drawn as rectangles), namely t1 and t2.
The flow relation is represented by edges from places to transitions, and from
transitions to places. For instance, the flow relation in the example includes the
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Fig. 3. (a) A simple Petri net. (b) The result of firing t1.

pairs (L, t1) and (t2, W), i.e., L is an input place of t1, and W is an output place
of t2.

The transition system induced by a Petri net is defined by the set of config-
urations together with the transition relation defined on them. A configuration
c of a Petri net 1 is a multiset over P . The configuration c defines the number of
tokens in each place. Figure 3 (a) shows a configuration where there is one token
in place L, three tokens in place W, and no token in place C. The configuration
corresponds to the multiset

[
L, W3

]
.

The operational semantics of a Petri net is defined through the notion of firing
transitions. This gives a transition relation on the set of configurations. More
precisely, when a transition t is fired, then a token is removed from each input
place, and a token is added to each output place of t. The transition is fired only
if each input place has at least one token. Formally, we write c1 −→ c2 to denote
that there is a transition t ∈ T such that c1 ≥ In (t) and c2 = c1−In (t)+Out (t)
(where + and − are the usual operations defined on multisets). For sets C1, C2

of configurations, we write C1 −→ C2 to denote that c1 −→ c2 for some c1 ∈ C1

and c2 ∈ C2. We define
∗−→ to the reflexive transitive closure of −→.

3.2 Counter Abstraction

We can use counter abstraction to capture the behaviour of the parameterized
version of the simple mutual exclusion protocol described in Section 2 as a Petri
net (shown in Figure 3). The idea is to count the number of processes in each
given local state. More precisely, we devote a place in the Petri net for each

1 A configuration in a Petri net is often called a marking in the literature.



process state in the protocol. The numbers of tokens in places I and C represent
the number of processes in their idle states and critical sections respectively.
Absence of tokens in L means that the lock is currently taken by some process.
Each transition of the Petri net corresponds to one of the processes performing
a local transition: the transition t1 corresponds to a process moving from I to C

(thus decreasing the number of processes in the state I, increasing the number
of processes in C, and taking the lock); and the transition t2 corresponds to a
process moving from C to I (thus increasing the number of processes in the state
I, decreasing the number of processes in C, and releasing the lock).

3.3 Safety Properties

We are interested in checking a safety property for the Petri net in Figure 3.
In a safety property, we want to show that “nothing bad happens” during the
execution of the system. Typically, we define a set Bad of configurations, i.e.,
configurations which we do not want to occur during the execution of the system.
In this particular example, we are interested in proving mutual exclusion. The
set Bad contains those configurations that violate mutual exclusion, i.e., con-
figurations in which at least two processes are in their critical sections. These
configurations are of the form

[
Lk, Wm, Cn

]
where n ≥ 2. The set Cinit of initial

configurations are those where all processes are idle. Examples of initial configu-
rations are

[
I2
]

and
[
I5
]
, corresponding to instances of the system with two and

five processes respectively. Notice that there are infinitely many initial configura-
tions (one for each possible size of the system). Checking the safety property can
be carried out by checking whether we can fire a sequence of transitions taking
us from an initial configuration to a bad configuration, i.e., we check whether
the set Bad is reachable (i.e., whether Cinit

∗−→ Bad).

3.4 Ordering

We define the ordering ≤ on configurations to be the standard one on multisets,
i.e., c1 ≤ c2 if c1(p) ≤ c2(p) for each p ∈ P . According to Dickson’s lemma
[8], the relation ≤ is a well quasi-ordering (wqo for short), i.e., for each infinite
sequence c0, c1, c2, . . . of configurations there are i and j such that i < j and
ci ≤ cj .

We will work with sets of configurations which are upward closed with respect
to ≤. For a configuration c, we define ĉ to be the set of configurations which are
larger than c wrt. ≤, i.e., ĉ = {c′| c ≤ c′}. For a set C, we define Ĉ := ∪c∈C ĉ. For
an upward closed set U , we define the generator of U to be the set of minimal
elements of U , i.e., the set G such that

– Ĝ = U , i.e., U can be generated from G by taking the upward closure of G
wrt. ≤.

– a ≤ b implies a = b for all a, b ∈ G. In other words, the set G is canonical in
the sense that all its elements are incomparable wrt. ≤.



We use gen (U) to denote the set G. Upward closed sets are interesting in our
setting for two reasons:

– The set gen (U) is finite; otherwise we would have an infinite set of incom-
parable elements which contradicts the wqo property. This means that each
upward closed set U can be characterized by a finite set of configurations,
namely its generator gen (U). The set gen (U) = {a1, . . . , an} is a finite
characterization of U in the sense that U = â1 ∪ · · · ∪ ân.

– Sets of bad configurations are almost always upward closed. For instance,
in our example, whenever a configuration contains two processes in their
critical sections then any larger configuration will also contain (at least) two
processes in their critical sections, so the set Bad is upward closed. In this
manner, checking the safety property amounts to deciding reachability of an
upward closed set.

3.5 Monotonicity

Consider the ordering ≤ on the configurations of the Petri net. It follows from
the definitions that the transition relation −→ is monotonic wrt. ≤. In other
words, given configurations c1, c2, and c3, if c1 −→ c2 and c1 ≤ c3, then there is
a configuration c4 such that c2 ≤ c4 and c3 −→ c4.

3.6 Computing predecessors

Consider an upward closed set U of configurations. By monotonicity it follows
that the set {c| c −→ U} is upward closed. For a configuration c and a transition
t, we define Pre(t)(c) to be the set {c1, . . . , cn} which is the generator of the set
of configurations from which we can reach ĉ through a single firing of t.

3.7 Backward Reachability Analysis

As mentioned above, we are interested in checking whether it is the case that
the set Bad of configurations is reachable. The safety property is violated iff
the question has a positive answer. The algorithm, illustrated in Figure 4, starts
from the set of bad configurations, and tries to find a path backwards through
the transition relation to the set of initial configurations. The algorithm operates
on upward closed sets of configurations. An upward closed set is symbolically
represented by a finite set of configurations, namely the members of its generator.
In the above example, the set gen (Bad) is the singleton

{[
C2
]}

. Therefore, the

algorithm starts from the configuration c0 =
[
C2
]
, and repeatedly computes

predecessors through applying the function Pre. From the configuration c0, we
go backwards and derive the generator of the set of configurations from which we
can fire a transition and reach a configuration in Bad = ĉ0. Transition t1 gives the
configuration c1 = [L, W, C], since ĉ1 contains exactly those configurations from
which we can fire t1 and reach a configuration in ĉ0. Analogously, transition t2
gives the configuration c2 =

[
C3
]
, since ĉ2 contains exactly those configurations



from which we can fire t2 and reach a configuration in ĉ0. Since c0 ≤ c2, it
follows that ĉ2 ⊆ ĉ0. In such a case, we say that c2 is subsumed by c0. Since
ĉ2 ⊆ ĉ0, we can discard c2 safely from the analysis without the loss of any
information. Now, we repeat the procedure on c1, and obtain the configurations
c3 =

[
L2, W2

]
(via t1), and c4 =

[
C2
]

(via t2), where c4 is subsumed by c0. Finally,

from c3 we obtain the configurations c5 =
[
L3, W3

]
(via t1), and c6 = [L, W, C] (via

t2). The configurations c5 and c6 are subsumed by c3 and c1 respectively. The
iteration terminates at this point since all the newly generated configurations
were subsumed by existing ones, and hence there are no more new configurations
to consider. In fact, the set B =

{[
C2
]
, [L, W, C] ,

[
L2, W2

]}
is the generator of the

set of configurations from which we can reach a bad configuration. The three
members in B are those configurations which are not discarded in the analysis
(they were not subsumed by other configurations). To check whether Bad is

reachable, we check the intersection B̂ ∩ Cinit . Since the intersection is empty,
we conclude that Bad is not reachable, and hence the safety property is satisfied
by the system.

[
C2
][L, W, C]

[
C3
]

[
L2, W2

]
[
C2
]

[
L3, W3

]
[L, W, C]

Fig. 4. Running the backward reachability algorithm on the example Petri net. Each
ellipse contains the configurations generated during one iteration. The subsumed con-
figurations are crossed over.

3.8 Sufficient Conditions

We summarize the properties needed in order to derive the above algorithm:

1. Monotonicity. This implies that the predecessor set of an upward closed set
of configurations is upward closed.

2. � is a wqo. We need this property for two reasons: to represent upward
closed sets by a finite set of configurations (a generator of the set); and to
guarantee termination of the algorithm.

3. For each c, we can compute the (finite) set gen ({c′| c′ −→ ĉ}). In fact,
Pre(t)(c) = (c 	 Out (t)) + In (t), where 	 rounds negative values up to
0 (i.e., y 	 x = 0 if x > y and y 	 x = y − x otherwise).

4. For each c, we can check whether there is a c′ ∈ Cinit such that c � c′. This
is needed to check the emptiness of the intersection B̂ ∩ Cinit .



4 Monotonic Abstraction

We consider parameterized systems, where the local transitions of a processes
may be constrained by global conditions, i.e., the process may have to check
the states of all the other processes before proceeding with the transition. To
capture such conditions we need a more powerful model than standard Petri nets,
namely Petri nets with inhibitor arcs. We introduce the concept of monotonic
abstraction and describe how it transforms inhibitor arcs into reset arcs.

We consider a parametrized version of a simple reader-writer protocol. The
system consists of an arbitrary number of processes which may read from or write
to a global variable, and are supposed to satisfy the reader-writer property, i.e.,
writing should be exclusive to one process (at any point of time, if a process is
writing, then no other process should be reading or writing). Notice that several
different processes may be reading at the same time.

A process (depicted in Figure 5) has three local states, namely I where the
process is idle, R where the process is reading, and W where the process is writing.
Writing to the global variable is controlled by a lock whose value is equal to 1
when the lock is free and 0 otherwise. When a process wants to start reading, it
checks whether the lock is free. If this is the case, the process moves from I to
R without changing the value of the lock. From R, the process eventually moves
back to I.

When a process wants to start writing, it checks whether there are other
processes reading the global variable (encoded by the condition #R = 0?). It
acquires the lock by decreasing the value of L by one. If the lock is not free, then
L = 0 and the transition is blocked. From W, the process eventually moves back
to I releasing the lock (by increasing the value of L by one).

IR W

#R = 0? L := L− 1

L := L + 1

L = 1?

Fig. 5. One process in the reader-writer protocol.

4.1 Petri Nets with Inhibitor Arcs

A Petri net with inhibitor arcs is a generalization of Petri nets in the sense that
an arc form a place p to a transition t may be declared to be an inhibitor. In
such a case, the transition t may only be fired from configurations in which p is
empty (does not contain any tokens). For the arcs which are not inhibitors the
standard rules for firing transitions in Petri nets hold.
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Fig. 6. A Petri net with one in-
hibitor arc.

I

t4

W

t3

L

t1t2

R

Fig. 7. A Petri net with one reset
arc.

Figure 6 shows an example of a Petri net with one inhibitor arc (represented
by the arrow whose head is a filled circle) between R and t3.

4.2 Counter Abstraction

In a similar manner to Section 3, we can capture the behaviour of the parame-
terized reader-writer protocol as a Petri net with inhibitor arcs (Figure 6). The
numbers of tokens in places I, R, and W represent the number of processes in
their idle, read, and write states respectively. Absence of tokens in L means that
there is currently a process writing to the global variable. The transitions of
the Petri net are interpreted as follows. The transition t1 represents a process
moving from I to R. The process checks the state of the lock but does not change
its value (this is represented by the two arcs between the place L and t1). The
transition t2 corresponds to a process moving back from R to I. The transition t3
means that an idle process becomes a writer. Here, we need an inhibitor arc to
encode the condition that there are no processes currently reading the variable.
This is done by checking that place R is empty. Finally, transition t4 represents
a process leaving the W state and becoming idle again.

4.3 Forcing Monotonicity

A Petri net with inhibitor arcs is not monotonic. For instance, consider the
configurations c1 = [L, I], c2 = [W], and c3 = [L, I, R]. Then, we have c1 ≤ c3 and
c1 −→ c2 (by firing the transition t3), but there is no c4 such that c3 −→ c4 and
c2 ≤ c4. The inhibitor arc does not allow taking t3 from c3 since the place R is



not empty. In fact, the only transitions enabled from c3 are t1 and t2 leading to
the configurations

[
L, R2

]
resp.

[
L, I2

]
(none of which is larger than [W]).

That Petri nets with inhibitor arcs are not monotonic is not surprising given
that they are Turing-powerful. We revert therefore to abstraction, where we
compute an over-approximation which is monotonic. The only transitions which
violate monotonicity are those with inhibitor arcs. In our abstraction, we change
the semantics of the Petri net, by replacing inhibitor arcs with reset arcs. A reset
arc does not disable the transition. Instead, the reset arc removes all the tokens
from the input place thus making it empty. One important property of reset nets
is that they are monotonic. Thus we generate an abstraction which is not exact
(as in Section 3) but which nevertheless is monotonic.

[W, R]

[L, I, W]

[
R2, W

]
[
R, W2

]

[
L, I2, W

]
[L, R, W]

[
L2, I2

]
[
W2

]

[
L2, I3

][
L2, I, R

][
L3, I3

]
[L, I, W][
L, I, W2

][
R, W3

] [
W3

]

[
L2, I2

]
[
L2, R2

]
[L, R, W]

[
L2, I, R

]
[
L2, R3

]
[
L, R2, W

]

Fig. 8. Running the backward reachability algorithm on the example Petri net with
reset arcs in Figure 7.

The existence of tokens in R means that there are processes in the config-
uration which violate an enabling condition thus blocking the transition t3. In
other words, the existence of readers prevents a process moving from its idle to
its writing state. Our abstraction means that we “kill” all the processes violating
the condition, thus enabling the transition again. Since the abstract transition
relation is an over-approximation of the original transition relation, it follows
that if a safety property holds in the abstract model, then it will also hold in
the concrete model.

Figure 7 show the Petri net with reset arcs we get as an abstraction of the
Petri net with inhibitor arcs in Figure 6. The inhibitor arc is replaced by a reset
arc (with a head which is an empty circle). Figure 8 shows the result of running
the backward reachability algorithm on the reset Petri net of Fig 7.

5 Linear Topologies

In many cases, the components of a parameterized systems are organized as a
linear array. Configurations of the system can then be represented by words over



a finite alphabet rather than multisets. Each alphabet symbol inside the word
represents the local state of one process. The ordering on the symbols reflects
the ordering on the processes. As mentioned earlier, one important (and diffi-
cult) feature in the behaviour of parameterized systems is the existence of global
condition in which a process may have to check the states of the other processes
inside the systems before performing a transition. A global transition is either
universally or existentially quantified. An example of a universal condition is
that all processes in the left context2 of the active process should be in certain
states. In an existential transition we require that some (rather than all) pro-
cesses should be in certain states. We have already seen an example of a global
condition in the reader-writer protocol of Section 4. A process in the protocol
changes states from I to W only if the number of reader processes is equal to
zero. This is equivalent to the universal condition that all the other processes
should be either idle or writing.

5.1 Simple Example

We introduce our method through a simple example of a protocol which imple-
ments mutual exclusion among an arbitrary number of processes. Each process
(depicted in Figure 9) has four local states, namely the idle (I), requesting (R),
waiting (W), and critical (C) states.

I

R

W C

∀LRI, R t1 t6

t2 t5

∃LR, W, C t3 ∀LI

t4

Fig. 9. One process in the mutual exclusion protocol with linear topology.

2 The left context of the active process contains all the process which are to its left
inside the configuration.



Initially, all the processes are idle (in state I). When a process becomes
interested in accessing the critical section (which corresponds to the state C), it
declares its interest by moving to the requesting state R.

This is described by the global universal transition rule t1 in which the move
is allowed only if all other processes are in their idle or requesting states. The
universal quantifier labeling t1 encodes the condition that all other processes
(whether in the left or the right context – hence the index LR of the quantifier) of
the active process should be I or R. In the requesting state, the process may move
to the waiting state W through the local transition t2 (in which the process does
not need to check the states of the other processes). Notice that any number of
processes may cross from the initial (idle) state to the requesting state. However,
once the first process has crossed to the waiting state, it “closes the door” on the
processes which are still in their initial states. These processes will no longer be
able to leave their initial states until the door is opened again (when no process
is in W or C). From the set of processes which have declared interest in accessing
the critical section (those which have left their idle states and are now in the
requesting or waiting states) the leftmost process has the highest priority. This is
encoded by the global universal transition t4 where a process may move from its
waiting state to its critical section only subject to the universal condition that
all processes in its left context are idle (the index L of the quantifier stands for
“Left”). If the process finds out, through the existential global condition, that
there are other processes that are requesting, in their waiting states, or in their
critical sections, then it loops back to the waiting state through the existential
transition t3. Once the process leaves the critical section, it will return back to
the requesting state through the local transition t5. In the requesting state, the
process chooses either to try to reach the critical section again, or to become
idle (through the local transition t6).

5.2 Abstraction

Since the ordering among the processes in the system is relevant, we can no longer
use multisets to describe the configurations of the system. This means that we
have to go beyond Petri nets in order to produce an abstraction of the system.
As mentioned above, a configuration will now be represented as a word over a
finite alphabet representing the local states of the processes. In our example this
alphabet is given by the set {I, R, W, C}. For instance the configuration IWCWR

represents a configuration in an instance of the system with five processes that
are in their idle, waiting, critical, waiting, and requesting states in that order.
The definition of the transition relation −→ depends on the type of t (whether
it is local, existential, or universal). We will consider three transition rules from
Figure 9 to illustrate the idea. The local rule t2 induces transitions of the form
WIRCR −→ WIWCR. Here the active process changes its local state from requesting
to waiting. The existential rule t3 induces transitions of the form RIWCR −→
RIWCR. The waiting process can perform the transition since there is a requesting
process in its left context. However, the same transition is not enabled from the
configuration IIWCR, since there are no critical, waiting, or requesting processes



in the left context of the process trying to perform the transition. The universal
rule t4 induces transitions of the form IIWWR −→ IICWR. The active process (in
the waiting state) can perform the transition since all processes in its left context
are idle. On the other hand, neither of the waiting processes can perform the
transition form the configuration CIWWR since, for each one of them, there is at
least one process in its left context which is not idle.

An initial configuration is one in which all processes are in their initial states.
Examples of initial configurations are II and IIIII, corresponding to instances
of the system with two and five processes respectively. As mentioned above,
the protocol is intended to guarantee mutual exclusion. In other words, we are
interested in verifying a safety property. To do this we characterize the set of bad
configurations: all configurations which contain at least two processes in their
critical sections. Examples of bad configurations are CRC and ICRCWC. Showing
the safety property amounts to proving that the protocol, starting from an initial
configuration, will never reach a bad configuration.

5.3 Monotonic Abstraction

We define an ordering on configurations where c1 � c2 if c1 is a (not necessarily
contiguous) subword of c2. For instance, WC � RWICW. The relation � is a wqo
by Higman’s lemma [12]. In a similar manner to Section 3 and Section 4, we
define an abstraction that generates an over-approximation of the transition
system. The abstract transition system is monotonic, thus allowing to work with
upward closed sets. In fact, we first show that local and existential transitions
are monotonic, and hence need not be approximated. Therefore, we only provide
an over-approximation for universal transitions.

Consider the local rule t2 and the induced transition c1 = IRC −→ IWC =
c2 in which a process changes state from requesting to waiting. Consider the
configuration c3 = IWIRCR that is larger than c1. Clearly, c3 can perform the local
transition c3 = IWIRCR −→ IWIWCR = c4 leading to c4 � c2. Local transitions
are monotonic, since the active process in the small configuration (the requesting
process in c1) also exists in the larger configuration (i.e., c3). A local transition
does not check or change the states of the passive processes; and hence the
larger configuration c3 is also able to perform the transition, while maintaining
the ordering c2 � c4.

Consider the local rule t3 and the induced transition c1 = RIWCR −→ RIWCR =
c2. Let us observe that the configuration c1 can be divided into three parts: the
active process in the waiting state, the left context RI, and the right context CR.
Furthermore, the left context contains a witness (the process in the requesting
state) which enables the transition. Consider the configuration c3 = IRIWCRC

that is larger than c1. Also, the configuration c3 can be divided into three parts:
the active process in the waiting state, the left context IRI, and the right context
CRC. Notice that the left context of c3 is larger than the left context of c1, and
hence the former will also contain the witness. This means that c3 can perform
the same transition c3 = IRIWCRC −→ IRIWCRC = c4 leading to c4 � c2.



Next, we motivate why universal transitions are not monotonic. Consider the
universal rule t4 and the induced transition c1 = IIWWR −→ IICWR = c2. The
transition is enabled since all processes in the left context of the active process
satisfy the condition of the transition (they are idle). Consider the configuration
c3 = IRICWWR. Although c1 � c3, the universal transition t4 is not enabled from
c3 since the left context of the active process contains processes that violate
the condition of the transition. This implies that universal transitions are not
monotonic. In order to deal with non-monotonicity of universal transitions, we
will change the semantics of the system using the same idea as the one in Sec-
tion 4. More precisely, we delete all the processes violating the condition of the
universal rule. This means for instance that we have a transition of the form
IRICWWR −→ IICWR since we can first delete the two processes in the requesting
and critical states and then perform the transition.

5.4 Computing predecessors

For a configuration c and a transition rule t, we define Pre(t)(c) to be the set
{c1, . . . , cn} which is the generator of the set of configurations from which we can
reach ĉ through one application of t. We will consider different transition rules
in Figure 9 to illustrate how to compute Pre. For the local rule t5 in Figure 9,
we have Pre(t5)(IRW) = {ICW}. In other words, the predecessor set is character-
ized by one configuration, namely ICW. Strictly speaking, the set contains also
a number of other configurations such as IRCW. However such configurations are
subsumed by the original configuration IRW, and therefore we will for simplic-
ity not include them in the set. For existential transitions, there are two cases
depending on whether a witness exists or not in the configuration. Consider the
existential rule t3 in Figure 9. We have Pre(t3)(RWC) = {RWC}. In this case, there
is a witness (a requesting process) in the left context of the active process. On
the other hand, we have Pre(t3)(IWC) = {RIWC, IRWC, WIWC, IWWC, CIWC, ICWC}. In
this case there is no witness available in the left context of the active process.
Therefore, we add a witness explicitly in each possible state (requesting, waiting,
or critical), at each possible place in the left context of the active process.

Notice that the sizes of the new configurations (four processes) is larger than
the size of the original configuration (three processes). This means that the sizes
of the configurations generated by the backward algorithm may increase, and
hence there is no bound a priori on the sizes of the configurations. However,
termination is still guaranteed due to the well quasi-ordering of �.

For universal conditions, we check whether there are any processes in the
configuration violating the condition. Consider the universal rule t4 in Figure 9.
Then Pre(IRICW) = ∅ since there is a requesting process in the left context of
the potential active process (which is in the critical section). On the other hand,
Pre(IICW) = IIWW since all processes in the left context of the active process are
in their idle states.



5.5 Backward Reachability Algorithm

We show how the backward reachability algorithm runs on our example (Fig-
ure 10). We start by the generator of the set of bad configurations, namely
{CC}. The only transition which is enabled backwards from a critical state, is
the one induced by the rule t4. From the two processes in CC only the left one
can perform t4 backwards (the right process cannot perform t4 backwards since
its left context contains a process not satisfying the condition of the quantifier):
Pre(t4)(CC) = {WC}. From WC, two rules are enabled backwards (both from the
waiting process): the local rule t2: Pre(t2)(WC) = {RC}; and the existential rule
t3: Pre(t3)(WC) = {RWC, WWC, CWC}. All the three configurations in Pre(t3) (WC)
are subsumed by WC. One rule is enabled backwards from RC, namely the local
rule t5 from the requesting process: Pret5 (RC) = {CC}. Notice that the universal
transition t1 is not enabled from the requesting process, since there is another
process (the critical process) in the configuration that violates the condition of
the quantifier. At this point, the algorithm terminates, since it is not possible to
provide any new configurations which are not subsumed by the existing ones.

Since there is no initial configuration (with only idle processes) in ĈC∪ŴC∪R̂C,
the set of bad configurations is not reachable from the set of initial configura-
tions in the abstract semantics. Therefore, the set of bad configurations is not
reachable from the set of initial configurations in the concrete semantics, either.

CCWC

RC

RWC

WWC

CWC

CC

Fig. 10. Running the backward reachability algorithm on the example Protocol.
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