
Stochastic Parity Games on Lossy Channel Systems

Parosh Aziz Abdulla1, Lorenzo Clemente2, Richard Mayr3, and Sven Sandberg1

1 Uppsala University 2 LaBRI, University of Bordeaux I 3 University of Edinburgh

Abstract. We give an algorithm for solving stochastic parity games with almost-
sure winning conditions on lossy channel systems, for the case where the players
are restricted to finite-memory strategies. First, we describe a general framework,
where we consider the class of 2 1

2 -player games with almost-sure parity winning
conditions on possibly infinite game graphs, assuming that the game contains a
finite attractor. An attractor is a set of states (not necessarily absorbing) that is
almost surely re-visited regardless of the players’ decisions. We present a scheme
that characterizes the set of winning states for each player. Then, we instantiate
this scheme to obtain an algorithm for stochastic game lossy channel systems.

1 Introduction
Background. 2-player games can be used to model the interaction of a controller (player
0) who makes choices in a reactive system, and a malicious adversary (player 1) who
represents an attacker. To model randomness in the system (e.g., unreliability; random-
ized algorithms), a third player ‘random’ is defined who makes choices according to a
predefined probability distribution. The resulting stochastic game is called a 2 1

2 -player
game in the terminology of [13]. The choices of the players induce a run of the system,
and the winning conditions of the game are expressed in terms of predicates on runs.

Most classic work on algorithms for stochastic games has focused on finite-state
systems (e.g., [23, 15, 17, 13]), but more recently several classes of infinite-state systems
have been considered as well. Stochastic games on infinite-state probabilistic recursive
systems (i.e., probabilistic pushdown automata with unbounded stacks) were studied in
[19, 20, 18]. A different (and incomparable) class of infinite-state systems are channel
systems, which use unbounded communication buffers instead of unbounded recursion.

Channel Systems consist of finite-state machines that communicate by asynchronous
message passing via unbounded FIFO communication channels. They are also known
as communicating finite-state machines (CFSM) [11].

A Lossy Channel System (LCS) [6] consists of finite-state machines that commu-
nicate by asynchronous message passing via unbounded unreliable (i.e., lossy) FIFO
communication channels, i.e., messages can spontaneously disappear from channels.

A Probabilistic Lossy Channel System (PLCS) [9, 7] is a probabilistic variant of
LCS where, in each computation step, messages are lost from the channels with a given
probability. In [4], a game extension of PLCS was introduced where the players control
transitions in the control graph and message losses are probabilistic.

The original motivation for LCS and PLCS was to capture the behavior of commu-
nication protocols; such protocols are designed to operate correctly even if the commu-
nication medium is unreliable (i.e., if messages can be lost). However, Channel Sys-
tems (aka CFSM) are a very expressive model that can encode the behavior of Turing

machines, by storing the content of a Turing tape in a channel [11]. The only reason
why certain questions are decidable for LCS/PLCS is that the message loss induces a
quasi-order on the configurations, which has the properties of a simulation. Similarly to
Turing machines and CFSM, one can encode many classes of infinite-state probabilis-
tic transition systems into a PLCS. The only requirement is that the system re-visits a
certain finite core region (we call this an attractor; see below) with probability one, e.g.,

– Queuing systems where waiting customers in a queue drop out with a certain prob-
ability in every time interval. This is similar to the well-studied class of queuing
systems with impatient customers which practice reneging, i.e., drop out of a queue
after a given maximal waiting time; see [25] section II.B. Like in some works cited
in [25], the maximal waiting time in our model is exponentially distributed. In basic
PLCS, unlike in [25], this exponential distribution does not depend on the current
number of waiting customers. However, an extension of PLCS with this feature
would still be analyzable in our framework (except in the pathological case where
a high number of waiting customers increases the customers patience exponentially,
because such a system would not necessarily have a finite attractor).

– Probabilistic resource trading games with probabilistically fluctuating prices. The
given stores of resources are encoded by counters (i.e., channels), which exhibit a
probabilistic decline (due to storage costs, decay, corrosion, obsolescence).

– Systems modeling operation cost/reward, which is stored in counters/channels, but
probabilistically discounted/decaying over time.

– Systems which are periodically restarted (though not necessarily by a deterministic
schedule), due to, e.g., energy depletion or maintenance work.

Due to this wide applicability of PLCS, we focus on this model in this paper. How-
ever, our main results are formulated in more general terms referring to infinite Markov
chains with a finite attractor; see below.

Previous work. Several algorithms for symbolic model checking of PLCS have been
presented [1, 22]. Markov decision processes (i.e., 1 1

2 -player games) on infinite graphs
induced by PLCS were studied in [8], which shows that 1 1

2 -player games with almost-
sure Büchi objectives are pure memoryless determined and decidable. This result was
later generalized to 2 1

2 -player games [4]. On the other hand, 1 1
2 -player games on PLCS

with positive probability Büchi objectives (i.e., almost-sure co-Büchi objectives from
the (here passive) opponent’s point of view) can require infinite memory to win and
are also undecidable [8]. (Undecidability and infinite memory requirement are separate
results, since decidability does not imply the existence of finite-memory strategies in
infinite-state games). If players are restricted to finite-memory strategies, the 1 1

2 -player
game with positive probability parity objectives (even the more general Streett objec-
tives) becomes decidable [8]. Note that the finite-memory case and the infinite-memory
one are a priori incomparable problems, and neither subsumes the other. Cf. Section 7.

Non-stochastic (2-player) parity games on infinite graphs were studied in [26],
where it is shown that such games are determined, and that both players possess winning
memoryless strategies in their respective winning sets. Furthermore, a scheme for com-
puting the winning sets and winning strategies is given. Stochastic games (2 1

2 -player
games) with parity conditions on finite graphs are known to be memoryless determined
and effectively solvable [16, 13, 12].

Our contribution. We give an algorithm to decide almost-sure parity games for prob-
abilistic lossy channel systems in the case where the players are restricted to finite
memory strategies. We do that in two steps. First, we give our result in general terms
(Section 4): We consider the class of 2 1

2 -player games with almost-sure parity win-
ing conditions on possibly infinite game graphs, under the assumption that the game
contains a finite attractor. An attractor is a set A of states such that, regardless of the
strategies used by the players, the probability measure of the runs which visit A in-
finitely often is one.1 Note that this means neither that A is absorbing, nor that every
run must visit A. We present a general scheme characterizing the set of winning states
for each player. The scheme is a non-trivial generalization of the well-known scheme for
non-stochastic games in [26] (see the remark in Section 4). In fact, the constructions are
equivalent in the case that no probabilistic states are present. We show correctness of the
scheme for games where each player is restricted to a finite-memory strategy. The cor-
rectness proof here is more involved than in the non-stochastic case of [26]; we rely on
the existence of a finite attractor and the restriction of the players to use finite-memory
strategies. Furthermore, we show that if a player is winning against all finite-memory
strategies of the other player then he can win using a memoryless strategy. In the sec-
ond step (Section 6), we show that the scheme can be instantiated for lossy channel
systems. The instantiation requires the use of a much more involved framework than
the classical one for well quasi-ordered transition systems [3] (see the remark in Sec-
tion 6). The above two steps yield an algorithm to decide parity games in the case when
the players are restricted to finite memory strategies. If the players are allowed infinite
memory, then the problem is undecidable already for 1 1

2 -player games with co-Büchi
objectives (a special case of 2-color parity objectives) [8]. Note that even if the players
are restricted to finite memory strategies, such a strategy (even a memoryless one) on
an infinite game graph is still an infinite object. Thus, unlike for finite game graphs, one
cannot solve a game by just guessing strategies and then checking if they are winning.
Instead, we show how to effectively compute a finite, symbolic representation of the
(possibly infinite) set of winning states for each player as a regular language.

2 Preliminaries

Notation. Let O and N denote the set of ordinal resp. natural numbers. We use f : X→Y
to denote that f is a total function from X to Y , and use f : X ⇀ Y to denote that f is
a partial function from X to Y . We write f (x) = ⊥ to denote that f is undefined on x,
and define dom(f) := {x| f (x) 6=⊥}. We say that f is an extension of g if g(x) = f (x)
whenever g(x) 6= ⊥. For X ′ ⊆ X , we use f |X ′ to denote the restriction of f to X ′. We
will sometimes need to pick an arbitrary element from a set. To simplify the exposition,
we let select(X) denote an arbitrary but fixed element of the nonempty set X .

A probability distribution on a countable set X is a function f : X → [0,1] such that
∑x∈X f (x) = 1. For a set X , we use X∗ and Xω to denote the sets of finite and infinite
words over X , respectively. The empty word is denoted by ε.

1 In the game community (e.g., [26]) the word attractor is used to denote what we call a force
set in Section 3. In the infinite-state systems community (e.g., [1, 5]), the word is used in the
same way as we use it in this paper.

Games. A game (of rank n) is a tuple G = (S,S0,S1,SR,−→,P,Col) defined as follows.
S is a set of states, partitioned into the pairwise disjoint sets of random states SR, states
S0 of Player 0, and states S1 of Player 1. −→ ⊆ S× S is the transition relation. We
write s−→s′ to denote that (s,s′) ∈ −→. We assume that for each s there is at least one
and at most countably many s′ with s−→s′. The probability function P : SR×S→ [0,1]
satisfies both ∀s ∈ SR.∀s′ ∈ S.(P(s,s′)> 0 ⇐⇒ s−→s′) and ∀s ∈ SR.∑s′∈S P(s,s′) = 1.
(The sum is well-defined since we assumed that the number of successors of any state
is at most countable.) Col : S→ {0, . . . ,n}, where Col(s) is called the color of state
s. Let Q ⊆ S be a set of states. We use G

¬ Q := S−Q to denote the complement of Q.
Define [Q]0 := Q∩ S0, [Q]1 := Q∩ S1, [Q]0,1 := [Q]0 ∪ [Q]1, and [Q]R := Q∩ SR. For
n ∈ N and ∼ ∈ {=,≤}, let [Q]Col∼n := {s ∈ Q| Col(s)∼ n} denote the sets of states in
Q with color∼ n. A run ρ in G is an infinite sequence s0s1 · · · of states s.t. si−→si+1 for
all i≥ 0; ρ(i) denotes si. A path π is a finite sequence s0 · · ·sn of states s.t. si−→si+1 for
all i : 0≤ i < n. We say that ρ (or π) visits s if s = si for some i. For any Q⊆ S, we use
ΠQ to denote the set of paths that end in some state in Q. Intuitively, the choices of the
players and the resolution of randomness induce a run s0s1 · · · , starting in some initial
state s0 ∈ S; state si+1 is chosen as a successor of si, and this choice is made by Player 0
if si ∈ S0, by Player 1 if si ∈ S1, and it is chosen randomly according to the probability
distribution P(si, ·) if si ∈ SR.

Strategies. For x ∈ {0,1}, a strategy of Player x is a partial function f x : ΠSx ⇀ S s.t.
sn−→ f x(s0 · · ·sn) if f x(s0 · · ·sn) is defined. The strategy f x prescribes for Player x the
next move, given the current prefix of the run. A run ρ = s0s1 · · · is said to be consistent
with a strategy f x of Player x if si+1 = f x(s0s1 · · ·si) whenever f x(s0s1 · · ·si) 6= ⊥. We
say that ρ is induced by (s, f x, f 1−x) if s0 = s and ρ is consistent with both f x and f 1−x.
We use Runs(G ,s, f x, f 1−x) to denote the set of runs in G induced by (s, f x, f 1−x).
We say that f x is total if it is defined for every π ∈ ΠSx . A strategy f x of Player x is
memoryless if the next state only depends on the current state and not on the previous
history of the run, i.e., for any path s0 · · ·sn ∈ΠSx , we have f x(s0 · · ·sn) = f x(sn).

A finite-memory strategy updates a finite memory each time a transition is taken,
and the next state depends only on the current state and memory. Formally, we de-
fine a memory structure for Player x as a quadruple M = (M,m0,τ,µ) satisfying the
following properties. The nonempty set M is called the memory and m0 ∈M is the ini-
tial memory configuration. For a current memory configuration m and a current state
s, the next state is given by τ : Sx ×M → S, where s−→τ(s,m). The next memory
configuration is given by µ : S×M → M. We extend µ to paths by µ(ε,m) = m and
µ(s0 · · ·sn,m) = µ(sn,µ(s0 · · ·sn−1,m)). The total strategy stratM : ΠSx → S induced by
M is given by stratM (s0 · · ·sn) := τ(sn,µ(s0 · · ·sn−1,m0)). A total strategy f x is said to
have finite memory if there is a memory structure M = (M,m0,τ,µ) where M is finite
and f x = stratM . Consider a run ρ = s0s1 · · · ∈ Runs(G ,s, f x, f 1−x) where f 1−x is in-
duced by M . We say that ρ visits the configuration (s,m) if there is an i such that si = s
and µ(s0s1 · · ·si−1,m0) = m. We use Fx

all(G), Fx
finite(G), and Fx

/0
(G) to denote the set of

all, finite-memory, and memoryless strategies respectively of Player x in G . Note that
memoryless strategies and strategies in general can be partial, whereas for simplicity
we only define total finite-memory strategies.

Probability Measures. We use the standard definition of probability measures for a set
of runs [10]. First, we define the measure for total strategies, and then we extend it to
general (partial) strategies. Let Ωs = sSω denote the set of all infinite sequences of states
starting from s. Consider a game G = (S,S0,S1,SR,−→,P,Col), an initial state s, and
total strategies f x and f 1−x of Players x and 1− x. For a measurable set R ⊆ Ωs, we
define PG ,s, f x, f 1−x(R) to be the probability measure of R under the strategies f x, f 1−x.
This measure is well-defined [10]. For (partial) strategies f x and f 1−x of Players x
and 1− x, ∼ ∈ {<,≤,=,≥,>}, a real number c ∈ [0,1], and any measurable set R ⊆
Ωs, we define PG ,s, f x, f 1−x(R) ∼ c iff PG ,s,gx,g1−x(R) ∼ c for all total strategies gx and
g1−x that are extensions of f x resp. f 1−x.

Winning Conditions. The winner of the game is determined by a predicate on infinite
runs. We assume familiarity with the syntax and semantics of the temporal logic CT L∗

(see, e.g., [14]). Formulas are interpreted on the structure (S,−→). We use JϕKs to
denote the set of runs starting from s that satisfy the CT L∗ path-formula ϕ. This set is
measurable [24], and we just write PG ,s, f x, f 1−x(ϕ)∼ c instead of PG ,s, f x, f 1−x(JϕKs)∼ c.

We will consider games with parity winning conditions, whereby Player 1 wins if
the largest color that occurs infinitely often in the infinite run is odd, and Player 0 wins
if it is even. Thus, the winning condition for Player x can be expressed in CT L∗ as
x-Parity :=

∨
i∈{0,...,n}∧(i mod 2)=x(23[S]Col=i∧32[S]Col≤i).

Winning Sets. For a strategy f x of Player x, and a set F1−x of strategies of Player 1− x,
we define W x(f x,F1−x)(G ,ϕ∼c) := {s| ∀ f 1−x ∈ F1−x.PG ,s, f x, f 1−x(ϕ)∼ c}. If there is a
strategy f x such that s ∈W x(f x,F1−x)(G ,ϕ∼c), then we say that s is a winning state
for Player x in G wrt. ϕ∼c (and f x is winning at s), provided that Player 1− x is re-
stricted to strategies in F1−x. Sometimes, when the parameters G , s, F1−x, ϕ, and ∼ c
are known, we will not mention them and may simply say that “s is a winning state”
or that “ f x is a winning strategy”, etc. If s ∈W x(f x,F1−x)(G ,ϕ=1), then we say that
Player x almost surely (a.s.) wins from s. If s ∈W x(f x,F1−x)(G ,ϕ>0), then we say
that Player x wins with positive probability (w.p.p.). We define V x(f x,F1−x)(G ,ϕ) :=
{s| ∀ f 1−x ∈ F1−x. Runs(G ,s, f x, f 1−x)⊆ JϕKs}. If s ∈V x(f x,F1−x)(G ,ϕ), then we say
that Player x surely wins from s. Notice that any strategy that is surely winning from a
state s is also winning from s a.s., i.e., V x(f x,F1−x)(G ,ϕ)⊆W x(f x,F1−x)(G ,ϕ=1).

Determinacy and Solvability. A game is called determined, wrt. a winning condition
and two sets F0,F1 of strategies of Player 0, resp. Player 1, if, from every state, one
of the players x has a strategy f x ∈ Fx that wins against all strategies f 1−x ∈ F1−x of
the opponent. By solving a determined game, we mean giving an algorithm to compute
symbolic representations of the sets of states which are winning for either player.

Attractors. A set A ⊆ S is said to be an attractor if, for each state s ∈ S and strategies
f 0, f 1 of Player 0 resp. Player 1, it is the case that PG ,s, f 0, f 1(3A) = 1. In other words,
regardless of where we start a run and regardless of the strategies used by the players,
we will reach a state inside the attractor a.s.. It is straightforward to see that this also
implies that PG ,s, f 0, f 1(23A) = 1, i.e., the attractor will be visited infinitely often a.s..

Transition Systems. Consider strategies f x ∈ Fx
/0

and f 1−x ∈ F1−x
finite of Player x resp.

Player 1− x, where f x is memoryless and f 1−x is finite-memory. Suppose that f 1−x

is induced by memory structure M = (M,m0,τ,µ). We define the transition system T
induced by G , f 1−x, f x to be the pair (SM,) where SM = S×M, and ⊆ SM×SM
such that (s1,m1) (s2,m2) if m2 = µ(s1,m1), and one of the following three condi-
tions is satisfied: (i) s1 ∈ Sx and either s2 = f x(s1) or f x(s1) = ⊥, (ii) s1 ∈ S1−x and
s2 = τ(s1,m1), or (iii) s1 ∈ SR and P(s1,s2) > 0. Consider the directed acyclic graph
(DAG) of maximal strongly connected components (SCCs) of the transition system T .
An SCC is called a bottom SCC (BSCC) if no other SCC is reachable from it. Observe
that the existence of BSCCs is not guaranteed in an infinite transition system. However,
if G contains a finite attractor A and M is finite then T contains at least one BSCC,
and in fact each BSCC contains at least one element (sA,m) with sA ∈ A. In particular,
for any state s ∈ S, any run ρ ∈ Runs(G ,s, f x, f 1−x) will visit a configuration (sA,m)
infinitely often a.s. where sA ∈ A and (sA,m) ∈ B for some BSCC B.

3 Reachability

In this section we present some concepts related to checking reachability objectives in
games. First, we define basic notions. Then we recall a standard scheme (described e.g.
in [26]) for checking reachability winning conditions, and state some of its properties
that we use in the later sections. Below, fix a game G = (S,S0,S1,SR,−→,P,Col).

Reachability Properties. Fix a state s ∈ S and sets of states Q,Q′ ⊆ S. Let PostG (s) :=
{s′ : s−→s′} denote the set of successors of s. Extend it to sets of states by PostG (Q) :=⋃

s∈Q PostG (s). Note that for any given state s ∈ SR, P(s, ·) is a probability distribution
over PostG (s). Let PreG (s) := {s′ : s′−→s} denote the set of predecessors of s, and

extend it to sets of states as above. We define P̃reG (Q) :=G
¬ PreG

(
G
¬ Q

)
, i.e., it de-

notes the set of states whose successors all belong to Q. We say that Q is sink-free if
PostG (s)∩Q 6= /0 for all s ∈ Q, and closable if it is sink-free and PostG (s) ⊆ Q for all
s ∈ [Q]R. If Q is closable then each state in [Q]0,1 has at least one successor in Q, and
all the successors of states in [Q]R are in Q.

If G
¬Q is closable, we define the subgame G	Q :=(Q′, [Q′]0, [Q′]1, [Q′]R,−→′,P′,Col′),

where Q′ :=G
¬ Q is the new set of states, −→′ :=−→∩ (Q′×Q′), P′ := P|([Q′]R×Q′),

Col′ := Col|Q′. Notice that P′(s) is a probability distribution for any s ∈ SR since G
¬ Q

is closable. We use G 	Q1	Q2 to denote (G 	Q1)	Q2.
For x ∈ {0,1}, we say that Q is an x-trap if it is closable and PostG (s) ⊆ Q for all

s ∈ [Q]x. Notice that S is both a 0-trap and a 1-trap, and in particular it is both sink-free
and closable. The following lemma (adapted from [26]) states that, starting from a state
inside a set of states Q that is a trap for one player, the other player can surely keep the
run inside Q.

Lemma 1. If Q is a (1− x)-trap, then there exists a memoryless strategy f x ∈ Fx
/0
(G)

for Player x such that Q⊆V x(f x,F1−x
all (G))(G ,2Q).

Scheme. Given a set Target ⊆ S, we give a scheme for computing a partitioning of S
into two sets Forcex(G ,Target) and Avoid1−x(G ,Target) that are winning for Play-
ers x and 1− x. More precisely, we define a memoryless strategy that allows Player x
to force the game to Target w.p.p.; and define a memoryless strategy that allows
Player 1− x to surely avoid Target.

First, we characterize the states that are winning for Player x, by defining an in-
creasing set of states each of which consists of winning states for Player x, as follows:

R 0 := Target;

R i+1 := R i∪ [PreG (R i)]
R∪ [PreG (R i)]

x∪ [P̃reG (R i)]
1−x if i+1 is a successor ordinal;

R i :=
⋃
j<i

R j if i > 0 is a limit ordinal;

Forcex(G ,Target) :=
⋃
i∈O

R i; Avoid1−x(G ,Target) := G
¬ Forcex(G ,Target).

First, we show that the iteration above converges (possibly in infinitely many steps).
To this end, we observe that R i ⊆ R i+1 if i+ 1 is a successor ordinal and R j ⊆ R i if
j < i and i is a limit ordinal. Therefore R 0 ⊆ R 1 ⊆ ·· · . Since the sequence is non-
decreasing and since the sequence is bounded by S, it will eventually converge. Define
α to be the smallest ordinal such that R α = R i for all i ≥ α. This gives the following
lemma, which also implies that the Avoid1−x set is a trap for Player x. (Lemmas 2 and 3
are adapted from [26], where they are stated in a non-probabilistic setting.)

Lemma 2. There is an α ∈O such that R α =
⋃

i∈O R i.

Lemma 3. Avoid1−x(G ,Target) is an x-trap.

The following lemma shows correctness of the construction. In fact, it shows that a
winning player also has a memoryless winning strategy.

Lemma 4. There is a memoryless strategy forcex(G ,Target) ∈ Fx
/0
(G) such that

Forcex(G ,Target)⊆W x(forcex(G ,Target),F1−x
all (G))(G ,3Target>0); and a mem-

oryless strategy avoid1−x(G ,Target) ∈ F1−x
/0

(G) such that
Avoidx(G ,Target)⊆V 1−x(avoid1−x(G ,Target),Fx

all(G))(G ,2(G
¬ Target)).

The first claim of the lemma can be proven using transfinite induction on i to show that
it holds for each state s ∈ R i. The second claim follows from Lemma 3 and Lemma 1.

4 Parity Conditions

We describe a scheme for solving stochastic parity games with almost-sure winning
conditions on infinite graphs, under the conditions that the game has a finite attractor
(as defined in Section 2), and that the players are restricted to finite-memory strategies.

By induction on n, we define two sequences of functions C0,C1, . . . and D0,D1, . . .
s.t., for each n ≥ 0 and game G of rank at most n, Cn(G) characterizes the states from
which Player x is winning a.s., where x = n mod 2, and Dn(G) characterizes the set of
states from which Player x is winning w.p.p.. The scheme for Cn is related to [26]; cf.

the remark at the end of this section. In both cases, we provide a memoryless strategy
that is winning for Player x; Player 1− x is always restricted to finite-memory.

For the base case, let C0(G) := S and D0(G) := S for any game G of rank 0. Indeed,
from any configuration Player 0 trivially wins a.s./w.p.p. because there is only color 0.

For n≥ 1, let G be a game of rank n. Cn(G) is defined with the help of two auxiliary
transfinite sequences {Xi}i∈O and {Yi}i∈O. The construction ensures that X0 ⊆ Y0 ⊆
X1 ⊆ Y1 ⊆ ·· · , and that the elements of Xi,Yi are winning w.p.p. for Player 1− x. The
construction alternates as follows. In the inductive step, we have already constructed X j
and Y j for all j < i. Our construction of X j and Y j is in three steps:

1. Xi is the set of states where Player 1− x can force the run to visit
⋃

j<i Y j w.p.p..
2. Find a set of states where Player 1− x wins w.p.p. in G 	Xi.
3. Take Yi to be the union of X j and the set constructed in step 2.

We next show how to find the winning states in G 	Xi in step 2. We first compute the
set of states where Player x can force the play in G 	Xi to reach a state with color
n w.p.p.. We call this set Zi. The subgame G 	Xi	Zi does not contain any states of
color n. Therefore, this game can be completely solved, using the already constructed
function Dn−1(G 	 Xi 	Zi). We will prove that the states where Player 1− x wins
w.p.p. in G 	Xi	Zi are winning w.p.p. also in G . We thus take Yi as the union of Xi
and Dn−1(G 	Xi	Zi). We define the sequences formally:

Xi := Force1−x(G ,
⋃

j<i Y j),

Zi := Forcex(G 	Xi, [
G
¬ Xi]

Col=n),
Yi := Xi∪Dn−1(G 	Xi	Zi),

Cn(G) :=G
¬ (

⋃
i∈O Xi).

Notice that the subgames G 	Xi and G 	Xi	Zi are well-defined since (by Lemma 3)
G
¬ Xi is closable in G , and G	Xi¬ Zi is closable in G 	Xi.

We now construct Dn(G). Assume that we can construct Cn(G). We will define the
transfinite sequence {Ui}i∈O and the auxiliary transfinite sequence {Vi}i∈O. We again
precede the formal definition with an informal explanation of the idea. The construction
ensures that U0 ⊆ V0 ⊆ U1 ⊆ V1 ⊆ ·· · , and that all Ui, Vi are winning w.p.p. for
Player x in G . The construction alternates in a similar manner to the construction of Cn.
In the inductive step, we have already constructed V j for all j < i. We first compute the
set of states where Player x can force the play to reach V j w.p.p. for some j < i. We call
this set Ui. It is clear that Ui is winning w.p.p. for Player x in G , given the induction
hypothesis that all V j are winning. Then, we find a set of states where Player x wins
w.p.p. in G 	Ui. It is clear that Cn(G 	Ui) is such a set. This set is winning w.p.p. for
Player x, because a play starting in Cn(G	Ui) either stays in this set and Player x wins
with probability 1, or the play leaves Cn(G 	Ui) and enters Ui which, as we already
know, is winning w.p.p.. We thus take Vi as the union of Ui and Cn(G	Ui). We define
the sequences formally by

Ui := Forcex(G ,
⋃

j<i V j),
Vi := Ui∪Cn(G 	Ui),

Dn(G) :=
⋃

i∈O Ui.

By the definitions, for j < i we get Y j ⊆ Xi ⊆ Yi and V j ⊆Ui ⊆ Vi. As in Lemma 2,
we can prove that these sequences converge.

Lemma 5. There are α,β ∈O such that (i) Xα = Yα =
⋃

i∈O Yi, (ii) Cn(G) =G
¬ Xα, (iii)

Uβ = Vβ =
⋃

i∈O Vi, and (iv) Dn(G) = Uβ.

The following lemma shows the correctness of the construction. Recall that we assume
that G is of rank n and that it contains a finite attractor. Let x = n mod 2.

Lemma 6. There are memoryless strategies f x
c , f x

d ,∈ Fx
/0
(G) and f 1−x

c , f 1−x
d ∈ F1−x

/0
(G)

such that the following properties hold:
(i) Cn(G) ⊆ W x(f x

c ,F
1−x
finite(G))(G ,x-Parity=1).

(ii) G
¬ Cn(G) ⊆ W 1−x(f 1−x

c ,Fx
finite(G))(G ,(1− x)-Parity>0).

(iii) Dn(G) ⊆ W x(f x
d ,F

1−x
finite(G))(G ,x-Parity>0).

(iv) G
¬ Dn(G) ⊆ W 1−x(f 1−x

d ,Fx
finite(G))(G ,(1− x)-Parity=1).

Proof. Using induction on n, we define the strategies f x
c , f x

d , f 1−x
c , f 1−x

d , and prove that
the strategies are indeed winning.

f x
c . For n≥ 1, let α be as defined in Lemma 5. Let Xα :=G

¬ Xα and Zα :=G
¬ Zα. We know

that Cn(G) = Xα. For a state s ∈ Cn(G), we define f x
c (s) depending on the membership

of s in one of the following three partitions of Cn(G): (1) Xα∩Zα, (2) Xα∩ [Zα]
Col<n,

and (3) Xα∩ [Zα]
Col=n.

1. s ∈ Xα ∩Zα. Define G ′ := G 	Xα	Zα. From Lemma 5, we have that Xα+1−
Xα = /0. By the construction of Yi we have, for arbitrary i, that Dn−1(G 	Xi	
Zi) = Yi−Xi, and by the construction of Xi+1, we have that Yi−Xi ⊆ Xi+1−Xi.
By combining these facts we obtain Dn−1(G ′) ⊆ Xα+1−Xα = /0. Since G 	Xi	
Zi does not contain any states of color n (or higher), it follows by the induction
hypothesis that there is a memoryless strategy f1 ∈Fx

/0
(G ′) such that G ′

¬ Dn−1(G ′) ⊆
W x(f1,F1−x

finite(G
′))(G ′,x-Parity=1). We define f x

c (s) := f1(s).

2. s ∈ Xα∩ [Zα]
Col<n. Define f x

c (s) := forcex(G 	Xα, [Zα]
Col=n)(s).

3. s ∈ Xα∩ [Zα]
Col=n. By Lemma 3 we know that PostG (s)∩Xα 6= /0. Define f x

c (s) :=
select(PostG (s)∩Xα).

Let f 1−x ∈ F1−x
finite(G) be a finite-memory strategy for Player 1− x. We show that

PG ,s, f x
c , f 1−x(x-Parity) = 1 for any state s∈ Cn(G). First, we show that, any run s0s1 · · · ∈

Runs(G ,s, f x
c , f 1−x) will always stay inside Xα, i.e., si ∈ Xα for all i≥ 0. We use induc-

tion on i. The base case follows from s0 = s ∈ Xα. For the induction step, we assume
that si ∈ Xα, and show that si+1 ∈ Xα. We consider the following cases:

– si ∈ [Xα]
1−x∪[Xα]

R. The result follows since Xα is a (1− x)-trap in G (by Lemma 3).
– si ∈ [Xα∩Zα]

x. We know that si+1 = f1(si). Since f1 ∈ Fx
/0
(G	Xα	Zα) it follows

that si+1 ∈ Xα∩Zα and in particular si+1 ∈ Xα.
– si ∈ [Xα∩ [Zα]

Col<n]x. We know that si+1 = forcex(G 	Xα, [Zα]
Col=n)(si). The re-

sult follows by the fact that forcex(G 	Xα, [Zα]
Col=n) is a strategy in G 	Xα.

– si ∈ [Xα∩ [Zα]
Col=n]x. We have si+1 ∈ PostG (si)∩Xα and in particular si+1 ∈ Xα.

Let us again consider a run ρ ∈ Runs(G ,s, f x, f 1−x). We show that ρ is a.s. winning
for Player x with respect to x-Parity in G . Let f 1−x be induced by a memory structure
M = (M,m0,τ,µ). Let T be the transition system induced by G , f x, and f 1−x. As
explained in Section 2, ρ will a.s. visit a configuration (sA,m) ∈ B for some BSCC B in
T . This implies that each state that occurs in B will a.s. be visited infinitely often by ρ.
There are two possible cases: (i) There is a configuration (sB,m) ∈ B with Col(sB) =
n. Since each state in G has color at most n, Player x will a.s. win. (ii) There is no
configuration (sB,m) ∈ B with Col(sB) = n. This implies that {sB| (sB,m) ∈ B} ⊆ Z,
and hence Player x uses the strategy f1 to win the game.

f 1−x
c . We define a strategy f 1−x

c such that Xi⊆Yi⊆W 1−x(f 1−x
c ,Fx

finite(G))(G ,(1− x)-Parity>0)

for all i. The result follows then from the definition of Cn(G). The inclusion Xi ⊆ Yi

holds by the definition of Yi. For any state s ∈ Cn(G), we define f 1−x
c (s) as follows.

Let β be the smallest ordinal such that s ∈ Yβ. Such a β exists by the well-ordering of
ordinals and since Cn(G) =

⋃
i∈O Xi =

⋃
i∈O Yi. Now there are two cases:

– s ∈ Xβ−
⋃

j<β Y j. Define f 1−x
c (s) := f1(s) := force1−x(G ,

⋃
j<β Y j)(s).

– s ∈ Dn−1(G 	Xβ	Zβ). By the induction hypothesis (on n), there is a memory-
less strategy f2 ∈ F1−x

/0
(G) of Player 1− x such that s ∈W 1−x(f2,Fx

finite(G 	Xβ	
Zβ))(G 	Xβ	Zβ,(1− x)-Parity>0). Define f 1−x

c (s) := f2(s).

Let f x ∈ Fx
finite(G) be an arbitrary finite-memory strategy for Player x. We now use

induction on i to show that PG ,s, f 1−x
c , f x((1− x)-Parity) > 0 for any state s ∈ Yi. There

are three cases:

1. If s ∈
⋃

j<i Y j then the result follows by the induction hypothesis (on i).
2. If s ∈ Xi−

⋃
j<i Y j then we know that Player 1− x, can use f1 to force the game to⋃

j<i Y j from which she wins w.p.p..
3. If s ∈ Dn−1(G 	Xi	Zi) then Player 1− x uses f2. There are now two sub-cases:

either (i) there is a run from s consistent with f x and f 1−x
c that reaches Xi; or (ii)

there is no such run. In sub-case (i), the run reaches Xi w.p.p. and then by cases 1
and 2 Player 1− x wins w.p.p.. In sub-case (ii), any run stays forever outside Xi.
So the game is in effect played on G 	Xi. Notice then that any run from s that is
consistent with f x and f 1−x

c stays forever in G 	Xi	Zi. The reason is that (by
Lemma 3) G	Xi¬ Zi is an x-trap in G	Xi. Since any run remains inside G	Xi	Zi,
Player 1− x wins w.p.p. wrt. (1− x)-Parity using f2.

f x
d . For any state s, let β be the smallest ordinal such that s ∈ Yβ. We define f x

d (s) by
two cases:

– s ∈Uβ−
⋃

j<β V j. Define f x
d (s) := f1(s) := forcex(G ,

⋃
j<β V j)(s).

– s ∈ Cn(G 	Uβ). By the induction hypothesis (on n), Player x has a winning mem-
oryless strategy f2 inside G 	Ui. Define f x

d (s) := f2(s).

Let f 1−x ∈ F1−x
all (G) be an arbitrary strategy for Player 1− x. We now use induction on

i to show that PG ,s, f x
d , f

1−x(x-Parity)> 0 for any state s ∈ Vi. There are three cases:

1. If s ∈
⋃

j<i V j then the result follows by the induction hypothesis (on i).

2. If s ∈ Ui−
⋃

j<i V j then we know that Player x can use f1 to force the game to⋃
j<i V j from which she wins w.p.p. by the previous case.

3. If s∈Cn(G	Ui) then Player x uses f2. There are now two sub-cases: either (i) there
is a run from s consistent with f x

d and f 1−x that reaches Ui; or (ii) there is no such
run. In sub-case (i), the run reaches Ui w.p.p. and then by cases 1 and 2 Player x
wins w.p.p.. In sub-case (ii), any run stays forever outside Ui. Hence, Player x wins
a.s. wrt. x-Parity using f2.

f 1−x
d . By the definition of Ui we know that

⋃
j<i V j ⊆Ui, and by the definition of Vi we

know that Ui ⊆Vi. Thus, U0 ⊆V0 ⊆U1 ⊆V1 ⊆ ·· · , and hence there is an α ∈O such
that Ui = Vi = Uα for all i≥ α. This means that Dn(G) = Uα and hence by Lemma 3
we know that G

¬ Dn(G) is an x-trap. Furthermore, since Vα = Uα∪Cn(G	Uα), where
the union is disjoint, it follows that Cn(G	Uα) = /0 and hence, by the induction hypoth-
esis, Player 1− x has a memoryless strategy f ∈ F1−x

/0
(G) that is winning w.p.p. against

all finite memory strategies f x ∈ Fx
finite(G) on all states in G

¬ Uα =G
¬ Dn(G). Below, we

show that f indeed allows Player 1− x to win almost surely.
Fix a finite-memory strategy f x ∈ Fx

finite(G). Let f x be induced by a memory struc-
ture M = (M,m0,τ,µ). Consider a run ρ ∈ Runs(G ,s, f , f x). Then, ρ will surely stay
inside G 	Uα. The reason is that G

¬ Uα is a trap for Player x by Lemma 3, and that f
is a strategy defined inside G 	Uα. Let T be the transition system induced by G , f x,
and f . As explained in Section 2, ρ will a.s. visit a configuration (sA,m) ∈ B for some
BSCC B in T . This implies that each configuration in B will a.s. be visited infinitely
often by ρ. Let n be the maximal color occurring among the states of B. Then, either
(i) n mod 2 = x in which case all states inside B are almost sure losing for Player 1− x;
or (ii) n mod 2 = 1− x in which case all states inside B are almost sure winning for
Player 1− x. The result follows from the fact that case (i) gives a contradiction since
all states in G

¬ Uα =G
¬ Dn(G) (including those in B) are winning for Player 1− x w.p.p..

Define f 1−x
d (s) := f (s).

The following theorem follows immediately from the previous lemmas.

Theorem 1. Stochastic parity games with almost sure winning conditions on infinite
graphs are memoryless determined, provided there exists a finite attractor and the play-
ers are restricted to finite-memory strategies.

Remark. The scheme for Cn is adapted from the well-known scheme for non-stochastic
games in [26]; in fact, the constructions are equivalent in the case that no probabilistic
states are present. Our contribution to the scheme is: (1) Cn is a non-trivial extension
of the scheme in [26] to handle probabilistic states; (2) we introduce the alternation
between Cn and Dn; (3) the construction of Dn is new and has no counterpart in the
non-stochastic case of [26].

5 Lossy Channel Systems

A lossy channel system (LCS) [6] is a finite-state machine equipped with a finite number
of unbounded fifo channels (queues). The system is lossy in the sense that, before and

after a transition, an arbitrary number of messages may be lost from the channels. We
consider stochastic game-LCS (SG-LCS): each individual message is lost independently
with probability λ in every step, where λ > 0 is a parameter of the system. The set of
states is partitioned into states belonging to Player 0 and 1. The player who owns the
current control-state chooses an enabled outgoing transition. Formally, a SG-LCS of
rank n is a tuple L = (S,S0,S1,C,M,T,λ,Col) where S is a finite set of control-states
partitioned into states S0,S1 of Player 0 and 1; C is a finite set of channels, M is a finite
set called the message alphabet, T is a set of transitions, 0 < λ < 1 is the loss rate,
and Col : S→ {0, . . . ,n} is the coloring function. Each transition t ∈ T is of the form
s

op−→s′, where s,s′ ∈ S and op is one of the following three forms: c!m (send message
m∈ M in channel c∈ C), c?m (receive message m from channel c), or nop (do not modify
the channels). The SG-LCS L induces a game G = (S,S0,S1,SR,−→,P,Col), where
S = S× (M∗)C ×{0,1}. That is, each state in the game consists of a control-state, a
function that assigns a finite word over the message alphabet to each channel, and one of
the symbols 0 or 1. States where the last symbol is 0 are random: SR = S× (M∗)C×{0}.
The other states belong to a player according to the control-state: Sx = Sx×(M∗)C×{1}.
Transitions out of states of the form s = (s,x,1) model transitions in T leaving state s.
On the other hand, transitions leaving states of the form s = (s,x,0) model message
losses. If s = (s,x,1),s′ = (s′,x′,0) ∈ S, then there is a transition s−→s′ in the game

iff one of the following holds: (i) s
nop−→s′ and x = x′; (ii) s c!m−→s′, x′(c) = x(c)m, and

for all c′ ∈ C−{c}, x′(c′) = x(c′); and (iii) s c?m−→s′, x(c) = mx′(c), and for all c′ ∈ C−
{c}, x′(c′) = x(c′). Every state of the form (s,x,0) has at least one successor, namely
(s,x,1). If a state (s,x,1) does not have successors according to the rules above, then
we add a transition (s,x,1)−→(s,x,0), to ensure that the induced game is sink-free. To
model message losses, we introduce the subword ordering � on words: x � y iff x is a
word obtained by removing zero or more messages from arbitrary positions of y. This
is extended to channel states x,x′ : C→ M∗ by x � x′ iff x(c) � x′(c) for all channels
c ∈ C, and to game states s = (s,x, i),s′ = (s′,x′, i′) ∈ S by s� s′ iff s= s′, x� x′, and
i= i′. For any s= (s,x,0) and any x′ such that x′� x, there is a transition s−→(s,x′,1).
The probability of random transitions is given by P((s,x,0),(s,x′,1)) = a ·λb ·(1−λ)c,
where a is the number of ways to obtain x′ by losing messages in x, b is the total number
of messages needed to be lost in all channels in order to obtain x′ from x, and c is the
total number of messages in all channels of x′ (see [1] for details). Finally, for a state
s = (s,x, i), we define Col(s) := Col(s). Notice that the graph of the game is bipartite,
in the sense that a state in SR has only transitions to states in [S]0,1, and vice versa.

In the qualitative parity game problem for SG-LCS, we want to characterize the sets
of configurations where Player x can force the x-Parity condition to hold a.s., for both
players.

6 From Scheme to Algorithm

We transform the scheme of Section 4 into an algorithm for deciding the a.s. parity
game problem for SG-LCS. Consider an SG-LCS L = (S,S0,S1,C,M,T,λ,Col) and the
induced game G = (S,S0,S1,SR,−→,P,Col) of some rank n. Furthermore, assume that
the players are restricted to finite-memory strategies. We show the following.

Theorem 2. The sets of winning states for Players 0 and 1 are effectively computable
as regular languages. Furthermore, from each state, memoryless strategies suffice for
the winning player.

We give the proof in several steps. First, we show that the game induced by an SG-
LCS contains a finite attractor (Lemma 7). Then, we show that the scheme in Section 3
for computing winning states wrt. reachability objectives is guaranteed to terminate
(Lemma 9). Furthermore, we show that the scheme in Section 4 for computing winning
states wrt. a.s. parity objectives is guaranteed to terminate (Lemma 15). Notice that
Lemmas 9 and 15 imply that for SG-LCS our transfinite constructions stabilize below
ω (the first infinite ordinal). Finally, we show that each step in the above two schemes
can be performed using standard operations on regular languages (Lemmas 16 and 17).

Finite attractor. In [1] it was shown that any Markov chain induced by a Probabilistic
LCS contains a finite attractor. The proof can be carried over in a straightforward man-
ner to the current setting. More precisely, the finite attractor is given by A = (S×εεε×
{0,1}) where εεε(c) = ε for each c ∈ C. In other words, A is given by the set of states
in which all channels are empty. The proof relies on the observation that if the number
of messages in some channel is sufficiently large, it is more likely that the number of
messages decreases than that it increases in the next step. This gives the following.

Lemma 7. G contains a finite attractor.

Termination of Reachability Scheme. For a set of states Q ⊆ S, we define the upward
closure of Q by Q ↑:= {s| ∃s′ ∈ Q.s′ � s}. A set U ⊆ Q ⊆ S is said to be Q-upward-
closed (or Q-u.c. for short) if (U ↑)∩Q = U . We say that U is upward closed if it is
S-u.c.

Lemma 8. If Q0 ⊆ Q1 ⊆ ·· · , and for all i it holds that Qi ⊆ Q and Qi is Q-u.c., then
there is an α ∈ N such that Qi = Qα for all i≥ α.

Now, we can show termination of the reachability scheme.

Lemma 9. There exists an α ∈ N such that R i = R α for all i≥ α.

Proof. First, we show that [R i− Target]R is (G
¬ Target)-u.c. for all i ∈ N. We use

induction on i. For i = 0 the result is trivial since R i−Target= /0. For i > 0, suppose
that s = (s,x,0) ∈ [R i]

R− Target. This means that s−→(s,x′,1) ∈ R i−1 for some
x′ � x, and hence s′−→(s,x′,1) for all s� s′.

By Lemma 8, there is an α′ ∈ N such that [R i]
R−Target = [R α′]

R−Target for
all i≥ α′. Since R i ⊇ Target for all i≥ 0 it follows that [R i]

R = [R α′]
R for all i≥ α′.

Since the graph of G is bipartite (as explained in Section 5), we have [PreG (R i)]
x =

[PreG
(
[R i]

R
)
]x and [P̃reG (R i)]

1−x = [P̃reG
(
[R i]

R
)
]1−x. Since [R i]

R = [R α′]
R for all

i ≥ α′, we thus have [PreG (R i)]
x = [PreG

(
[R]R

α′
)
]x ⊆ R α′+1 and [P̃reG (R i)]

1−x =

[P̃reG
(
[R]R

α′
)
]1−x ⊆ R α′+1. It then follows that R i = R α for all i≥ α := α′+1.

Termination of Parity Scheme. We use several auxiliary lemmas. The following lemma
states that sink-freeness is preserved by the reachability scheme.

Lemma 10. If Target is sink-free then Forcex(G ,Target) is sink-free.

Lemma 11. If Target is sink-free then [Forcex(G ,Target)]R is upward closed.

Lemma 12. Let {Qi}i∈O and {Q′i}i∈O be sequences of sets of states such that (i) Each
Q′i is sink-free; (ii) Qi = Q′i ∪Forcex(G ,

⋃
j<i Q j); (iii) Q′i and Forcex(G ,

⋃
j<i Q j) are

disjoint for all i. Then, there is an α ∈ N such that Qi = Qα for all i≥ α.

To apply Lemma 12, we prove the following two lemmas.

Lemma 13. Cn(G) is a (1− x)-trap.

Proof. C0(G) is trivially a (1− x)-trap. For i ≥ 1, the result follows immediately from
Lemma 5 and Lemma 3.

Lemma 14. For any game of rank n both Cn(G) and Dn(G) are sink-free.

Proof. If n = 0, then by definition Cn(G) = Dn(G) = S, which is sink-free by assump-
tion. Next, assume n≥ 1. By Lemma 13 we know that Cn(G) is a (1− x)-trap and hence
also sink-free. To prove the claim for Dn(G), we use induction on i and prove that both
Ui and Vi are sink-free. Assume U j and V j are sink-free for all j < i. Then

⋃
j<i V j

is sink-free, and hence Ui is sink-free by Lemma 10. Since Cn(G 	Ui) and Ui are
sink-free, it follows that Vi is sink-free.

Now, we apply Lemma 12 to prove that the sequences {Xi}i∈O and {Ui}i∈O terminate.
First, by Lemma 14 we know that Dn−1(G	Xi	Zi) is sink-free. We know that Xi and
Dn−1(G 	Xi	Zi) are disjoint since Dn−1(G 	Xi	Zi) ⊆G

¬ (Xi∪Zi). Hence, we can
apply Lemma 12 with Qi = Yi, Q′i = Dn−1(G 	Xi	Zi), and conclude that {Yi}i∈O
terminates, and hence {Xi}i∈O terminates. Second, by Lemma 14 we know that Cn(G	
Ui) is sink-free. Since Cn(G	Ui)⊆G

¬Ui, we know that Ui and Cn(G	Ui) are disjoint.
Hence, we can apply Lemma 12 with Qi = Vi, Q′i = Cn−1(G 	Ui), and conclude that
{Vi}i∈O terminates, and hence {Ui}i∈O terminates. This gives the following lemma.

Lemma 15. There is an α ∈ N such that Xi = Xα for all i ≥ α. There is a β ∈ N such
that Ui = Uβ for all i≥ β.

Computability. For a given regular set R , the set PreG (R) is effectively regular [2], i.e.,
computable as a regular language. The following lemma then follows from the fact that
the other operations used in computing Forcex(G ,Target) are those of set complement
and union, which are effective for regular languages.

Lemma 16. If Target is regular then Forcex(G ,Target) is effectively regular.

Lemma 17. For each n, both Cn(G) and Dn(G) are effectively regular.

Proof. The set S is regular, and hence C0(G) = D0(G) = S is effectively regular. The
result for n > 0 follows from Lemma 16 and from the fact that the rest of the operations
used to build Cn(G) and Dn(G) are those of set complement and union.

Remark. Although we use Higman’s lemma for showing termination of our fixpoint
computations, our proof differs significantly from the standard ones for well quasi-
ordered transition systems [3]. For instance, the generated sets are in general not up-
ward closed wrt. the underlying ordering �. Therefore, we need to use the notion of
Q-upward closedness for a set of states Q. More importantly, we need to define new
(and much more involved) sufficient conditions for the termination of the computations
(Lemma 12), and to show that these conditions are satisfied (Lemma 14).

7 Conclusions and Discussion

We have presented a scheme for solving stochastic games with a.s. parity winning con-
ditions under the two requirements that (i) the game contains a finite attractor and (ii)
both players are restricted to finite-memory strategies. We have shown that this class of
games is memoryless determined. The method is instantiated to prove decidability of
a.s. parity games induced by lossy channel systems. The two above requirements are
both necessary for our method. To see why our scheme fails if the game lacks a finite
attractor, consider the game in Figure 1 (a) (a variant of the Gambler’s ruin problem).
All states are random, i.e., S0 = S1 = /0, and Col(s0) = 1 and Col(si) = 0 when i > 0.

s0 s1 s2 s3 · · ·

(a)
0.3

0.7

0.3

0.7

0.3

0.7

0.3

s0

s2s1 s3 s4 · · ·

(b)

1 0.5 0.5

0.5

0.50.50.5

Fig. 1. (a) Finite attractor requirement. (b) Finite strategy requirement.

The probability to go right from any state is 0.7 and the probability to go left (or to
make a self-loop in s0) is 0.3. This game does not have any finite attractor. It can be
shown that the probability to reach s0 infinitely often is 0 for all initial states. How-
ever, our construction will classify all states as winning for player 1. More precisely,
the construction of C1(G) converges after one iteration with Zi = S,Xi = /0 for all i
and C1(G) = S. Intuitively, the problem is that even if the force-set of {s0} (which is
the entire set of states) is visited infinitely many times, the probability of visiting {s0}
infinitely often is still zero, since the probability of returning to {s0} gets smaller and
smaller. Such behavior is impossible in a game graph that contains a finite attractor.

We restrict both players to finite-memory strategies. This is a different problem
from when arbitrary strategies are allowed (not a sub-problem). In fact, it was shown
in [8] that for arbitrary strategies, the problem is undecidable. Figure 1 (b) gives an
example of a game graph where the two problems yield different results (see also [8]).
Player 1 controls s0, whereas s1,s2, . . . are random; Col(s0) = 0,Col(s1) = 2,Col(si) =

1 if i≥ 2. The transition probabilities are P(s1,s1) = 1 and P(sn,sn−1) = P(sn,s0) =
1
2

when n≥ 2. Player 1 wants to ensure that the highest color that is seen infinitely often is
odd, and thus wants to avoid state s1 (which has color 2). If the players can use arbitrary
strategies, then although player 1 cannot win with probability 1, he can win with a
probability arbitrarily close to 1 using an infinite-memory strategy: player 1 goes from
s0 to sk+i when the play visits s0 for the i’th time. Then player 1 wins with probability
∏

∞
i=1(1−2−k−i+1), which can be made arbitrarily close to 1 for sufficiently large k. In

particular, player 0 does not win a.s. in this case. On the other hand, if the players are
limited to finite-memory strategies, then no matter what strategy player 1 uses, the play
visits s1 infinitely often with probability 1, so player 0 wins almost surely; this is also
what our algorithm computes.

As future work, we will consider extending our framework to (fragments of) prob-
abilistic extensions of other models such as Petri nets and noisy Turing machines [5].

References

1. P. A. Abdulla, N. Bertrand, A. Rabinovich, and Ph. Schnoebelen. Verification of probabilistic systems with faulty
communication. Information and Computation, 202(2):105–228, 2005.

2. P. A. Abdulla, A. Bouajjani, and J. d’Orso. Deciding monotonic games. In CSL, volume 2803 of LNCS, pages 1–14,
2003.

3. P. A. Abdulla, K. Čerāns, B. Jonsson, and Y.-K. Tsay. Algorithmic analysis of programs with well quasi-ordered
domains. Information and Computation, 160:109–127, 2000.

4. P. A. Abdulla, N. B. Henda, L. de Alfaro, R. Mayr, and S. Sandberg. Stochastic games with lossy channels. In FOSSACS,
volume 4962 of LNCS, 2008.

5. P. A. Abdulla, N. B. Henda, and R. Mayr. Decisive Markov chains. Logical Methods in Computer Science, 3, 2007.
6. P. A. Abdulla and B. Jonsson. Verifying programs with unreliable channels. In LICS, pages 160–170, 1993.
7. Parosh Aziz Abdulla and Alexander Rabinovich. Verification of probabilistic systems with faulty communication. In

FOSSACS, volume 2620 of LNCS, pages 39–53, 2003.
8. C. Baier, N. Bertrand, and Ph. Schnoebelen. Verifying nondeterministic probabilistic channel systems against ω-regular

linear-time properties. ACM Trans. on Comp. Logic, 9, 2007.
9. N. Bertrand and Ph. Schnoebelen. Model checking lossy channels systems is probably decidable. In FOSSACS, volume

2620 of LNCS, pages 120–135, 2003.
10. P. Billingsley. Probability and Measure. Wiley, New York, NY, 1986. Second Edition.
11. D. Brand and P. Zafiropulo. On communicating finite-state machines. Journal of the ACM, 2(5):323–342, April 1983.
12. K. Chatterjee, L. de Alfaro, and T. Henzinger. Strategy improvement for concurrent reachability games. In QEST, pages

291–300. IEEE Computer Society Press, 2006.
13. K. Chatterjee, M. Jurdziński, and T. Henzinger. Simple stochastic parity games. In CSL, volume 2803 of LNCS, pages

100–113. Springer Verlag, 2003.
14. E.M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, Dec. 1999.
15. A. Condon. The complexity of stochastic games. Information and Computation, 96(2):203–224, February 1992.
16. L. de Alfaro and T. Henzinger. Concurrent omega-regular games. In LICS, pages 141–156, Washington - Brussels -

Tokyo, June 2000. IEEE.
17. L. de Alfaro, T. Henzinger, and O. Kupferman. Concurrent reachability games. In FOCS, pages 564–575. IEEE

Computer Society Press, 1998.
18. K. Etessami, D. Wojtczak, and M. Yannakakis. Recursive stochastic games with positive rewards. In ICALP, volume

5125 of LNCS. Springer, 2008.
19. K. Etessami and M. Yannakakis. Recursive Markov decision processes and recursive stochastic games. In ICALP,

volume 3580 of LNCS, pages 891–903, 2005.
20. K. Etessami and M. Yannakakis. Recursive concurrent stochastic games. LMCS, 4, 2008.
21. G. Higman. Ordering by divisibility in abstract algebras. Proc. London Math. Soc. (3), 2(7):326–336, 1952.
22. A. Rabinovich. Quantitative analysis of probabilistic lossy channel systems. In ICALP, volume 2719 of LNCS, pages

1008–1021, 2003.
23. L. S. Shapley. Stochastic games. Proceedings of the National Academy of Sciences, 39(10):1095–1100, October 1953.
24. M.Y. Vardi. Automatic verification of probabilistic concurrent finite-state programs. In FOCS, pages 327–338, 1985.
25. K. Wang, N. Li, and Z. Jiang. Queueing system with impatient customers: A review. In IEEE International Conference

on Service Operations and Logistics and Informatics (SOLI), pages 82–87. IEEE, 2010.
26. W. Zielonka. Infinite games on finitely coloured graphs with applications to automata on infinite trees. TCS, 200:135–

183, 1998.

A Proofs of Lemmas

Lemma 1

We define a memoryless strategy f x of Player x that is surely winning from any state
s ∈ Q, i.e., Q ⊆ V x(f x,F1−x

all (G))(G ,2Q). For a state s ∈ [Q]x, we define f x(s) =
select(PostG (s)∩Q). This is well-defined since Q is a (1− x)-trap. We can now show
that any run that starts from a state s∈Q and that is consistent with f x will surely remain
inside Q. Let f 1−x be any strategy of Player 1− x, and let s0,s1, . . .∈Runs(G ,s, f x, f 1−x).
We show, by induction on i, that si ∈ Q for all i ≥ 0. The base case is clear since
s0 = s ∈ Q. For i > 1, we consider three cases depending on si:

– si ∈ [S]x. By the induction hypothesis we know that si ∈ Q, and hence by definition
of f x we know that si+1 = f x(si) ∈ Q.

– si ∈ [S]1−x. By the induction hypothesis we know that si ∈ Q, and hence si+1 ∈ Q
since Q is a (1− x)-trap.

– si ∈ [S]R. By the induction hypothesis we know that si ∈ Q, and hence si+1 ∈ Q
since Q is closable.

Lemma 3

By Lemma 2 and the definition of Avoid1−x(G ,Target) it follows that
Avoid1−x(G ,Target) =G

¬ R α and that R α+1 ⊆ R α. First, we show that G
¬ R α is sink-

free as follows. For a state s ∈ S, we show that PostG (s)∩ (G
¬ R α) 6= /0. There are three

cases to consider.

– s ∈ [G¬ R α]
x. Suppose that PostG (s) 6⊆ (G

¬ R α). It follows that PostG (s)∩R α 6= /0.
Hence, s∈R α+1 ⊆R α which is a contradiction. This means that PostG (s)⊆G

¬ R α.
Since S is sink-free, we know that PostG (s) 6= /0. Consequently, PostG (s)∩ G

¬ R α 6=
/0.

– s ∈ [G¬ R α]
1−x. Suppose that PostG (s)⊆ R α. It follows that s ∈ R α+1 ⊆ R α which

is a contradiction. Hence, PostG (s)∩ G
¬ R α 6= /0.

– s ∈ [G¬ R α]
R. The claim follows in similar manner to the case where s ∈ [R α]

x.

Second, when proving sink-freeness above, we showed that PostG (s) ⊆G
¬ R α for any

s ∈ [G¬ R α]
R which means that G

¬ R α is closable. Finally, when proving sink-freeness,
we also showed that PostG (s)⊆G

¬ R α for any s ∈ [G¬ R α]
x which completes the proof.

Lemma 4

Let R = Forcex(G ,Target). To prove the first claim, we define a memoryless strategy
f x of Player x that is winning from any state s∈R , i.e., R ⊆W x(f x,F1−x

all)(G ,3Target>0).
For any s∈ [R i+1−R i]

x where i+1 is a successor ordinal, we define f x(s) := select(PostG (s)∩
R i). We show that f x is a winning strategy for Player x. Fix a strategy f 1−x for Player 1− x.
We show that PG ,s, f x, f 1−x(3Target) > 0. We prove the claim using transfinite induc-
tion. If s ∈ R 0 then the claim follows trivially. If s ∈ R i+1 where i+ 1 is a successor
ordinal then either s ∈ R i in which case the claim holds by the induction hypothesis, or
s ∈ R i+1−R i. We consider three cases:

– s ∈ [R i+1−R i]
x. By definition of f x, we know that f x(s) = s′ for some s′ ∈ R i.

By the induction hypothesis we know that PG ,s′, f 0, f 1(3Target) > 0 and hence
PG ,s, f 0, f 1(3Target)> 0.

– s ∈ [R i+1−R i]
1−x. Let f 1−x(s) = s′. By definition of R i+1 we know that s′ ∈ R i.

Then, the proof follows as in the previous case.
– s ∈ [R i+1−R i]

R. By definition of R i+1 we know that there is a s′ ∈ R i such that
P(s,s′) > 0. By the induction hypothesis, it follows that PG ,s, f 0, f 1(3Target) ≥
PG ,s′, f 0, f 1(3Target) ·P(s,s′)> 0.

Finally, if s ∈ R i where i > 0 is a limit ordinal, then we know that s ∈ R j for some
j < i. The claim then follows by the induction hypothesis.

From Lemma 3 and Lemma 1 it follows that there is a strategy f 1−x for Player 1− x
such that Avoidx(G ,Target) ⊆ V 1−x(f 1−x,Fx

all)(G ,2(Avoidx(G ,Target))). The sec-
ond claim follows then from the fact that Target∩Avoidx(G ,Target) = /0.

Lemma 8

By Higman’s lemma [21], there is a α ∈ N such that Qi ↑= Qα ↑ for all i ≥ α. Hence,
Qi ↑ ∩Q = Qα ↑ ∩Q for all i ≥ α. Since all Qi are Q-u.c., Qi ↑ ∩Q = Qi for all i ≥ α.
So Qi = Qα for all i≥ α.

Lemma 10

We prove by induction on i that R i is sink-free for all ordinals i ∈O. If i = 0, the claim
holds by assumption. If i+ 1 is a successor ordinal, then the claim follows from the
definition of R i+1 (all new states in R i+1 have a successor in R i). If i > 0 is a limit
ordinal, then each state in R i belongs to some R j with j < i for which the claim holds
by the induction hypothesis.

Lemma 11

Take any s ∈ [Forcex(G ,Target)]R and take s′ ∈ S such that s � s′. By Lemma 10,
s has a successor s′′ ∈ Forcex(G ,Target). Thus, s′′ ∈ R i for some i ∈ O. Since G is
induced by a SG-LCS, s′ is a predecessor of every successor of s (including s′′). Hence,
s′ ∈ R i+1.

Lemma 12

First, define Fi := Forcex(G ,
⋃

j<i Q j). We perform the proof in several steps: (i) F0 ⊆
Q0 ⊆ F1 ⊆ Q1 ⊆ ·· · . This follows from the fact that Qi = Q′i ∪Fi and the definition
of Fi. (ii) There is an α ∈ N such that [Fi]

R = [Fα]
R for all i ≥ α. By Lemma 10 (and

induction on i), each Fi is sink-free and hence by Lemma 11 each [Fi]
R is upward closed.

By Lemma 8 it follows that there is a α ∈ N such that [Fi]
R = [Fα]

R for all i ≥ α.
(iii) [Qi]

R = [Fi]
R = [Qα]

R for all i ≥ α. This follows from the previous two steps. (iv)
[Q′i]

R = /0 for all i≥ α+1. From the assumption that Qi is the disjoint union of Q′i and

Fi, Q′i =Qi−Fi. By the previous step, this set is empty. (v) Q′i = /0 for all i≥α+1. Since
the transition system generated by an SG-LCS is bipartite with every second state in SR,
and since every member of a sink-free set has a successor in the set itself, it follows that
any nonempty sink-free set contains both states in SR and states that belong to one of
the players 0 or 1. Since Q′i is sink-free (by assumption) but does not contain any states
in SR (by the result in previous step), Q′i has to be empty. (vi) Qi = Qα for all i ≥ α.
By the previous step, we know that Qi = Forcex(G ,

⋃
j<i Q j) for all i ≥ α+ 1. By the

definition of Forcex it follows that Qi = Qα for all i≥ α+1.

