
Optimal Dynamic Partial Order Reduction

Parosh Abdulla Stavros Aronis Bengt Jonsson Konstantinos Sagonas
Department of Information Technology, Uppsala University, Sweden

Abstract
Stateless model checking is a powerful technique for program
verification, which however suffers from an exponential growth
in the number of explored executions. A successful technique for
reducing this number, while still maintaining complete coverage,
is Dynamic Partial Order Reduction (DPOR). We present a new
DPOR algorithm, which is the first to be provably optimal in that it
always explores the minimal number of executions. It is based on
a novel class of sets, called source sets, which replace the role of
persistent sets in previous algorithms. First, we show how to modify
an existing DPOR algorithm to work with source sets, resulting in
an efficient and simple to implement algorithm. Second, we extend
this algorithm with a novel mechanism, called wakeup trees, that
allows to achieve optimality. We have implemented both algorithms
in a stateless model checking tool for Erlang programs. Experiments
show that source sets significantly increase the performance and that
wakeup trees incur only a small overhead in both time and space.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; D.2.5 [Software Engineering]:
Testing and Debugging; F.3.1 [Logics and Meanings of Programs]:
Specifying and Verifying and Reasoning about Programs

General Terms Algorithms, Verification, Reliability

Keywords dynamic partial oder reduction; software model check-
ing; systematic testing; concurrency; source sets; wakeup trees

1. Introduction
Verification and testing of concurrent programs is difficult, since one
must consider all the different ways in which processes/threads can
interact. Model checking addresses this problem by systematically
exploring the state space of a given program and verifying that each
reachable state satisfies a given property. Applying model checking
to realistic programs is problematic, however, since it requires to
capture and store a large number of global states. Stateless model
checking [7] avoids this problem by exploring the state space of
the program without explicitly storing global states. A special run-
time scheduler drives the program execution, making decisions
on scheduling whenever such decisions may affect the interaction
between processes. Stateless model checking has been successfully
implemented in tools, such as VeriSoft [8] and CHESS [20].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
POPL ’14, January 22–24, 2014, San Diego, CA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2544-8/14/01. . . $15.00.
http://dx.doi.org/10.1145/2535838.2535845

While stateless model checking is applicable to realistic pro-
grams, it suffers from combinatorial explosion, as the number of pos-
sible interleavings grows exponentially with the length of program
execution. There are several approaches that limit the number of
explored interleavings, such as depth-bounding and context bound-
ing [19]. Among them, partial order reduction (POR) [3, 6, 21, 26]
stands out, as it provides full coverage of all behaviours that can oc-
cur in any interleaving, even though it explores only a representative
subset. POR is based on the observation that two interleavings can
be regarded as equivalent if one can be obtained from the other by
swapping adjacent, non-conflicting (independent) execution steps. In
each such equivalence class (called a Mazurkiewicz trace [17]), POR
explores at least one interleaving. This is sufficient for checking
most interesting safety properties, including race freedom, absence
of global deadlocks, and absence of assertion violations [3, 6, 26].

Existing POR approaches are essentially based on two tech-
niques, both of which reduce the set of process steps that are ex-
plored at each scheduling point:

• The persistent set technique, that explores only a provably
sufficient subset of the enabled processes. This set is called
a persistent set [6] (variations are stubborn sets [26] and ample
sets [3]).
• The sleep set technique [6], that maintains information about

the past exploration in a so-called sleep set, which contains
processes whose exploration would be provably redundant.

These two techniques are independent and complementary, and can
be combined to obtain increased reduction.

The construction of persistent sets is based on information
about possible future conflicts between threads. Early approaches
analyzed such conflicts statically, leading to over-approximations
and therefore limiting the achievable reduction. Dynamic Partial
Order Reduction (DPOR) [4] improves the precision by recording
actually occurring conflicts during the exploration and using this
information to construct persistent sets on-the-fly, “by need”. DPOR
guarantees the exploration of at least one interleaving in each
Mazurkiewicz trace when the explored state space is acyclic and
finite. This is the case in stateless model checking in which only
executions of bounded length are analyzed [4, 8, 20].

Challenge Since DPOR is excellently suited as a reduction tech-
nique, several variants, improvements, and adaptations for different
computation models have appeared [4, 15, 22, 24, 25]. The obtained
reduction can, however, vary significantly depending on several fac-
tors, e.g. the order in which processes are explored at each point of
scheduling. For a particular implementation of DPOR (with sleep
sets) [11], up to an order of magnitude of difference in the num-
ber of explored interleavings has been observed, when different
strategies are used. For specific communication models, specialized
algorithms can achieve better reduction [25]. Heuristics for choosing
which next process to explore have also been investigated without
conclusive results [14].

Let us explain one fundamental reason for the above variation
in obtained reduction. In DPOR, the combination of persistent
set and sleep set techniques guarantees to explore at least one
complete interleaving in each Mazurkiewicz trace. Moreover, it
has already been proven that the use of sleep sets is sufficient to
prevent the complete exploration of two different but equivalent
interleavings [10]. At first sight, this seems to imply that sleep sets
can give optimal reduction. What it actually implies, however, is
that when the algorithm tries an interleaving which is equivalent
to an already explored one, the exploration will begin but it will
be blocked sooner or later by the sleep sets in what we call a
sleep-set blocked exploration. When only sleep sets are used for
reduction, the exploration effort will include an arbitrary number
of sleep-set blocked explorations. It is here where persistent sets
enter the picture, and limit the number of initiated explorations.
Computation of smaller persistent sets, leads to fewer sleep-set
blocked explorations. However, as we will show in this paper,
persistent sets are not powerful enough to completely prevent sleep-
set blocked exploration.

In view of these variations, a fundamental challenge is to develop
an optimal DPOR algorithm that: (i) always explores the minimum
number of interleavings, regardless of scheduling decisions, (ii) can
be efficiently implemented and (iii) is applicable to a variety of
computation models, including communication via shared variables
and message passing.

Contributions In this paper, we present a new DPOR algorithm,
called optimal-DPOR, which is provably optimal in that it always
explores exactly one interleaving per Mazurkiewicz trace, and never
initiates any sleep set-blocked exploration. Our optimal algorithm
is based on a new theoretical foundation for partial order reduction,
in which persistent sets are replaced by a novel class of sets, called
source sets. Source sets are often smaller than persistent sets and
are provably minimal, in the sense that the set of explored processes
from some scheduling point must be a source set in order to
guarantee exploration of all Mazurkiewicz traces. When a minimal
persistent set contains more elements than the corresponding source
set, the additional elements will always initiate sleep-set blocked
explorations.

We will use a two-step approach to describe our optimal algo-
rithm. In the first step, we develop a simpler DPOR algorithm, called
source-DPOR, which is based on source sets. It is derived by modi-
fying the classical DPOR algorithm by Flanagan and Godefroid [4]
so that persistent sets are replaced by source sets. The power of
source sets can already be observed in the algorithm source-DPOR:
it achieves significantly better reduction in the number of explored
interleavings than the classical DPOR algorithm. In fact, source-
DPOR explores the minimal number of interleavings for a large
number of our benchmarks in Section 9.

Although source-DPOR often achieves optimal reduction, it may
sometimes encounter sleep-set blocked explorations. Therefore, in
the second step, we combine source sets with a novel mechanism,
called wakeup trees, thus deriving the algorithm optimal-DPOR.
Wakeup trees control the initial steps of future explorations, imply-
ing that optimal-DPOR never encounters any sleep-set blocked (i.e.
redundant) exploration. An important feature of wakeup trees is that
they are simple data structures that are constructed from already
explored interleavings, hence they do not increase the amount of
exploration. On the other hand, they allow to reduce the number of
explored executions. In our benchmarks, maintenance of the wakeup
trees reduces total exploration time when source-DPOR encounters
sleep-set blocked explorations and it never requires more than 10%
of additional time in the cases where there are none or only a few
sleep-set blocked explorations. Memory consumption is practically
always the same between the DPOR algorithms and the space cost
of maintaining wakeup trees is very small in our experience.

We show the applicability of our algorithms to a wide range
of computation models, including shared variables and message
passing, by formulating them in a general setting, which only
assumes that we can compute a happens-before relation (also
called a causal ordering) between the events in an execution. For
systems with shared variables, the happens-before relation can be
based on the variables that are accessed or modified by events. For
message passing systems, the happens-before relation can be based
on correlating the transmission of a message with the corresponding
reception. Our approach allows to make finer distinctions, leading
to better reduction, than many other approaches that define a
happens-before relation which is based on program statements,
possibly taking into account the local state in which they are
executed [3, 4, 6, 8, 14, 25, 26]. For instance, we allow a send
transition to be dependent with another send transition only if the
order in which the two messages are received is significant.

We have implemented both source-DPOR and optimal-DPOR
as extensions for Concuerror [2], a stateless model checking tool
for Erlang programs. Erlang’s concurrency model focuses primarily
on message passing, but it is also possible to write programs which
manipulate shared data structures. Our evaluation shows that on
a wide selection of benchmarks, including benchmarks from the
DPOR literature, but more importantly on real Erlang applications
of significant size, we obtain optimal reduction in the number
of interleavings even with source-DPOR, therefore significantly
outperforming the original DPOR algorithm not only in number of
interleavings but in total execution time as well.

Organization In the next section, we illustrate the basic new
ideas of our technique. We introduce our computational model
and formulation of the partial-order framework in Section 3. In
Section 4 we introduce source sets. The source-DPOR algorithm
is described in Section 5. We formalize the concept of wakeup
trees in Section 6, before describing the optimal-DPOR algorithm
in Section 7. Implementation of the algorithms is described in
Section 8, and experimental evaluation in Section 9. The paper ends
by surveying related work and offering some concluding remarks.

2. Basic Ideas
In this section, we give an informal introduction to the concepts of
source sets and wakeup trees, and their improvement over existing
approaches, using some small examples.

p : q : r :
write x; (1) read y; read z;

read x; (2) read x; (3)

Example 1: Writer-readers code excerpt.

Source Sets In Example 1, the three processes p, q, and r perform
dependent accesses to the shared variable x. Two accesses are
dependent if they access the same variable and at least one is a write.
The accesses to y and z are not dependent with anything else. For
this program, there are four Mazurkiewicz traces (i.e. equivalence
classes of executions), each characterized by its sequence of accesses
to x (three accesses can be ordered in six ways, but two pairs of
orderings are equivalent since they differ only in the ordering of
adjacent reads, which are not dependent).

Any POR method selects some subset of {p, q, r} to perform
some first step in the set of explored executions. It is not enough
to select only p, since then executions where some read access
happens before the write access of p will not be explored. In DPOR,
assume that the first execution to be explored is p.q.q.r.r (we denote
executions by the sequence of scheduled process steps). A DPOR

Initially: x := y := z := 0

p :

x := 1; (1)

q :

y := 1; (2)

r :

m := y; (3)
if m = 0 then

z := 1; (4)

s :

n := z; (5)
l := y; (6)
if n = 1 then

if l = 0 then
x := 2; (7)

Example 2: Program with control flow.

algorithm will detect the dependency between step (1) by p and
step (2) by q, and note that it seems necessary to explore sequences
that start with a step of q. The DPOR algorithm will also detect
the dependency between (1) and (3) and possibly note that it is
necessary to explore sequences that start with a step of r.

Existing DPOR methods guarantee that the set of processes
explored from the initial state is a persistent set. In short, a set P of
processes is persistent in the initial state if in any execution from
the initial state, the first step that is dependent with the first step
of some process in P must be taken by some process in P . In this
example, the only persistent set which contains p in the initial state
is {p, q, r}. To see this, suppose that, e.g. r is not in the persistent
set P , i.e. P = {p, q}. Then the execution r.r contains no step from
a process in P , but its second step is dependent with the first step
of p, which is in P . In a similar way, one can see that also q must
be in P .

In contrast, our source set-based algorithms allow S = {p, q}
as the set of processes explored from the initial state. The set S is
sufficient, since any execution that starts with a step of r is equivalent
to some execution that starts with the first (local) step of q. The set
S is not a persistent set, but it is a source set. Intuitively, a set S of
processes is a source set if for each execution E from the initial state
there is some process proc in S such that the first step in E that is
dependent with proc is taken by proc itself. To see that {p, q} is a
source set, note that when E is r.r, then we can choose q as proc,
noting that r.r is not dependent with q. Any persistent set is also a
source set, but, as shown by this example, the converse is not true.

Our algorithm source-DPOR combines source sets with sleep
sets, and will explore exactly four interleavings, whereas any
algorithm based on persistent sets will explore at least five (if the
first explored execution starts with p), some of which will be sleep-
set blocked if sleep sets are used. If we extend the example to
include n reading processes instead of just two, the number of
sleep-set blocked explorations increases significantly (see Table 2
in Section 8).

Sleep sets were introduced [6] to prevent redundant exploration.
They are manipulated as follows: (i) after exploring interleavings
that begin with some process p, the process p is added to the sleep
set, and (ii) when a process step that is dependent with p is executed,
p is removed from the sleep set. The effect is that the algorithm
need never explore a step of a process in the sleep set. In Example 1,
for instance, after having explored executions starting with p, the
process p is added to the sleep set. When exploring executions that
start with q, the process p is still in the sleep set after the first step of
q, and should not be explored next, since executions that start with
q.p are equivalent to executions that start with p.q.

Wakeup Trees As mentioned, by utilizing source sets, source-
DPOR will explore a minimal number of executions for the program
of Example 1. There are cases, however, where source-DPOR
encounters sleep-set blocked exploration.

We illustrate this by Example 2, a program with four processes,
p, q, r, s. Two events are dependent if they access the same shared

Initial State

p : (1)

q : (2)

Other
traces

r : (3)

r : (4)

s : (5)

s : (6)

s : (7)

q : (2)

r : (3)

q : (2)

SSB
traces

r : (4)

s : (5)

s : (6)

s : (7)

p : (1)

q : (2)

q : (2)

SSB
traces

Figure 1. Explored interleavings for Example 2.

variable, i.e. x,y or z. Variables m,n,l are local. Each statement
accessing a global variable has a unique label; e.g., process s has
three such statements labeled (5), (6), and (7). Statements that
operate on local variables are assumed to be part of the previous
labeled statement. For example, label (6) marks the read of the value
of y, together with the assignment on l, and the condition check on
n. If the value of n is 1, the condition check on l is also part of (6),
which ends just before the assignment on x that has the label (7).
Similar assumptions are made for the other local statements.

Consider a DPOR algorithm that starts the exploration with p,
explores the interleaving p.r.r.s.s.s (marked in Figure 1 with an
arrow from top to bottom), and then detects the race between events
(1) and (7). It must then explore some interleaving in which the
race is reversed, i.e., the event (7) occurs before the event (1). Note
that event (7) will occur only if it is preceded by the sequence
(3) - (4) - (5) - (6) and not preceded by a step of process q.
Thus, an interleaving that reverses this race must start with the
sequence r.r.s.s. Such an interleaving is shown in Figure 1 between
the two chunks labeled “SSB traces”.

Having detected the race in p.r.r.s.s.s, source-DPOR adds r to
the source set at the initial state. However, it does not “remember”
that r must be followed by r.s.s to reverse the race. After exploring
r, it may therefore continue with q. However, after r.q any explo-
ration is doomed to encounter sleep-set blocking, meaning that the
exploration reaches a state in which all enabled processes are in the
sleep set. To see this, note that p is in the sleep set when exploring
r, and will remain there forever in any sequence that starts with r.q
(as explained above, it is removed only after the sequence r.r.s.s.s).
This corresponds to the left chunk of “SSB traces” in Figure 1.

Optimal-DPOR solves this problem by replacing the backtrack
set with a structure called a wakeup tree. This tree contains initial
fragments of executions that are guaranteed not to encounter sleep
set blocking. In the example, Optimal-DPOR algorithm will handle
the race between (1) and (7) by adding the sequence r.r.s.s.s to the
wakeup tree. The point is that after r.r.s.s.s, the process p has been
removed from the sleep set, and so sleep set blocking is avoided.

3. Framework
In this section, we introduce the technical background material.
First, we present the general model of concurrent systems for which
the algorithms are formulated, thereafter the assumptions on the
happens-before relation, and finally the notions of independence
and races.

3.1 Abstract Computation Model
We consider a concurrent system composed of a finite set of pro-
cesses (or threads). Each process executes a deterministic program,
whereby statements act on the (global) state of the system, which is
made up of the local states of each process and the shared state of
the system. We assume that the state space does not contain cycles,
and that executions have bounded length. We do not restrict to a
specific mode of process interaction, allowing instead the use of
shared variables, messages, etc.

Let Σ be the set of (global) states of the system. The system has
a unique initial state s0 ∈ Σ. We assume that the program executed
by a process p can be represented as a partial function executep :
Σ 7→ Σ which moves the system from one state to a subsequent
state. Each such application of the function executep represents an
atomic execution step of process p, which may depend on and affect
the global state. We let each execution step (or just step for short)
represent the combined effect of some global statement together
with the following finite sequence of local statements (that only
access and affect the local state of the process), ending just before
the next global statement. This avoids consideration of interleavings
of local statements of different processes in the analysis. Such an
optimization is common in tools such as VeriSoft [7].

The execution of a process is said to block in some state s if the
process cannot continue (i.e. executep(s) is undefined): for example,
trying to receive a message in a state where the message queue is
empty. To simplify the presentation, we assume in Sections 3–7
that a process does not disable another process, i.e. if p is enabled
and another process q performs a step, then p is still enabled. This
assumption is valid for Erlang programs. Note that a process can
disable itself, e.g. after a step such that the next statement is a
receive statement.

An execution sequence E of a system is a finite sequence of
execution steps of its processes that is performed from the initial
state s0. Since each execution step is deterministic, an execution
sequence E is uniquely characterized by the sequence of processes
that perform steps in E. For instance, p.p.q denotes the execution
sequence where first p performs two steps, followed by a step of q.
The sequence of processes that perform steps in E also uniquely
determine the (global) state of the system after E, which is denoted
s[E]. For a state s, let enabled(s) denote the set of processes p that
are enabled in s (i.e., for which executep(s) is defined). We use . to
denote concatenation of sequences of processes. Thus, if p is not
blocked after E, then E.p is an execution sequence.

An event of E is a particular occurrence of a process in E.
We use 〈p, i〉 to denote the ith event of process p in the execution
sequence E. In other words, the event 〈p, i〉 is the ith execution step
of process p in the execution sequence E. We use dom(E) to denote
the set of events 〈p, i〉 which are in E, i.e. 〈p, i〉 ∈ dom(E) iff E
contains at least i steps of p. We will use e, e′, . . . to range over
events. We use proc(e) to denote the process p of an event e = 〈p, i〉.
If E.w is an execution sequence, obtained by concatenating E and
w, then dom[E](w) denotes dom(E.w) \ dom(E), i.e. the events in
E.w which are in w. As a special case, we use next[E](p) to denote
dom[E](p).

We use <E to denote the total order between events in E, i.e.
e <E e′ denotes that e occurs before e′ in E. We use E′ ≤ E to
denote that the sequence E′ is a prefix of the sequence E.

3.2 Event Dependencies
A central concept in DPOR algorithms is that of a happens-before
relation between events in an execution sequence (also called a
causal relation [24]). We denote the happens-before relation in
the execution sequence E by →E . Intuitively, for an execution
sequence E, and two events e and e′ in dom(E), e →E e′ means
that e “happens before”, or “causally precedes” e′. For instance, e

can be the transmission of a message that is received by e′, or e can
be a write operation to a shared variable that is accessed by e′.

Our algorithms assume a function (called a happens-before
assignment), which assigns a “happens-before” relation to any
execution sequence. In order not to restrict to a specific computation
model, we take a general approach, where the happens-before
assignment is only required to satisfy a set of natural properties,
which are collected in Definition 3.1. As long as it satisfies these
properties, its precision can vary. For instance, the happens-before
assignment can let any transmission to a certain message buffer be
causally related with a reception from the same buffer. However,
better reduction can be attained if the assignment does not make the
transmission of a message dependent with a reception of a different
one.

In practice, the happens-before assignment function is imple-
mented as expected by relating accesses to the same variables, trans-
missions and receptions of the same messages, etc., typically using
vector clocks [16]. In Section 8 we describe such an assignment
suitable for Erlang programs.

DEFINITION 3.1. A happens-before assignment, which assigns a
unique happens-before relation →E to any execution sequence
E, is valid if it satisfies the following properties for all execution
sequences E.

1. →E is a partial order on dom(E), which is included in <E .
2. The execution steps of each process are totally ordered, i.e.
〈p, i〉 →E 〈p, i+1〉 whenever 〈p, i+1〉 ∈ dom(E),

3. If E′ is a prefix of E, then →E and →E′ are the same on
dom(E′).

4. Any linearization E′ of →E on dom(E) is an execution se-
quence which has exactly the same “happens-before” relation
→E′ as →E . This means that the relation →E induces a set
of equivalent execution sequences, all with the same “happens-
before” relation. We use E ' E′ to denote that E and E′ are
linearizations of the same “happens-before” relation, and [E]'
to denote the equivalence class of E.

5. If E ' E′, then s[E] = s[E′].
6. For any sequences E, E′ and w, such that E.w is an execution

sequence, we have E ' E′ if and only if E.w ' E′.w.
7. If p, q, and r are different processes, then

if next[E](p) →E.p.r next[E.p](r) and next[E](p) 6→E.p.q

next[E.p](q), then next[E](p)→E.p.q.r next[E.p.q](r). ut

The first six properties should be obvious for any reasonable
happens-before relation. The only non-obvious one would be the
last. Intuitively, if the next step of p happens before the next step
of r after the sequence E, then the step of p still happens before
the step of r even when some step of another process, which is not
dependent with p, is inserted between p and r. This property holds
in any reasonable computation model that we could think of. As
examples, one situation is when p and q read a shared variable that
is written by r. Another situation is that p sends a message that is
received by r. If an intervening process q is independent with p, it
cannot affect this message, and so r still receives the same message.

Properties 4 and 5 together imply, as a special case, that if e
and e′ are two consecutive events in E with e 6→E e′, then they can
be swapped and the (global) state after the two events remains the
same.

3.3 Independence and Races
We now define independence between events of a computation. If
E.p and E.w are both execution sequences, then E|=p♦w denotes
that E.p.w is an execution sequence such that next[E](p) 6→E.p.w e
for any e ∈ dom[E.p](w). In other words, E |=p♦w states that
the next event of p would not “happen before” any event in w

p q q r r

E′ w
E

q: r(x)

q: r(y) p: w(x) r: r(z)

r: r(x)

Figure 2. A sample run of the program in Example 1 is shown
to the left. This run is annotated by a happens-before relation
(the dotted arrows). To the right, the happens-before relation is
shown as a partial order. Notice that E′ |= q♦r since q and r
are not happens-before related in E′.r.q. We also observe that
I[E′](w) = {q}, as q is the only process occuring in w and its
first occurrence has no predecessor in the dotted relation in w.
Furthermore, WI[E′](w) = {q, r}, since r is not happens-before
related to any event in w.

in the execution sequence E.p.w. Intuitively, it means that p is
independent with w after E. In the special case when w contains
only one process q, then E |=p♦q denotes that the next steps of
p and q are independent after E. We use E 6|=p♦w to denote that
E|=p♦w does not hold.

For a sequence w and p ∈ w, let w \ p denote the sequence
w with its first occurrence of p removed, and let w�p denote the
prefix of w up to but not including the first occurrence of p. For
an execution sequence E and an event e ∈ dom(E), let pre(E, e)
denote the prefix of E up to, but not including, the event e. For an
execution sequence E and an event e ∈ E, let notdep(e, E) be the
sub-sequence of E consisting of the events that occur after e but do
not “happen after” e (i.e. the events e′ that occur after e such that
e 6→E e′).

A central concept in most DPOR algorithms is that of a race.
Intuitively, two events, e and e′ in an execution sequence E, where
e occurs before e′ in E, are in a race if

• e happens-before e′ in E, and
• e and e′ are “concurrent”, i.e. there is an equivalent execution

sequence E′ ' E in which e and e′ are adjacent.

Formally, let elE e′ denote that proc(e) 6= proc(e′), that e→E e′,
and that there is no event e′′ ∈ dom(E), different from e′ and e,
such that e→E e′′ →E e′.

Whenever a DPOR algorithm detects a race, then it will check
whether the events in the race can be executed in the reverse order.
Since the events are related by the happens-before relation, this may
lead to a different global state: therefore the algorithm must try to
explore a corresponding execution sequence. Let e -E e′ denote
that elE e′, and that the race can be reversed. Formally, if E′ ' E
and e occurs immediately before e′ in E′, then proc(e′) was not
blocked before the occurrence of e.

In Figure 2, there are two pairs of events e, e′ such that elE e′,
namely 〈p, 1〉, 〈q, 2〉 and 〈p, 1〉, 〈r, 2〉. It also holds for both these
pairs that e -E e′ since both q and r are enabled before 〈p, 1〉. In
other words, both the races in the program are reversible.

4. Source Sets
In this section, we define the new concept of source sets. Intuitively,
source sets contain the processes that can perform “first steps” in the
possible future execution sequences. Let us first define two related
notions of possible “first steps” in a sequence.

• For an execution sequence E.w, let I[E](w) denote the set of
processes that perform events e in dom[E](w) that have no
“happens-before” predecessors in dom[E](w). More formally,
p ∈ I[E](w) if p ∈ w and there is no other event e ∈ dom[E](w)
with e→E.w next[E](p).

Algorithm 1: Source-DPOR algorithm
1 Initially Explore(〈〉, ∅);
2 Explore(E, Sleep) ;
3 if ∃p ∈ (enabled(s[E]) \ Sleep) then
4 backtrack(E) := {p} ;
5 while ∃p ∈ (backtrack(E) \ Sleep) do
6 foreach e ∈ dom(E) such that(e -E.p next[E](p))

do
7 let E′ = pre(E, e);
8 let v = notdep(e, E).p ;
9 if I[E′](v) ∩ backtrack(E′) = ∅ then

10 add some q′ ∈ I[E′](v) to backtrack(E′);

11 let Sleep′ := {q ∈ Sleep | E|=p♦q} ;
12 Explore(E.p, Sleep′);
13 add p to Sleep ;

• For an execution sequence E.w, define WI[E](w) as the union of
I[E](w) and the set of processes p such that p ∈ enabled(s[E])
and E|=p♦w.

The point of these concepts is that for an execution sequence E.w:

• p ∈ I[E](w) if and only if there is a sequence w′ such that
E.w ' E.p.w′, and
• p ∈ WI[E](w) if and only if there are sequences w′ and v such

that E.w.v ' E.p.w′.

DEFINITION 4.1 (Source Sets). Let E be an execution sequence,
and let W be a set of sequences, such that E.w is an execution
sequence for each w ∈W . A set P of processes is a source set for
W after E if for each w ∈W we have WI[E](w) ∩ P 6= ∅. ut

The key property is that if P is a source set for W after E, then
for each execution sequence of form E.w with w ∈ W , there is
a process p ∈ P and a sequence w′ such that E.p.w′ ' E.w.v
for some sequence v. Therefore, when an exploration algorithm
intends to cover all suffixes in W after E, the set of processes that
are chosen for exploration from s[E] must be a source set for W
after E.

5. Source-DPOR
In this section, we present the source-DPOR algorithm. It is shown
in Algorithm 1. As mentioned in the introduction, it is the first step
towards our optimal algorithm, and is derived from the classical
DPOR algorithm [4] by replacing persistent sets with source sets.
Source-DPOR performs a depth-first search, using the recursive
procedure Explore(E, Sleep), where E is the stack, i.e. the past
execution sequence explored so far, and Sleep is a sleep set, i.e.
a set of processes that need not be explored from s[E]. The algo-
rithm maintains, for each prefix E′ of E, a set backtrack(E′) of
processes that will eventually be explored from E′.

Explore(E, Sleep) initializes backtrack(E) to consist of an
arbitrary enabled process which is not in Sleep. Thereafter, for each
process p in backtrack(E) which is not in Sleep, the algorithm per-
forms two phases: race detection (lines 6–10) and state exploration
(lines 11–13).

In the race detection phase, the algorithm first finds the events e
in E that are in a race with the next step of p, and where the race can
be reversed (line 6). For each such event e ∈ dom(E), the algorithm
must explore an execution sequence in which the race is reversed.
Using the notation of the algorithm, such an execution sequence
is equivalent to a sequence of form E′.v.proc(e).z, where v is

obtained by appending p after the sequence notdep(e, E) of events
that occur after e in E.p, but do not “happen after” e, and z is any
continuation of the execution. Note that we insert all of notdep(e, E)
before next[E](p), since notdep(e, E) includes all events that follow
e in E that “happen before” next[E](p), which must be performed
before next[E](p) when the race is reversed. The events in E that
“happen after” e, should still occur after e, in the sequence z. A
sequence equivalent to E′.v.proc(e).z can be performed by taking
a step of a process in I[E′](v) immediately after E′. The algorithm
therefore (at line 9) checks whether some process in I[E′](v) is
already in backtrack(E′). If not, then a process in I[E′](v) is
added to backtrack(E′). This ensures that a sequence equivalent
to E′.v.proc(e).z has been or will be explored by the algorithm.

In the exploration phase, exploration is started recursively from
E.p, using an appropriately initialized sleep set. Sleep sets are
manipulated as follows: (i) after finishing exploration of E.p, the
process p is added to sleep set at E, and (ii) when the exploration
of E.p is started recursively from E, the sleep set Sleep′ of E.p is
initialized to be the set of processes currently in the sleep set of E
that are independent with p after E (i.e., Sleep′ = {q ∈ Sleep |
E |= q♦p}). The effect is that the algorithm need never explore
E.p for any process p ∈ Sleep, since that would always lead to a
sequence which is equivalent to one that has been explored from a
prefix of E. For processes p that were added according to Case (i)
above, this is obvious. To see why a process q in the initial sleep set
Sleep′ of E.p need not be explored, note that any execution sequence
of form E.p.q.v is equivalent to the execution sequence E.q.p.v (by
E|=q♦p). Since the algorithm guarantees to have explored some
sequence in [E.q.p.v]' whenever q is in the sleep set of E, it need
not explore E.p.q.

Correctness Algorithm 1 is correct in the sense that for all maxi-
mal execution sequences E, the algorithm explores some execution
sequence in [E]'. For lack of space, the proof is omitted. The main
part of the proof establishes that when Explore(E, Sleep) returns,
the set Sleep will be a source set for W after E, where W is the set
of suffixes w such that E.w is an execution sequence.

On Source Sets and Persistent Sets The mechanism by which
source-DPOR produces source sets rather than persistent sets is
the test at line 9. In persistent set-based DPOR algorithms [4,
14, 22, 23, 25], this test must be stronger, and at least guarantee
that backtrack(E′) contains a process q such that q performs
some event in v which “happens-before” next[E](p) in E.p. Such
a test guarantees that the first event in v which is dependent with
some process in backtrack(E′) is performed by some process
in backtrack(E′), thus making backtrack(E′) a persistent set.
In contrast, our test at line 9 does not require the added process
to perform an event which “happens-before” next[E](p) in E′.v.
Consider, for instance, that v is just the sequence q.p, where q is
independent with p after E′. Then, since the event of q does not
“happen-before” the event of p, there is an execution sequence E′.p.q
in which p is dependent with the process proc(e) in backtrack(E′)
but need not be in backtrack(E′). On the other hand, since q ∈
I[E′](p.q), the set backtrack(E′) (together with the initial sleep set
at E′) is still a source set for the possible continuations after E′.

6. Wakeup Trees
As we described earlier, source-DPOR may still lead to sleep-set
blocked explorations. We therefore present an algorithm, called
optimal-DPOR, which is provably optimal in that it always explores
exactly one interleaving per Mazurkiewicz trace, and never encoun-
ters sleep-set blocking. Optimal-DPOR is obtained by combining
source sets with a novel mechanism, called wakeup trees, which
control the initial steps of future explorations.

Wakeup trees can be motivated by looking at lines 7–11 of
Algorithm 1. At these lines, it is found that some execution sequence
starting with E′.v should be performed in order to reverse the
detected race. However, at lines 10–11, only a single process from
the sequence v is entered into backtrack(E′), thus “forgetting”
information about how to reverse the race. Since the new exploration
after E′.q does not “remember” this sequence v, it may explore a
completely different sequence, which could potentially lead to sleep
set blocking. To prevent such a situation, we replace the backtrack
set by a so-called wakeup tree. The wakeup tree contains initial
fragments of the sequences that are to be explored after E′. Each
fragment guarantees that no sleep set blocking will be encountered
during the exploration.

To define wakeup trees, we first generalize the relations p ∈
I[E](w) and p ∈ WI[E](w) to the case when p is a sequence. Let E
be an execution sequence and let v and w be sequences of processes.

• Let v v[E] w denote that there is a sequence v′ such that
E.v.v′ and E.w are execution sequences with E.v.v′ ' E.w.
Intuitively, v v[E] w if, after E, the sequence v is a possible
way to start an execution that is equivalent to w.
• Let v ∼[E] w denote that there are sequences v′ and w′ such

that E.v.v′ and E.w.w′ are execution sequences with E.v.v′ '
E.w.w′. Intuitively, v ∼[E] w if, after E, the sequence v is
a possible way to start an execution that is equivalent to an
execution sequence of form E.w.w′.

As special cases, for a process p we have p ∈ I[E](w) iff p v[E] w,
and p ∈ WI[E](w) iff p ∼[E] w.

As examples, in Figure 2, we have q.r v[E′] q.q.r.r but
q.q 6v[E′] r.r. We also have q.q ∼[E′] r.r since E′.q.q.r.r '
E′.r.r.q.q. Note that ∼[E] is not transitive. The relation v ∼[E] w
can be checked using the following recursive definition.

LEMMA 6.1. The relation v ∼[E] w holds if either v = 〈〉, or v is
of form p.v′, and either

• p ∈ I[E](w) and v′ ∼[E.p] (w \ p), or
• E|=p♦w and v′ ∼[E.p] w. ut

The following lemma states some useful properties.

LEMMA 6.2. Let E be an execution sequence, and let v, w, and w′

be sequences. Then

1. E.w′ ' E.w implies that (i) v v[E] w iff v v[E] w′, and
(ii) w v[E] v iff w′ v[E] v, and (iii) v ∼[E] w iff v ∼[E] w

′;
2. v v[E] w and w ∼[E] w

′ imply v ∼[E] w
′;

3. p ∈ WI[E](w) and w′ v[E] w imply p ∈ WI[E](w
′);

4. p ∈ WI[E](w) and E |= p♦q and E |= q♦w imply p ∈
WI[E](q.w). ut

The above properties follow from the definitions.
Let us define an ordered tree as a pair 〈B,≺〉, where B (the set

of nodes) is a finite prefix-closed set of sequences of processes, with
the empty sequence 〈〉 being the root. The children of a node w, of
form w.p for some set of processes p, are ordered by the ordering
≺. In 〈B,≺〉, such an ordering between children has been extended
to the total order ≺ on B by letting ≺ be the induced post-order
relation between the nodes in B. This means that if the children w.p1
and w.p2 are ordered as w.p1 ≺ w.p2, then w.p1 ≺ w.p2 ≺ w in
the induced post-order.

DEFINITION 6.3 (Wakeup Tree). Let E be an execution sequence,
and P be a set of processes. A wakeup tree after 〈E,P 〉 is an
ordered tree 〈B,≺〉, such that the following properties hold

1. WI[E](w) ∩ P = ∅ whenever w is a leaf of B;

2. whenever u.p and u.w are nodes in B with u.p ≺ u.w, and u.w
is a leaf, then p 6∈ WI[E.u](w). ut

Intuitively, a wakeup tree after 〈E,P 〉 is intended to consist of
initial fragments of sequences that should be explored after E to
avoid sleep set blocking, when P is the current sleep set at E. To
see this, note that if q ∈ P , then (by the way sleep sets are handled)
q 6∈ I[E](w) for any sequence w that is explored after E. If, in
addition, E|=q♦w, then q is still in the sleep set at E.w. To prevent
this, we therefore require q 6∈ WI[E](w), which is the same as
Property 1, i.e., WI[E](w) ∩ P = ∅. Property 2 implies that if a
process p is added to the sleep set at E.u, after exploring E.u.p,
then by the same reasoning as above, it will have been removed
from the sleep set when we reach E.u.w.

The empty wakeup tree is the tree 〈{〈〉}, ∅〉, which consists only
of the root 〈〉. We state a useful property of wakeup trees.

LEMMA 6.4. If 〈B,≺〉 is a wakeup tree after 〈E,P 〉 and w,w′ ∈
B and w is a leaf which satisfies w′ ∼[E] w, then w � w′. ut

The lemma states that any leaf w′ is the smallest (w.r.t. ≺) node in
the tree which is consistent with w′ after E.

Proof: We prove the lemma by contradiction. Assume w′ ≺ w.
Then there are u, p, v, v′ such that w′ = u.p.v′ and w = u.v such
that u.p ≺ u.v. Since u.v is a leaf, we have p 6∈ WI[E.u](v) by
Property 2 of Definition 6.3. Hence p 6∼[E.u] v, which implies
u.p 6∼[E] u.v, which implies u.p.v′ 6∼[E] u.v, i.e. w′ 6∼[E] w. ut

For a wakeup tree 〈B,≺〉 and a process p ∈ B, define
subtree(〈B,≺〉, p) to denote the subtree of 〈B,≺〉 rooted at p,
i.e. subtree(〈B,≺〉, p) = 〈B′,≺′〉 where B′ = {w | p.w ∈ B}
and ≺′ is the restriction of ≺ to B′.

Let 〈B,≺〉 be a wakeup tree after 〈E,P 〉. For any sequence w
such that E.w is an execution sequence with WI[E](w) ∩ P = ∅,
we define the operation insert[E](w, 〈B,≺〉), with the properties:

1. insert[E](w, 〈B,≺〉) is also a wakeup tree after 〈E,P 〉,
2. any leaf of 〈B,≺〉 remains a leaf of insert[E](w, 〈B,≺〉), and

3. insert[E](w, 〈B,≺〉) contains a leaf u with u ∼[E] w.

A simple construction of insert[E](w, 〈B,≺〉) is the following:
Let v be the smallest (w.r.t. to ≺) sequence v′ in B such that
v′ ∼[E] w. If v is a leaf, insert[E](w, 〈B,≺〉) can be taken as
〈B,≺〉 and we are done. Otherwise, let w′ be a shortest sequence
such that w v[E] v.w

′, and add v.w′ as a new leaf, which is ordered
after all already existing nodes in B of form v.w′′.

As an illustration, using Example 1, assume that a wakeup tree
〈B,≺〉 after 〈〈〉, ∅〉 contains p as the only leaf. Then the operation
insert[〈〉](q.q, 〈B,≺〉) adds q.q as a new leaf with p ≺ q.q. If
we thereafter perform insert[〈〉](r.r, 〈B,≺〉), then the wakeup tree
remains the same, since q.q ∼[〈〉] r.r, and q.q is already a leaf.

7. Optimal-DPOR
In this section, we present the optimal algorithm, shown in Al-
gorithm 2. The algorithm performs a depth-first search, using the
recursive procedure Explore(E, Sleep,WuT), where E and Sleep
are as in Algorithm 1, and WuT is a wakeup tree after 〈E, Sleep〉,
containing extensions of E that are guaranteed to be explored
(in order) by Explore(E, Sleep,WuT). If WuT is empty, then
Explore(E, Sleep,WuT) is free to explore any extension of E.

Like Algorithm 1, the algorithm runs in two modes: race detec-
tion (lines 3–8) and state exploration (lines 9–22), but it is slightly
differently organized. Instead of analyzing races at every invocation
of Explore, races are analyzed in the entire execution sequence
only when a maximal execution sequence has been generated. The

Algorithm 2: Optimal-DPOR algorithm.
1 Initially Explore(〈〉, ∅, 〈{〈〉}, ∅〉);
2 Explore(E, Sleep,WuT) ;
3 if enabled(s[E]) = ∅ then
4 foreach e, e′ ∈ dom(E) such that (e -E e′) do
5 let E′ = pre(E, e);
6 let v = (notdep(e, E).proc(e′)) ;
7 if sleep(E′) ∩WI[E′](v) = ∅ then
8 insert[E′](v,wut(E′))

9 else
10 if WuT 6= 〈{〈〉}, ∅〉 then
11 wut(E) := WuT ;

12 else
13 choose p ∈ enabled(s[E]);
14 wut(E) := 〈{p}, ∅〉 ;

15 sleep(E) := Sleep ;
16 while ∃p ∈ wut(E) do
17 let p = min≺{p ∈ wut(E)};
18 let Sleep′ = {q ∈ sleep(E) | E|=p♦q} ;
19 let WuT′ = subtree(wut(E), p) ;
20 Explore(E.p, Sleep′,WuT′);
21 add p to sleep(E) ;
22 remove all sequences of form p.w from wut(E) ;

reason for this is that the test at line 7 is precise only when the
used sequence v, which is defined at line 6, includes all events in
the entire execution that do not “happen after” e, also those that
occur after e′. Therefore v can be defined only when E is a maximal
execution sequence.

In the race detection phase, Algorithm 2 must be able to access
the current sleep set for each prefix E′ of the currently explored
execution sequence E. For each such prefix E′, the algorithm
therefore maintains a set of processes sleep(E′), which is the current
sleep set at E′. In a similar way, for each prefix E′ of E, the
algorithm maintains wut(E′), which is the current wakeup tree
at E′.

Let us now explain the race detection mode, which is entered
whenever the exploration reaches the end of a complete sequence
(i.e. enabled(s[E]) = ∅). In this mode, the algorithm investigates
all races that can be reversed in the just explored sequence E. Such
a race consists of two events e and e′ in E, such that e -E e′. Let
E′ = pre(E, e) and let v = notdep(e, E).proc(e′), i.e. the sub-
sequence of E consisting of the events that occur after e but do not
“happen after” e, followed by proc(e′) (this notation is introduced
at lines 5–6). The reversible race e -E e′ indicates that there is
another execution sequence, which performs v after E′, and in
which the race is reversed, i.e. the event e′ happens before the
event e. Since E′.v is incompatible with the currently explored
computation, the algorithm must now make sure that it will be
explored if it was not explored previously. If some p ∈ sleep(E′) is
in WI[E′](v), then some execution equivalent to one starting with
E′.v will have been explored previously. If not, we perform the
operation insert[E′](v,wut(E′)) to make sure that some execution
equivalent to one starting with E′.v will be explored in the future.

In the exploration mode, which is entered if exploration has not
reached the end of an execution sequence, first the wakeup tree
wut(E) is initialized to WuT. If WuT is empty, then (as we will
state in Lemma 7.2) the sleep set is empty, and an arbitrary enabled
process is entered into wut(E). The sleep set sleep(E) is initialized
to the sleep set that is passed as argument in this call to Explore.
Thereafter, each sequence in wut(E) is subject to exploration. We

find the first (i.e. minimal) single-process branch p in wut(E) and
call Explore recursively for the sequence E.p. In this call, the
associated sleep set Sleep′ is obtained from sleep(E) in the same
way as in Algorithm 1. The associated wakeup tree WuT′ is obtained
as the corresponding subtree of wut(E). Thereafter, Explore is
called recursively for the sequence E.p with the modified sleep set
Sleep′ and wakeup tree WuT′. After Explore(E.p, Sleep′,WuT′)
has returned, the sleep set sleep(E) is extended with p, and all
sequences beginning with p are removed from wut(E).

7.1 Correctness
Let us now prove the correctness of the optimal-DPOR algorithm.
Throughout, we assume a particular completed execution of optimal-
DPOR. This execution consists of a number of terminated calls
to Explore(E, Sleep,WuT) for some values of the parameters E,
Sleep, and WuT. Let E denote the set of execution sequences E that
have been explored in some call of form Explore(E, ·, ·). Define
the ordering∝ on E by letting E ∝ E′ if Explore(E, ·, ·) returned
before Explore(E′, ·, ·). Intuitively, if one were to draw an ordered
tree that shows how the exploration has proceeded, then E would be
the set of nodes in the tree, and ∝ would be the post-order between
nodes in that tree.

We begin by establishing some useful invariants.

LEMMA 7.1. If E.p ∝ E.w then p 6∈ I[E](w).

Proof: After the call to Explore(E.p, ·, ·) has returned, we have
that p ∈ sleep(E). It follows from the rules for manipulating sleep
sets, that if E.w ∈ E and E.p ∝ E.w then p 6∈ I[E](w). ut

LEMMA 7.2. Whenever Algorithm 2 is inside a call of form
Explore(E, Sleep,WuT), then

1. wut(E) is a wakeup tree after 〈E, sleep(E)〉,
2. if WuT is empty, then Sleep is empty. ut

The following lemma captures the relationship between wakeup
trees and 〈E ,∝〉.

LEMMA 7.3. Let 〈E ,∝〉 be the tree of explored execution se-
quences. Consider some point in the execution, and the wakeup
tree wut(E) at that point, for some E ∈ E .

1. If w ∈ wut(E) for some w, then E.w ∈ E .
2. If w ≺ w′ for w,w′ ∈ wut(E) then E.w ∝ E.w′

Proof: The properties follow by noting how the exploration from any
E ∈ E is controlled by the wakeup tree wut(E) at lines 16−22. ut

We can now give the proof of correctness for the algorithm:

THEOREM 7.4. Whenever a call to Explore(E, Sleep,WuT) re-
turns during Algorithm 2, then for all maximal execution sequences
of form E.w, the algorithm has explored some execution sequence
E′ which is in [E.w]'.

Since initially the algorithm is called with Explore(〈〉, ∅, 〈{〈〉}, ∅〉),
Theorem 7.4 implies that for all maximal execution sequences of
form E the algorithm explores some execution sequence E′ which
is in [E]'.

Proof of Theorem 7.4: By induction on the set of execution se-
quences E that are explored during the considered execution, using
the ordering ∝ (i.e. the order in which the corresponding calls to
Explore returned).

Base Case: This case is the first sequence E for which the call
Explore(E, ·, ·) returns. By the algorithm, E is already maximal,
so the theorem trivially holds.

Inductive Step: Consider an arbitrary execution sequence E ∈ E that
is explored by the algorithm. Let Final_sleep(E) denote the value
of sleep(E) when Explore(E, Sleep,WuT) returns. Let done(E)
denote Final_sleep(E) \ Sleep, i.e. the set of processes that are
explored from s[E]. As inductive hypothesis, we assume that the
theorem holds for all execution sequences E′ with E′ ∝ E.

The inductive step is proven by contradiction. Assume that
E.w is a maximal execution sequence such that the algorithm
has not explored any execution sequence E′ in [E.w]'. We first
prove that this implies WI[E](w) ∩ Final_sleep(E) = ∅. The proof
is by contradiction. Assume that there is a p ∈ WI[E](w) with
p ∈ Final_sleep(E), i.e. p ∈ sleep(E) at some point during the
exploration. Let E′ be the longest prefix of E such that E′.p ∈ E ,
and define w′ by E′.w′ = E. By the handling of sleep sets, we have
E′|=p♦w′. It follows by the definition of WI[E](w) that there is a
w′′ such that E.w ' E.p.w′′ ' E′.w′.p.w′′ ' E′.p.w′.w′′. By
the inductive hypothesis applied to E′.p, the algorithm has explored
some execution sequence in [E′.p.w′.w′′]' = [E.w]', which gives
a contradiction.

For each process p ∈ Final_sleep(E), let E′p be the prefix of
E such that E′p.p is the last (w.r.t. ∝) execution sequence of form
E′′p .p, with E′′p being a prefix of E, that precedes E (w.r.t. ∝).
(Note that if p ∈ done(E) then E′p = E, but if p ∈ Sleep then
E′p is a strict prefix of E.) Let w′p be defined by E = E′p.w

′
p

(note that E′p|=p♦w′p). Let wp be the longest prefix of w such that
E|=p♦wp, and let ep be the first event in dom[E](w) which is not
in wp. (Such an event ep must exist, since otherwise wp = w which
implies E|=p♦w, which implies p ∈ WI[E](w), which contradicts
WI[E](w) ∩ Final_sleep(E) = ∅.) Let q ∈ Final_sleep(E) be
such that wq is a longest prefix among the prefixes wp for p ∈
Final_sleep(E). If there are several processes p ∈ Final_sleep(E)
such that wp is the same longest prefix, then let q be the process
among these such that E′q.q is minimal (w.r.t. ∝). Let wR be
wq.proc(eq).

Consider the exploration of E′q.q, which happens in the call
Explore(E′q.q, Sleep′, ·) with Sleep′ as the sleep set argument.
Since E′q.q is an execution sequence, and E′q|=q♦(w′q.wq), it fol-
lows that E′q.w′q.wq.q is an execution sequence. Since E′q.w′q.wq.eq
is an execution sequence, and q does not disable eq (since q and
proc(eq) are different), we conclude that E′q.w′q.wq.q.eq and hence
E′q.q.w

′
q.wq.eq = E′q.q.w

′
q.wR is an execution sequence.

We next establish that WI[E′
q.q]

(w′q.wR) ∩ Sleep′ = ∅, us-
ing a proof by contradiction, as follows. Assume that some pro-
cess p is in WI[E′

q.q]
(w′q.wR) ∩ Sleep′. By the construction of

Sleep′ at line 18, the process p must be in sleep(E′q) just be-
fore the call to Explore(E′q.q, Sleep′, ·), and satisfy E′q |= p♦q.
From p ∈ WI[E′

q.q]
(w′q.wR) and Property 3 of Lemma 6.2, we

infer p ∈ WI[E′
q.q]

(w′q.wq). From this, E′q |= p♦q and Prop-
erty 4 of Lemma 6.2, it follows that p ∈ WI[E′

q]
(q.w′q.wq), which,

using E′q.q.w
′
q.wq ' E′q.w

′
q.wq.q (which follows from E′q |=

q♦(w′q.wq)), implies p ∈ WI[E′
q]

(w′q.wq.q), which by Property 3 of
Lemma 6.2 imply p ∈ WI[E′

q]
(w′q.wq). From this, and the property

that p ∈ sleep(E′q) just before the call to Explore(E′q.q, Sleep′, ·),
we have by the handling of sleep sets that p 6∈ I[E′

q]
(w′q.wq),

which together with p ∈ WI[E′
q]

(w′q.wq) implies E′q |=p♦w′q.wq .
This, and the fact that p ∈ sleep(E′q) just before the call to
Explore(E′q.q, Sleep′, ·), implies that p ∈ Final_sleep(E′q.w

′
q),

i.e. p ∈ Final_sleep(E). Since E′q |=p♦w′q.wq , we have by con-
struction that ep = eq . But since among the processes p with
ep = eq we chose q to be the first one for which a call of form
Explore(E′q.p, ·, ·) was performed, we have that p 6∈ sleep(E′q)
just before the call to Explore(E′q.q, Sleep′, ·), whence p 6∈ Sleep′.
Thus we have a contradiction.

Let z′ be any sequence that makes E′q.q.w
′
q.wR.z

′ maximal
(such a z′ can always be found, since E′q.q.w

′
q.wR is an execution

sequence). From WI[E′
q.q]

(w′q.wR) ∩ Sleep′ = ∅ (proven in the
preceding paragraph) follows WI[E′

q.q]
(w′q.wR.z

′) ∩ Sleep′ = ∅.
Hence, no execution sequence in [E′q.q.w

′
q.wR.z

′]' was explored
before the call to Explore(E′q.q, Sleep′, ·) (otherwise, there would
be a call Explore(E′′.p, ·, ·) with E′′ a prefix of E′q and p ∈ Sleep′,
and defining w′′ by E′′.w′′ = E′q , we would have E′′|=p♦w′′ and
p ∈ WI[E′

q.q]
(w′q.wR.z

′), thus contradicting WI[E′
q.q]

(w′q.wR.z
′)∩

Sleep′ = ∅). By the inductive hypothesis for E′q.q applied to
w′q.wR.z

′, the algorithm then explores some sequence of form
E′q.q.z in [E′q.q.w

′
q.wR.z

′]'.
By the construction of wR, we have next[E′

q]
(q) -E′

q.q.w
′
q.wR.z′

eq . From E′q.q.z ' E′q.q.w
′
q.wR.z

′, it follows that the same
race between next[E](q) and eq will also occur in E′q.q.z, i.e.
we have next[E′

q]
(q) -E′

q.q.z
eq . Since the sequence E′q.q.z is

actually explored by the algorithm, it will encounter the race
next[E′

q]
(q) -E′

q.q.z
eq . When handling it,

• E in the algorithm will correspond to E′q.q.z in this proof,
• e in the algorithm will correspond to next[E′

q]
(q) in this proof,

and
• e′ in the algorithm will correspond to eq in this proof.

Let v = (notdep(next[E′
q]

(q), E′q.q.z).proc(eq)) be the sequence
v at line 6 in the algorithm. Let x be notdep(next[E′

q]
(q), E′q.q.z)

and let x′ be notdep(next[E′
q]

(q), E′q.q.w
′
q.wR.z

′). We note that
w′q.wq is a prefix of x′. From E′q.q.z ' E′q.q.w

′
q.wR.z

′ and
the definitions of x and x′, it follows that E′q.x ' E′q.x

′, and
hence that E′q.x.proc(eq) ' E′q.x

′.proc(eq). Let x′′ be obtained
from x′ by adding proc(eq) just after the prefix w′q.wq (i.e., in
the same place that it has in w′q.wR.z

′). Since eq “happens after”
next[E′

q]
(q) in E′q.q.w

′
q.wR.z

′, it follows that no events in x′ “hap-
pen after” eq in E′q.q.w

′
q.wR.z

′. Hence E′q.x
′′ ' E′q.x

′.proc(eq).
Since w′q.wR is a prefix of x′′ we have w′q.wR v[E′

q]
x′′, which

by E′q.x
′′ ' E′q.x

′.proc(eq) implies w′q.wR v[E′
q]

x′.proc(eq),
which by E′q.x.proc(eq) ' E′q.x

′.proc(eq) implies w′q.wR v[E′
q]

v. By properties of sleep sets and the construction of wR, it fol-
lows that sleep(E′q) ∩ WI[E′

q]
(w′q.wR) = ∅. This implies, by

w′q.wR v[E′
q]

v, that sleep(E′q) ∩WI[E′
q]

(v) = ∅. Thus, the test at
line 7 will succeed, and after performing line 8, the wakeup tree
wut(E′q) will (by the specification of insert) contain a leaf y such
that y ∼[E′

q]
v. Since at this point q ∈ wut(E′q) and q 6∈ WI[E′

q]
(v)

we have, by definition of insert, that and E′q 6|=q♦y. By Property 1
of Lemma 7.3 we then have E′q.y ∈ E .

From w′q.wR v[E′
q]

v and y ∼[E′
q]

v, it follows by Property 2
of Lemma 6.2 that y ∼[E′

q]
w′q.wR. Furthermore, from E′q|=q♦w′q

(which follows from E′q|=q♦w′q.wq) and E′q 6|=q♦y, it follows that
y is not a prefix of w′q . Let u be the longest common prefix of y and
w′q.wR. We claim that w′q is a strict prefix of u. Otherwise, there are
different processes p, p′ and a sequence v′′ such that u.p′.v′′ = w′q
and u.p is a prefix of y. From y ∼[E′

q]
w′q.wR and Property 2 of

Lemma 6.2, we infer y ∼[E′
q]

u.p′. If u.p′ ∈ wut(E′q) when y
is inserted, we infer by Lemma 6.4 and Property 2 of Lemma 7.3
that E′q.y ∝ E′q.u.p

′. If u.p′ 6∈ wut(E′q) when y is inserted, we
also infer E′q.y ∝ E′q.u.p

′, since then y will be explored before
u.p′. Thus E′q.y ∝ E′q.u.p

′, which implies E′q.u.p ∝ E′q.u.p
′.v′′,

which by handling of sleep sets implies p 6∈ I[E′
q.u]

(p′.v′′). By
y ∼[E′

q]
w′q , implying u.p ∼[E′

q]
u.p′.v′′, we have p ∼[E′

q.u]
p′.v′′,

which is the same as p ∈ WI[E′
q.u]

(p′.v′′). By p 6∈ I[E′
q.u]

(p′.v′′)

this implies E′q.u|=p♦(p′.v′′). This implies that p ∈ sleep(E′q.w
′
q),

i.e., p ∈ sleep(E). Hence by the construction of wR, we have p 6∈
WI[E′

q.u.p
′.v′′](wR), which together with E′q.u|=p♦(p′.v′′) implies

p 6∈ WI[E′
q.u]

(p′.v′′.wR), which implies u.p 6∼[E′
q]

u.p′.v′′.wR,
which implies y 6∼[E′

q]
w′q.wR, which contradicts the construction

of y.
Thus, w′q is a strict prefix of u. Since E′q.y, and hence E′q.u, is

explored by the algorithm, we have Eq.u ∝ Eq.w
′
q . Moreover, since

u is a prefix of w′q.wR, we infer that E′q.u is a prefix of E′q.w′q.w.
This means that there is a sequence w′′ such that E′q.u.w′′ ' E.w.
It follows by the inductive hypothesis applied to E′q.u that the
algorithm has explored some maximal sequence in [E′q.u.w

′′]' and
hence in [E.w]'. This contradicts the assumption at the beginning
of the inductive step. This concludes the proof of the inductive step,
and the theorem is proven. ut

7.2 Optimality
In this section, we prove that optimal-DPOR is optimal in the
sense that it never explores two different but equivalent execution
sequences and never encounters sleep set blocking. The following
theorem, which is essentially the same as Theorem 3.2 of Godefroid
et al. [10] establishes that sleep sets alone are sufficient to prevent
exploration of two equivalent maximal execution sequences:

THEOREM 7.5. Optimal-DPOR never explores two maximal execu-
tion sequences which are equivalent.

Proof: Assume that E1 and E2 are two equivalent maximal execu-
tion sequences, which are explored by the algorithm. Then they
are both in E . Assume w.l.o.g. that E1 ∝ E2. Let E be their
longest common prefix, and let E1 = E.p.v1 and E2 = E.v2.
By Lemma 7.1 we have p 6∈ I[E](v2), which contradicts E1 ' E2

and the maximality of E1 and E2. ut

We will now prove that Algorithm 2 is optimal in the sense that it
never encounters sleep-set blocking. Let us first define this precisely.

DEFINITION 7.6 (Sleep Set Blocking). During the execution of
Algorithm 2, a call to Explore(E, Sleep,WuT) is sleep set blocked
if enabled(s[E]) 6= ∅ and enabled(s[E]) ⊆ Sleep. ut

Now let us state and prove the corresponding optimality theorem.

THEOREM 7.7. During any execution of Algorithm 2, no call to
Explore(E, Sleep,WuT) is ever sleep set blocked.

Proof: Consider a call Explore(E, Sleep,WuT) during the explo-
ration. Then any sequence in WuT is enabled after E. By Lemma 7.2,
WuT is a wakeup tree after 〈E, Sleep〉. Thus, if Sleep 6= ∅, then WuT
contains a sequence w such that Sleep ∩WI[E](w) = ∅. Letting p
be the first process in w, this implies p 6∈ Sleep, implying that p is
enabled and thus enabled(s[E]) 6⊆ Sleep. ut

8. Implementation
In this section we describe our implementation in the context of
Concuerror [2], a stateless model checking tool for Erlang.

Erlang Erlang is an industrially relevant programming language
based on the actor model of concurrency [1]. In Erlang, actors are
realized by language-level processes implemented by the runtime
system instead of being directly mapped to OS threads. Each Erlang
process has its own private memory area (stack, heap and mailbox)
and communicates with other processes via message passing. A call
to the spawn function creates a new process P and returns a process
identifier (PID) that can be used to send messages to P . Messages
are sent asynchronously using the ! (or send) function. Messages
get placed in the mailbox of the receiving process in the order they

1 -module(readers).
2 -export([readers/1]).
3

4 readers(N) ->
5 ets:new(tab, [public, named_table]),
6 Writer = fun() -> ets:insert(tab, {x, 42}) end,
7 Reader = fun(I) -> ets:lookup(tab, I), ets:lookup(tab, x) end,
8 spawn(Writer),
9 [spawn(fun() -> Reader(I) end) || I <- lists:seq(1, N)],

10 receive after infinity -> deadlock end.

Figure 3. Writer-readers program in Erlang.

arrive. A process can then consume messages using selective pattern
matching in receive expressions, which are blocking operations
when a process mailbox does not contain any matching message.
Optionally, a receive may contain an after clause which specifies
a timeout value (either an integer or the special value infinity) and
a value to be returned if the timeout time (in ms) is exhausted.

Erlang processes do not share any memory by default. Still, the
Erlang implementation comes with a key-value store mechanism,
called Erlang Term Storage (ETS), that allows processes to create
memory areas where terms shared between processes can be in-
serted, looked up, and updated. Such areas are the ETS tables that
are explicitly declared public. The runtime system automatically
serializes accesses to these tables when this is necessary. Each ETS
table is owned by the process that created it and its memory is
reclaimed by the runtime system when this process exits.

Erlang has all the ingredients needed for concurrency via mes-
sage passing and most of the ingredients (e.g. reads and writes to
shared data, etc.) needed for concurrent programming using shared
memory. Unsurprisingly, Erlang programs are prone to “the usual”
errors associated with concurrent execution, although the majority
of them revolves around message passing and misuse of built-in
primitives implemented in C.

Figure 3 shows Example 1 written in Erlang, generalized to N
instead of just two readers. A public ETS table shared between N+1
processes: N readers and one writer. The writer inserts a key-value
pair, using x as a key. Each of the N readers tries to read two entries
from this table: some entry with a different key in each process (an
integer in the range 1..N) and the entry keyed by x. The receive
expression on line 10 forces the process executing the readers code
to get stuck at this point, ensuring that the process owning the table
stays alive, which in turn preserves the ETS table.

Concuerror Concuerror [2] is a systematic testing tool for finding
concurrency errors in Erlang programs or verifying their absence.
Given a program and a test to run, Concuerror uses a stateless
search algorithm to systematically explore the execution of the
test under conceptually all process interleaving. To achieve this,
the tool employs a source-to-source transformation that inserts
instrumentation at preemption points (i.e. points where a context
switch is allowed to occur) in the code under execution. This
instrumentation allows Concuerror to take control of the scheduler
when the program is run, without having to modify the Erlang VM
in any way. In the current VM, a context switch may occur at
any function call. Concuerror inserts preemption points only at
process actions that interact with (i.e. inspect or update) shared
state. Concuerror supports the complete Erlang language and can
instrument programs of any size, including any libraries they use.
The tool employs two techniques to reduce the number of explored
traces: (i) an optimization which avoids exploring traces that involve
processes blocking on receive expressions [2] and (ii) context-
bounding [19], a technique that restricts the number of explored
traces with respect to a user-supplied parameter, which Concuerror

calls preemption bound. In this respect, Concuerror is similar to the
CHESS tool [20].

Our implementation We extended Concuerror with three DPOR
algorithms: (i) the algorithm presented by Flanagan and Godefroid
with the sleep set extension [5], (ii) source-DPOR and (iii) optimal-
DPOR. To implement these we had to encode rules for dependencies
between operations that constitute preemption points. These rules
are shared between all DPOR variants. For lookups and inserts
to ETS tables (i.e. reads and writes) the rules are standard (two
operations conflict if they act on the same key and at least one is an
insert). For sending and receiving operations the “happens before”
relation (→E) is the following:

• Two sends are ordered by→E if they send to the same process,
even if the messages are the same. (Note that if we would not
order two sends that send the same message, then when we
reorder them, the corresponding receive will not “happen after”
the same send statement.)
• A send “happens before” the receive statement that receives

the message it sent. A race exists between these statements only
if the receive has an after clause.
• A receive which executes its after clause “happens before” a

subsequent send which sends a message that it can consume.

There are also other race-prone primitives in Erlang, but it is beyond
the scope of this paper to describe how they interact.

Concuerror uses a vector clock [16] for each process at each
state, to calculate the happens before relation for any two events.
The calculation of the vector clocks uses the ideas presented in the
original DPOR paper [4]. The only special case is for the association
of a send with a receive, where we instrument the message itself
with the vector clock of the sending process.

9. Experiments
We report experimental results that compare the performance of the
three DPOR algorithms, which we will refer to as ‘classic’ (for the
algorithm of [5]), ‘source’ and ‘optimal’. We run all benchmarks on
a desktop with an i7-3770 CPU (3.40 GHz), 16GB of RAM running
Debian Linux 3.2.0-4-amd64. The machine has four physical cores,
but presently Concuerror uses only one of them. In all benchmarks,
Concuerror was started with the option -p inf, which instructs the
tool to use an infinite preemption bound, i.e., verify these programs.

Performance on two “standard” benchmarks First, we report
performance on the two benchmarks from the DPOR paper [4]:
filesystem and indexer. These are benchmarks that have been used
to evaluate another DPOR variant (DPOR-CR [22]) and a technique
based on unfoldings [11]. As both programs use locks, we had to
emulate a locking mechanism using Erlang. To make this translation
we used particular language features:

filesystem: This benchmark uses two lock-handling primitives,
called acquire and release. The assumptions made for these
primitives are that an acquire and a release operation on the
same lock are never co-enabled and should therefore not tried to
be interleaved in a different way than they occur. Thus, acquires
are the only operations that can be swapped, if possible, to get a
different interleaving.
We implemented the lock objects in Erlang as separate processes.
To acquire the lock, a process sends a message with its identifier
to the “lock process” and waits for a reply. Upon receiving the
message, the lock process uses the identifier to reply and then
waits for a release message. Other acquire messages are left
in the lock’s mailbox. Upon receiving the release message the
lock process loops back to the start, retrieving the next acquire

Traces Explored Time

Benchmark classic source optimal classic source optimal

filesystem(14) 4 2 2 0.54s 0.36s 0.35s
filesystem(16) 64 8 8 8.13s 1.82s 1.78s
filesystem(18) 1024 32 32 2m11s 8.52s 8.86s
filesystem(19) 4096 64 64 8m33s 18.62s 19.57s

indexer(12) 78 8 8 0.74s 0.11s 0.10s
indexer(15) 341832 4096 4096 56m20s 50.24s 52.35s

Table 1. Performance of DPOR algorithms on two benchmarks.

message and notifying the next process. This behavior can be
implemented in Erlang using two selective receives.

indexer: This benchmark uses a CAS primitive instruction to check
whether a specific entry in a matrix is 0 and set it to a new
value. The “Erlang way” to do this, is to try to execute an
insert_new operation on an ETS table: if another entry with
the same key exists the operation returns false; otherwise the
operation returns true and the table now contains the new entry.

Both benchmarks are parametric on the number of threads they use.
For filesystem we used 14, 16, 18 and 19 threads. For indexer we
used 12 and 15 threads.

Table 1 shows the number of traces that the algorithms explore
as well as the time it takes to explore them. It is clear that our
algorithms, which in these benchmarks explore the same (optimal)
number of interleavings, beat ‘classic’ DPOR with sleep sets, by a
margin that becomes wider as the number of threads increases. As a
sanity check, Kählönen et al. [11] report that their unfolding-based
method is also able to explore only 8 paths for indexer(12), while
their prototype implementation of DPOR extended with sleep sets
and support for commutativity of reads and writes explores between
51 and 138 paths (with 85 as median value). The numbers we report
(78 for ‘classic’ DPOR and 8 for our algorithms) are very similar.

Performance on two synthetic benchmarks Next we compare the
algorithms on two synthetic benchmarks that expose differences
between them. The first is the readers program of Figure 3. The
results, for 2, 8 and 13 readers are shown in Table 2. For ‘classic’
DPOR the number of explored traces is O(3N) here, while source-
and optimal-DPOR only explore 2N traces. Both numbers are
exponential in N but, as can be seen in the table, for e.g. N = 13
source- and optimal-DPOR finish in about one and a half minute,
while the DPOR algorithm with the sleep set extension [5] explores
two orders of magnitude more (mostly sleep-set blocked) traces and
needs almost one and a half hours to complete.

Traces Explored Time

Benchmark classic source optimal classic source optimal

readers(2) 5 4 4 0.02s 0.02s 0.02s
readers(8) 3281 256 256 13.98s 1.31s 1.29s
readers(13) 797162 8192 8192 86m 7s 1m26s 1m26s

lastzero(5) 241 79 64 1.08s 0.38s 0.32s
lastzero(10) 53198 7204 3328 4m47s 45.21s 27.61s
lastzero(15) 9378091 302587 147456 1539m11s 55m 4s 30m13s

Table 2. Performance of DPOR algorithms on more benchmarks.

The second benchmark is the lastzero(N) program whose pseu-
docode is shown in Figure 4. Its N+1 threads operate on an array of
N+1 elements which are all initially zero. In this program, thread 0
searches the array for the zero element with the highest index, while
the other N threads read one of the array elements and update the
next one. The final state of the program is uniquely defined by the

Traces Explored Time

Benchmark classic source optimal classic source optimal

dialyzer 12436 3600 3600 14m46s 5m17s 5m46s
gproc 14080 8328 8104 3m 3s 1m45s 1m57s
poolboy 6018 3120 2680 3m 2s 1m28s 1m20s
rushhour 793375 536118 528984 145m19s 101m55s 105m41s

Table 3. Performance of DPOR algorithms on four real programs.

filesystem(19) indexer(15) gproc rushhour

classic 92.98 245.32 557.31 24.01
source 66.07 165.23 480.96 24.01

optimal 76.17 174.60 481.07 31.07

Table 4. Memory consumption (in MB) for selected benchmarks.

values of i and array[1..N]. What happens here is that thread 0 has
control flow that depends on data that is exposed to races and repre-
sents a case when source-DPOR may encounter sleep-set blocking,
that the optimal-DPOR algorithm avoids. As can be seen in Table 2,
source-DPOR explores about twice as many traces than optimal-
DPOR and, naturally, even if it uses a cheaper test, takes almost
twice as much time to complete.

Performance on real programs Finally, we evaluate the algo-
rithms on four Erlang applications. The programs are: (i) dialyzer:
a parallel static code analyzer included in the Erlang distribution;
(ii) gproc: an extended process dictionary(iii) poolboy: a worker
pool factory1; and (iv) rushhour: a program that uses processes and
ETS tables to solve the Rush Hour puzzle in parallel. The last pro-
gram, rushhour, is complex but self-contained (917 lines of code).
The first three programs, besides their code, call many modules
from the Erlang libraries, which Concuerror also instruments. The
total number of lines of instrumented code for testing the first three
programs is 44596, 9446 and 79732, respectively.

Table 3 shows the results. Here, the performance differences
are not as profound as in synthetic benchmarks. Still, some general
conclusions can be drawn: (1) Both source- and optimal-DPOR
explore less traces than ‘classic’ (from 50% up to 3.5 times fewer)
and require less time to do so (from 42% up to 2.65 times faster).
(2) Even in real programs, the number of sleep-set blocked explo-
rations is significant. (3) Regarding the number of traces explored,
source-DPOR is quite close to optimal, but manages to completely
avoid sleep-set blocked executions in only one program (in dialyzer).
(4) Source-DPOR is faster overall, but only slightly so compared to
optimal-DPOR even though it uses a cheaper test. In fact, its maxi-
mal performance difference percentage-wise from optimal-DPOR
is a bit less than 10% (in dialyzer again).

Although, due to space limitations, we do not include a full set of
memory consumption measurements, we mention that all algorithms
have very similar, and quite low, memory needs. Table 4 shows
numbers for gproc, the real program which requires most memory,
and for all benchmarks where the difference between source and
optimal is more than one MB. From these numbers, it can also be

1 https://github.com/uwiger/gproc and https://github.com/devinus/poolboy

Variables: int array[0..N] := {0,0,...,0}, i;

Thread 0: for (i := N; array[i] != 0; i--);

Thread j (j ∈ 1..N): array[j] := array[j-1] + 1;

Figure 4. The pseudocode of the lastzero(N) benchmark.

https://github.com/uwiger/gproc
https://github.com/devinus/poolboy

deduced that the size of the wakeup tree is small. In fact, the average
size of the wakeup trees for these programs is less than three nodes.

10. Related Work
In early approaches to stateless model checking [8], it was observed
that reduction was needed to combat the explosion in number of
explored interleavings. Several reduction methods have been pro-
posed including partial order reduction and context bounding [19].
Since early persistent set techniques [3, 6, 26] relied on static analy-
sis, sleep set techniques were used in VeriSoft [7]. It was observed
that sleep sets are sufficient to prevent the complete exploration of
different but equivalent interleavings [10], but additional techniques
were needed to reduce sleep-set blocked exploration.

Dynamic partial order reduction [4] showed how to construct
persistent sets on-the-fly “by need”, leading to better reduction. Sim-
ilar techniques have been applied in testing and symbolic execution,
e.g., to concolic testing, where new test runs are initiated in response
to detected races [24]. Several variants, improvements, and adapta-
tions of DPOR for stateless model checking [14, 25] and concolic
testing [22, 23] have appeared, all based on persistent sets. Our
algorithms can be applied to all these contexts to provide increased
or optimal reduction in the number of explored interleavings.

A related area is reachability testing, in which test executions of
concurrent programs are steered by the test harness. Lei and Carver
present a technique for exploring all Mazurkiewicz traces in a setting
with a restricted set of primitives (message passing and monitors)
for process interaction [15]. The scheduling of new test executions
explicitly pairs message transmissions with receptions, and could
potentially require significant memory, compared to the more light-
weight approach of software model checking. The technique of
Lei and Carver guarantees to avoid re-exploration of different but
equivalent maximal executions (corresponding to Theorem 7.5), but
reports blocked executions.

Kahlon et al. [12] present a normal form for executions of concur-
rent programs and prove that two different normal-form executions
are not in the same Mazurkiewicz trace. This normal form can be
exploited by SAT- or SMT-based bounded model checkers, but it
can not be used by stateless model checkers that enumerate the exe-
cution sequences by state-space exploration. Kähkönen et al. [11]
use unfoldings [18], which can also obtain optimal reduction in
number of interleavings. However, this technique has significantly
larger overhead than DPOR-like techniques, and also needs an addi-
tional post-processing step for checking non-local properties such as
races and deadlocks. A technique for using transition-based partial
order reduction for message-passing programs, without moving to
an event-based formulation is to refine the concept of dependency
between transitions to that of conditional dependency [6, 9, 13].

11. Conclusion
We have presented optimal-DPOR, a new DPOR algorithm which is
the first to be provably optimal in that it is guaranteed both to explore
the minimal number of executions and to avoid sleep set blockings. It
is based on a novel class of sets, called source sets. Source sets make
existing DPOR algorithms significantly more efficient, and can be
extended with wakeup trees to achieve optimality. In the derivation
of the optimal algorithm, we have first presented a simpler algorithm,
source-DPOR, which maintains less information than the optimal
algorithm. On the other hand, the extra overhead of maintaining
wakeup trees is very moderate in practice (never more than 10% in
our experiments), which is a good trade-off for having an optimality
guarantee and the possibility to run arbitrarily faster. We intend to
further explore the ideas behind source sets and wakeup trees, not
only for verification but also for new ways of testing programs.

Acknowledgments
This work was carried out within the Linnaeus centre of excellence
UPMARC (Uppsala Programming for Multicore Architectures
Research Center) and was supported in part by the EU FP7 STREP
project RELEASE (287510) and the Swedish Research Council.

References
[1] J. Armstrong. Erlang. Comm. of the ACM, 53(9):68–75, 2010.

[2] M. Christakis, A. Gotovos, and K. Sagonas. Systematic testing for
detecting concurrency errors in Erlang programs. In ICST, 2013.

[3] E. M. Clarke, O. Grumberg, M. Minea, and D. Peled. State space
reduction using partial order techniques. STTT, 2:279–287, 1999.

[4] C. Flanagan and P. Godefroid. Dynamic partial-order reduction for
model checking software. In POPL, pages 110–121. ACM, 2005.

[5] C. Flanagan and P. Godefroid. Addendum to Dynamic partial-order
reduction for model checking software, 2005. Available at http:
//research.microsoft.com/en-us/um/people/pg/.

[6] P. Godefroid. Partial-Order Methods for the Verification of Concurrent
Systems: An Approach to the State-Explosion Problem. PhD thesis,
University of Liège, 1996. Also, volume 1032 of LNCS, Springer.

[7] P. Godefroid. Model checking for programming languages using
VeriSoft. In POPL, pages 174–186. ACM Press, 1997.

[8] P. Godefroid. Software model checking: The VeriSoft approach. Formal
Methods in System Design, 26(2):77–101, 2005.

[9] P. Godefroid and D. Pirottin. Refining dependencies improves partial-
order verification methods. In CAV, volume 697 of LNCS, 1993.

[10] P. Godefroid, G. J. Holzmann, and D. Pirottin. State-space caching
revisited. Formal Methods in System Design, 7(3):227–241, 1995.

[11] K. Kähkönen, O. Saarikivi, and K. Heljanko. Using unfoldings in
automated testing of multithreaded programs. In ASE, pages 150–159.
ACM, 2012.

[12] V. Kahlon, C. Wang, and A. Gupta. Monotonic partial order reduction:
An optimal symbolic partial order reduction technique. In CAV, volume
5643 of LNCS, pages 398–413. Springer, 2009.

[13] S. Katz and D. Peled. Defining conditional independence using
collapses. Theoretical Computer Science, 101:337–359, 1992.

[14] S. Lauterburg, R. Karmani, D. Marinov, and G. Agha. Evaluating
ordering heuristics for dynamic partial-order reduction techniques. In
FASE, volume 6013 of LNCS, pages 308–322. Springer, 2010.

[15] Y. Lei and R. Carver. Reachability testing of concurrent programs.
IEEE Trans. Softw. Eng., 32(6):382–403, 2006.

[16] F. Mattern. Virtual time and global states of distributed systems.
In M. Cosnard, editor, Proc. Workshop on Parallel and Distributed
Algorithms, pages 215–226, Ch. de Bonas, France, 1989. Elsevier.

[17] A. Mazurkiewicz. Trace theory. In Advances in Petri Nets, 1986.

[18] K. McMillan. A technique of a state space search based on unfolding.
Formal Methods in System Design, 6(1):45–65, 1995.

[19] M. Musuvathi and S. Qadeer. Iterative context bounding for systematic
testing of multithreaded programs. In PLDI, pages 446–455, 2007.

[20] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. Nainar, and I. Neamtiu.
Finding and reproducing heisenbugs in concurrent programs. In OSDI,
pages 267–280. USENIX Association, 2008.

[21] D. Peled. All from one, one for all, on model-checking using represen-
tatives. In CAV, volume 697 of LNCS, pages 409–423, 1993.

[22] O. Saarikivi, K. Kähkönen, and K. Heljanko. Improving dynamic
partial order reductions for concolic testing. In ACSD. IEEE, 2012.

[23] K. Sen and G. Agha. Automated systematic testing of open distributed
programs. In FASE, volume 3922 of LNCS, pages 339–356, 2006.

[24] K. Sen and G. Agha. A race-detection and flipping algorithm for
automated testing of multi-threaded programs. In Haifa Verification
Conference, volume 4383 of LNCS, pages 166–182. Springer, 2007.

http://research.microsoft.com/en-us/um/people/pg/
http://research.microsoft.com/en-us/um/people/pg/

[25] S. Tasharofi et al. TransDPOR: A novel dynamic partial-order reduction
technique for testing actor programs. In FMOODS/FORTE, volume
7273 of LNCS, pages 219–234. Springer, 2012.

[26] A. Valmari. Stubborn sets for reduced state space generation. In
Advances in Petri Nets, volume 483 of LNCS, pages 491–515, 1990.

	Introduction
	Basic Ideas
	Framework
	Abstract Computation Model
	Event Dependencies
	Independence and Races

	Source Sets
	Source-DPOR
	Wakeup Trees
	Optimal-DPOR
	Correctness
	Optimality

	Implementation
	Experiments
	Related Work
	Conclusion

