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Abstract—We propose a model that captures the behavior of
real-time recursive systems. To that end, we introduce dense-timed
pushdown automata that extend the classical models of pushdown
automata and timed automata, in the sense that the automaton
operates on a finite set of real-valued clocks, and each symbol
in the stack is equipped with a real-valued clock representing its
“age”. The model induces a transition system that is infinite in
two dimensions, namely it gives rise to a stack with an unbounded
number of symbols each of which with a real-valued clock.
The main contribution of the paper is an EXPTIME-complete
algorithm for solving the reachability problem for dense-timed
pushdown automata.

I. INTRODUCTION

During the last two decades there has been a large amount of
work devoted to the verification of discrete program models
that have infinite state spaces such as Petri nets, pushdown
systems, counter automata, and channel machines. In partic-
ular, pushdown systems have been studied extensively as a
model for the analysis of recursive programs (e.g., [8], [20],
[16], [18]). In parallel, timed automata [3], [10], [9] are the
most widely used model for the analysis of systems with timed
behaviors. Recently, several works have augmented discrete
infinite-state models with timed behaviors. For instance, many
different formalisms have been proposed for extending Petri
nets with clocks and timed constraints, leading to various
definitions of Timed Petri Nets (e.g., [6], [2]).

In this paper, we consider (Dense-)Timed Push-Down Au-
tomata (or TPDA for short). A TPDA combines the classical
models of pushdown automata and timed automata in the
sense that the automaton is equipped with a finite set of
real-valued clocks, and each symbol in the stack is equipped
with a real-valued clock representing its “age”. The types of
transitions performed by a TPDA include the usual ones by a
pushdown automaton, namely pushing and popping symbols
to/from the stack. However, in a similar manner to timed
automata, the transitions are now conditioned by the values
of the clocks in the automaton. Furthermore, transitions are
labeled by intervals that constrain the ages of the symbols
that are pushed or popped from/to the stack. Thus, when a
transition t is fired, we (i) check that the values of the clocks
satisfy the conditions stated by t, (ii) update the clock values
as specified by t, and (iii) perform a stack operation. The
latter may either be a pop operation that removes the top-
most symbol in the stack provided its has the correct label
and age, or a push operation that adds a symbol whose age
belongs to a given interval. Finally, a TPDA may perform a
timed transition in which the clock values and the ages of

the symbols are all increased at the same rate. The TPDA
model thus subsumes both the model of pushdown automata
and timed automata. More precisely, we obtain the former if
we prevent the TPDA from using the timed information (all
the timing constraints are trivially valid); and obtain the latter
if we prevent the TPDA from using the stack (no symbols
are pushed or popped from the stack). Notice that a TPDA
induces a system that is infinite in two dimensions, namely
it gives rise to an stack containing an unbounded number of
symbols each of which is equipped with a real-valued clock.

In this paper, we show decidability of the reachability
problem for TPDA. We show the decidability through a re-
duction to the corresponding problem for (untimed) pushdown
automata. Then, we prove that the reachability problem for
TPDA is EXPTIME-complete.

Due to lack of space, we do not include
the detailed proofs of the lemmas. These are
available in the full version of the paper at
http://user.it.uu.se/%7Emohat117/lics12.pdf

Related Work.: The works in [7], [14], [12], [13], [15]
consider timed pushdown automata. However, the models in
these works consider only global clocks which means that the
stack symbols are not equipped with clocks.

In [21], the authors introduce recursive timed automata, a
model where clocks are considered as variables. A recursive
timed automaton allows passing the values of clocks using
either pass-by-value or pass-by-reference mechanism. This
feature is not supported in our model since we do not allow
pass-by-value communication between procedures. Moreover,
in the recursive timed automaton model, the local clocks of the
caller procedure are stopped until the called procedure returns.
This makes the semantics of the models incomparable with
ours, since all the clocks in our model evolve synchronously. In
fact, the authors show decidability of the reachability problem
only in the special cases where either all clocks are passed by
reference or none is passed by reference.

In [5], the authors define the class of extended pushdown
timed automata. An extended pushdown timed automaton is
a pushdown automaton enriched with a set of clocks, with
an additional stack used to store/restore clock valuations. In
our model, clocks are associated with stack symbols and
store/restore operations are disallowed. The two models are
quite different. This is illustrated, for instance, by the fact that
the reachability problem is undecidable in their case.

In a recent work [1] we have shown decidability of the
reachability problem for discrete-timed pushdown automata,
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Fig. 1. Configurations and transition in a TPDA.

where time is interpreted as being incremented in discrete steps
and thus the ages of clocks and stack symbols are in the natural
numbers. This makes the reachability problem much simpler
to solve, and the method of [1] cannot be extended to the
dense-time case.

II. OVERVIEW

In this section, we give an informal but detailed overview of
the paper. We introduce Timed PushDown Automata (TPDA),
together with its reachability problem. We describe a symbolic
representation that allows us to translate a TPDA into an
(untimed) PDA. We also describe how such a PDA can
simulate the TPDA while preserving reachability properties.

TPDA.: A TPDA is an automaton that operates on a
finite set of real-valued clocks and where the symbols (taken
from a finite alphabet) inside the stack are equipped with real
numbers that indicate their ages. Fig. 1 gives examples of
typical configurations in a TPDA T that has three clocks
x1, x2, x3 and that has a stack alphabet with three symbols
{a, b, d}. A configuration of a TPDA consists of three compo-
nents. The first component defines the local (control) state
of the automaton (to simplify the illustration, this part is
not shown in the figure). The second component defines the
clock values, while the third component defines the content of
the stack. For instance, in γ1, the clock values are given by
[x1 ← 0.5, x2 ← 3.9, x3 ← 2.3], while the stack contains four
symbols, namely (from top to bottom): a, b, a, and d, with
ages 1.9, 6.7, 3.1 and 4.2 respectively. Fig. 1 also illustrates
different types of transitions that can be performed by a TPDA.
From γ1, T performs a discrete transition in which the symbol
d is pushed to the stack. The transition requires that the age
of the newly pushed symbol lies in the interval [1 ∶3] (indeed,
the age of the new symbol is 2.6 ∈ [1 ∶ 3]). From the new
configuration γ2, T performs a timed transition to γ3 in which
the values of all clocks, and the ages of all symbols inside the
stack are increased by the same real number 2.6. From γ3, T
moves to γ4 by assigning a new value to the clock x2. The
new value assigned to x2 should lie in the interval (2 ∶ 5] (the
chosen value is 3.8). From γ4, T pops the top-most symbol
from the stack. The transition may only be performed if the
age of the popped symbol lies in the interval [4 ∶6] (which is
the case here).

Reachability Problem.: An instance of the reachability
problem for TPDA is defined by an initial configuration γinit
and a final (target) state sF of the automaton. The task is to

check whether there exists a sequence of transitions leading
from γinit to sF . In this paper, we show decidability of
the problem by reducing it to the corresponding problem
for (untimed) pushdown automata (which is known to be
decidable). The main ingredient of our proof is a symbolic
representation for infinite sets of configurations in TPDA.
Given a TPDA T , we use the representation to extract a
pushdown automaton P , called the symbolic automaton, such
that P can simulate T wrt. reachability properties in an exact
manner.

Symbolic Encoding.: A symbolic representation is needed
even in the (simpler) case of timed automata, since they
operate on real-valued clocks and hence induce infinite (in
fact uncountable) state spaces. There, the classical regions
encoding has been used to produce a finite-state abstraction
that is exact wrt. many properties including reachability [3].
However, the region-based abstraction relies heavily on the
fact that a timed automaton operates on a finite set of clocks.
In particular, this means that it is not applicable in the case
of TPDA, since the latter operates on an unbounded number
of clocks (the stack is unbounded, and each symbol has an
age). A difficult feature in the behavior of TPDA is that
the ages of the symbols inside the stack, and their relations
with the clock values, change continuously during the run of
the automaton (due to timed transitions and clock resettings).
In fact, sometimes it is crucial to record relations that arise
between clocks and symbols that lie arbitrarily deep inside the
stack. Simulating the behavior of a TPDA by an (untimed)
pushdown automaton is not trivial, since in the latter, the
symbols inside the stack do not change, and furthermore,
the system can only access the top-most stack symbol. This
makes it difficult to capture the evolving relations between the
clocks and the stack symbols. The symbolic automaton, that
we derive from T , uses a stack alphabet in which each symbol
corresponds to a region of a special form. The region relates,
among other things, the top-most stack symbol with the clocks
of the automaton. Furthermore, each region is enriched with
information that is sufficient to capture the above mentioned
dependencies between clocks and symbols that lie arbitrarily
deep inside the stack. A key idea of our proof is to show
that it is enough to enrich the regions in a finite way in order
to capture all such dependencies. Roughly speaking, we add
a copy of each clock and a copy of an extra stack symbol
to the region representation, where the additional items carry
(partial information) about the history of the current run of the
system. This makes it possible to maintain a finite number of
regions, and hence the symbolic automaton only uses a finite
stack alphabet.

Below, we will describe some aspects of the problems and
the solutions we provide, based on the example of Fig. 1. A
typical example of a region (in the sense of timed automata)
is R1 in Fig. 2. Here, we represent a region as a word of sets,
where each set contains a number of items. There are three
types of items in a region: (i) the plain items x1, x2, x3, a
represent the three clocks and the top-most stack symbol, (ii)
the special item ⊢ (introduced for technical reasons) is used as
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Fig. 2. A run in the symbolic automaton.

a reference clock whose value is 0 unless we are performing
a pop operation (see below), and (iii) the shadow items
x●1, x

●
2, x

●
3, b

●,⊢● are used for enriching the region and will
be explained later. The items impose a number of conditions
on any configuration satisfying R1. An example of such a
configuration is γ1 in Fig. 1. Each item in R1 is paired with
a natural number that specifies the integral part of its value.
Thus, R1 requires for instance that the integral part of the value
of x1 should be 0; and that the top-most stack symbol should
be a and the integral part of its value should be 1. Notice that
these conditions are satisfied by γ1, since the integral part

the value of x1 is 0, and that of a is 1. Items belonging to
the same set should have identical fractional parts, and items
belonging to successive sets should have strictly increasing
fractional parts, so the fractional parts of a and x2 should be
identical and larger than that of x1. All these conditions on
the fractional parts are satisfied by γ1. Finally, the left-most
set plays a special role, in the sense that the fractional of the
items in the left-most set (x●1 and ⊢ here) should equal to 0.

Our aim is to derive a PDA P that is able to simulate T . The
stack alphabet of P is a set of regions of a special form. Next,
we will use the run of T , depicted in Fig. 1, to explain why we
need and how we enrich the region representation to capture
dependencies between clocks and stack symbols. We observe
that in γ1 the fractional parts of the clock x2 and the (top-
most) stack symbol a are equal (both of them are equal to 0.9).
The fractional parts remain identical in γ2, but a is no longer
the top-most symbol and therefore its value is “not available”
any more to the system. The equality remains in γ3 although
a has now obtained a new value inside stack. However, the
new value assigned to x2 means that fractional parts of x2

and a are no longer identical in γ4. This information may
become relevant in γ5 where a has again become the top-most
stack symbol. For instance, there may exist transitions whose
enabledness may depend on whether the fractional parts of
x2 and a are different or identical (it is easy to encode such
dependencies even in the case of timed automata). In fact,
we can create examples showing that dependencies may exist
among clocks and symbols that lie arbitrarily deep inside the
stack. For instance, the clock x2 may be assigned a new value
after an arbitrary number of push operations rather than only
one (as was the case above).

Simulation.: We consider the computation of T from
Fig. 1. In Fig. 2 we simulate it in the symbolic automaton
P (whose stack alphabet consists of the set of regions as de-
scribed above). Let us assume that we have already simulated
the initial part of a computation leading to γ1 and that the
top-most stack symbol in P is R1 (in the example we neglect
the part of the stack below R1). Intuitively the shadow x●1 of
a clock x1 in the region R1 represents the value of x1 at the
point of time when R1 was pushed to the stack in P . The
shadow symbol ⊢● represents the time that has elapsed since
R1 was pushed to the stack in P . The shadow stack symbol b●

represents the current value of the next-top-most stack symbol.
The push transition leading to γ2 is simulated in P by

pushing a new region R2 that we derive from R1 as follows.
We identify each shadow clock with its plain counter-part
(assign it the same integer value) and place it in the same set
(e.g., x2 and x●2 have identical integral parts and are placed in
the same set). This maintains the property that shadow clocks
record the values of the plain clocks when the current region
was pushed to the stack. For instance, x●2 records the value
of x2 when R2 is pushed to the stack in P . From now on,
the values of these shadow items are only updated through
passage of time, and their values are not affected by discrete
transitions that assign new values to the clocks. We also make
a shadow copy a● of the previous top-most stack symbol a.



In other words, a● records the value of a which is now the
next top-most stack symbol. Finally, we add the new top-most
stack symbol d into the region.

The timed transition from γ2 to γ3 is simulated in P as
follows. A timed transition affects all the clocks and stack
symbols. However, since we are dealing with a stack we can
access only the top-most symbol. Therefore, we simulate the
effect only on the top-most region (i.e., R2) while we “freeze”
the other regions inside the stack (those below R2). This means
that the items in R1 no longer reflect the actual values (as we
will see below, these values will later be recovered through the
use of the shadow symbols). The effect of a timed transition
on R2 is simulated in P by popping R2 and pushing a new
region R3. We derive R3 from R2 by (i) increasing the integral
parts of the items and (ii) “rotating” the region left to right
in order to obtain the correct ordering on the fractional parts.
The item ⊢ is not affected in order to maintain the invariant
that its value is zero. Since, we allow arbitrarily long time
delays, the amount of rotation performed when simulating a
timed transition is arbitrary. The rotation operation will be
explained more in the simulation of the pop transition below.

The discrete transition from γ3 to γ4 is again simulated by
updating the top-most region R3 while freezing the regions
below (including R1). More precisely, we pop R3 and push
R4 in which x2 has been assigned a new integer and moved to
a new position in the region in order to reflect its new value.

Simulating pop transitions is the most interesting step. First,
we describe the rotation operation on regions (depicted in
Fig. 3) that describes the manner in which a region changes
due to the passage of time. The operation represents the next
“interesting” event that occurs in R1 when time elapses. There
are two possible cases. The first case (which applies to R1) is
when there are some items with zero fractional parts (i.e., the
left-most set in the region is not empty). The next event then
is that the fractional values of these items become positive.
We can obviously always choose the amount of time to be
sufficiently small so that the value of none of the other items
passes the next integer. For instance, in R1, the items x●2 and
⊢ leave the left-most set, meaning that there are no more items
in the region with zero fractional parts. The result corresponds
to R′

1. The second case (which applies to R′
1) is when there

are no items with integer values, and hence the operation
corresponds to letting time pass by an amount that is exactly
enough to make the values of the items with the highest
fractional parts increase so that they reach the next integer
(the integral parts of these items have now been incremented
by one). In the case of R′

1, this lead to R′′
1 where the items

a and x2 have jumped to the left-most set, and their integral
parts have been incremented by one.

The simulation of the pop transition leading from γ4 to
γ5 is now performed in two steps. First, the next-top-most
region R1 is “refreshed”, by repeatedly rotating it until its
items are updated in a manner that reflects their current values
(recall that these items were frozen while R1 was not the
top-most region). Concretely, we rotate R1 sufficiently many
times so that its information is consistent with that in R4. The
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Fig. 3. Two successive rotations of R1.

result is R5. The plain items in R5 should match their shadow
counter-parts in R4 (shown by the dotted lines between the
sets containing such items in R4 and R5). This means that
the integral part of each item in R5 is identical to its shadow
counter-part in R4 (for instance, this value is equal to 6 in
the case of x2 in R5 and x●2 in R4). Also, the ordering of the
plain items in R5 should match the ordering of their shadow
counter-parts in R4 (for instance, x●1 occurs before x●2 in R4

and hence x1 should occur before x2 in R5). Notice that a
dotted line connects the two left-most sets in order to take into
considerations their special roles (collecting all items with zero
fractional parts). In the second step, we pop both R4 and R5

and push a new region R6 that we obtain by merging R4 and
R5 as follows. The plain clock symbols in R4 represent the
current values of the clocks, and hence they are copied from
R4 to R6 (these values are not affected by the pop operation).
The age of the plain stack symbol a in R5 represents the age of
the next-top-most symbol (after popping, a will be at the top
of the stack), and hence its value is copied from R5 to R6. All
the shadow items are copied from R5 to R6 (again, the ages
of these items are not affected by the pop operation). Since
the ordering of fractional parts among the plain items in R5 is
identical to that of the shadow items in R4, the ordering can be
used to relate the fractional parts of the items copied from R4

and R5 to R6. For instance, x2 occurs before x●3 in R5 and x1

occurs before x●2 in R4, and hence x1 should occur before x●3
in R6 (items are not allowed to cross the dotted lines between
the sets R4 and R5). Notice, for instance, that R6 indicates
correctly that x2 and a have now different fractional parts.
This relation was temporarily lost in the simulation, but has
now been retrieved using the shadow items.

A detail taken from the standard representation of regions is
that we can define an integer that is larger than all the constants
that occur syntactically in the automaton. Item values larger
than this constant behave equivalently and hence their integral
parts can all be represented by a single symbolic value ∞
(e.g., b● in R5). In our particular example, we have assumed
that this constant is equal to 9.

III. PRELIMINARIES

We use N and R≥0 to denote the sets of natural numbers
and non-negative reals respectively. We define Nω ∶= N∪{ω},
where ω is the first limit ordinal. We use a set I of intervals.
An open interval is written as (a ∶ b) where a ∈ N and b ∈ Nω .
Intervals can also be closed in one or both directions, e.g.
[a ∶ b] is closed in both directions and [a ∶ b) is closed to the
left and open to the right. For a number v ∈ R≥0 and interval



I ∈ I, we use v ∈ I to indicate that v belongs to I . For a
number v ∈ R≥0, we write ⌊v⌋ and fract (v) to denote the
integral resp. fractional part of v. For k ∈ N, we use k(0) and
k(1) for the sets {0,1, . . . , k} and {1,2, . . . , k} respectively.
The relation ≤lex is the standard lexicographic ordering on
N2, i.e., ⟨k1, `1⟩ ≤lex ⟨k2, `2⟩ if either k1 < k2 or both k1 = k2

and `1 ≤ `2 We write ⟨k1, `1⟩ <lex ⟨k2, `2⟩ to indicate that
⟨k1, `1⟩ ≤lex ⟨k2, `2⟩ and ⟨k1, `1⟩ ≠ ⟨k2, `2⟩.

For sets A and B, we use f ∶ A → B to denote that f is a
(possibly partial) function that maps A to B. We let dom (f)
and range (f) denote the domain resp. range of f . For a ∈ A,
we write f(a) = � to indicate that f is not defined for a. By
f[a ← b] we mean the function f ′ such that f ′(x) = f(x) if
x ≠ a and f ′(a) = b. For a function f , with a finite domain,
we sometimes write f = [x1 ← a1, . . . , xn ← an] to denote
that f(xi) = ai for i ∶ 1 ≤ i ≤ n, and that f(y) = � if y /∈
{x1, . . . , xn}. For a set A, we write ∣A∣ for the size of A, and
write A∗ for the set of finite words over A. For a word w ∈ A∗,
we let ∣w∣ denote the length of w, and let w[i] denote the ith

element of w where i ∶ 1 ≤ i ≤ ∣w∣. The empty word is written
as ε. For words w1,w2 ∈ A∗, we write w1 ⋅ w2 to denote the
concatenation of w1 and w2. For sets W1,W2 of words, we
define W1 ⋅W2 ∶= {w1 ⋅w2∣ (w1 ∈W1) ∧ (w2 ∈W2)}.

In this paper, we will often use a number of opera-
tions on words. First, we consider words over sets over
an alphabet A, i.e., members of the set (2A)∗ and define
a shuffle operator ⊗ inductively as follows. For a word
w ∈ (2A)∗, we define w ⊗ ε ∶= ε ⊗ w ∶= w. Furthermore,
for sets r1, r2 ∈ 2A and words w1,w2 ∈ (2A)∗ we define
(r1 ⋅ w1) ⊗ (r2 ⋅ w2) ∶= (r1 ⋅ (w1 ⊗ (r2 ⋅ w2))) ∪ (r2 ⋅ (r1 ⋅
w1 ⊗ w2)) ∪ ((r1 ∪ r2) ⋅ (w1 ⊗ w2)). Example: Given the
words w1 = {a, b}{c}{d, e}{f} and w2 = {u, v}{v}{y, z}
that {a, b, u, v}{c}{d, e, v}{y, z}{f} ∈ w1 ⊗ w2.

Consider words w = a1⋯am and u = b1⋯bn in A∗. An
injection from w to u is a partial function h ∶ m(1) → n(1)

that is strictly monotonic, i.e., if i < j and h(i), h(j) ≠
� then h(i) < h(j). The fragmentation w/h of w wrt.
h is the sequence ⟨w0⟩ai1 ⟨w1⟩ai2⋯ ⟨wk−1⟩aik ⟨wk⟩ where
dom (h) = {i1, i1, . . . , ik} and w = w0 ⋅ ai1 ⋅ w1 ⋅ ai2 ⋅
⋯ ⋅ wk−1 ⋅ aik ⋅ wk. Similarly, the fragmentation u/h is the
sequence ⟨u0⟩ bj1 ⟨u1⟩ bj2⋯ ⟨u`−1⟩ bj` ⟨u`⟩ where range (h) =
{j0, j1, . . . , j`} and u = u0 ⋅bj1 ⋅u1 ⋅bj2 ⋅⋯⋅u`−1 ⋅bj` ⋅u`. Example:
If w = abcdefgh, u = rstuvxyz, h(3) = 2, h(6) = 5 and
h(i) = � for i ∈ {1,2,4,5,7,8} then w/h = ⟨ab⟩ c ⟨de⟩ f ⟨gh⟩
and u/h = ⟨r⟩ s ⟨tu⟩ v ⟨xyz⟩.

IV. MODEL

We recall the standard model of pushdown automata, and
then describe its timed extension. We give the operational
semantics by defining the induced transition system, i.e., the
set of configurations, and the transition relation on the set of
configurations. Then, we describe the reachability problem in
which we ask whether a given local state of the automaton is
reachable from the initial configuration of the system.

PDA: We recall the classical model of PushDown Au-
tomata (PDA for short) . A PDA P is a tuple ⟨S, sinit ,Γ,∆⟩,

where S is a finite set of states, sinit ∈ S is the initial state,
Γ is a (finite) set of stack symbols, and ∆ is a finite of
transitions. A transition t ∈ ∆ is a triple ⟨s,op, s′⟩ where
s, s′ ∈ S are the source and target states of the transition,
and op is a stack operation of one of three forms: (i) nop
is an empty operation that does not change the content of
the stack, (ii) pop(a), where a ∈ Γ, is a pop operation that
removes the top-most stack symbol if this symbol is equal
to a, and (iii) push(a), where a ∈ Γ, is a push operation
that adds a to the top of the stack. A configuration β is a
pair ⟨s,w⟩ where s ∈ S is the local (control) state of the
automaton and w ∈ Γ∗ is the content of the stack. We define the
transition relation Ð→ on the set of configurations as follows.
For configurations β = ⟨s,w⟩ and β′ = ⟨s′,w′⟩ and a transition
t = ⟨s,op, s′⟩ ∈ ∆, we write β

tÐ→β′ to denote that one of the
following properties is satisfied: (i) op = nop and w′ = w,
(ii) op = push(a) and w′ = w ⋅ a, or (iii) op = pop(a) and
w = w′ ⋅a. We define Ð→ ∶= ∪t∈∆

tÐ→ and define
∗Ð→ to be the

reflexive transitive closure of Ð→. The initial configuration
is defined by βinit ∶= ⟨sinit , ε⟩, i.e., the system starts from
the initial state and with an empty stack. A configuration β

is said to be reachable if βinit
∗Ð→β. A local state s ∈ S

is said to be reachable if there is a stack content w such
that the configuration ⟨s,w⟩ is reachable. An instance of the
reachability problem is defined by a (target) local state sF .
The task is to check whether sF is reachable, i.e., to check
whether we can reach a configuration where the local state of
the automaton is equal to sF (regardless of the stack content).

TPDA: Assume a finite set X of clocks. A Timed
PushDown Automaton (TPDA for short) is a tuple T =
⟨S, sinit ,Γ,∆⟩, where S is a finite set of states, sinit ∈ S is
the initial state, Γ is a (finite) set of stack symbols, and ∆ is a
finite set of transitions. A transition t ∈ ∆ is a tuple ⟨s,op, s′⟩
where s, s′ ∈ S, and op is a stack operation of one of five
forms: (i) nop is an empty operation that does not change the
contents of the stack, (ii) x ∈ I?, where x ∈ X is a clock and
I ∈ I is an interval, is a test operation where the transition may
be fired only if the value of x belongs to I , (iii) x← I , where
x ∈ X is a clock and I ∈ I is an interval, is an assignment
operation where the clock x is non-deterministically assigned
an arbitrary value in I , (iv) pop(a, I ), where a ∈ Γ is a stack
symbol and I ∈ I is an interval, is a pop operation that removes
the top-most stack symbol provided that this symbol is a and
its age belongs to the interval I , and (v) push(a, I ), where
a ∈ Γ is a stack symbol and I ∈ I is an interval, is a push
operation that adds a to the top of the stack, such that the age
of the newly added symbol is in the interval I .

Configurations: A clock valuation is a function X ∶X →
R≥0 that assigns a real number to each clock. A stack content is
a word w ∈ (Γ ×R≥0)∗ of pairs each defining a symbol and its
age inside the stack. A configuration γ is of the form ⟨s,X,w⟩
where s ∈ S, X is a clock valuation, and w is a stack content.
Intuitively, s gives the local (control) state of the automaton,
the clock valuation X defines the values of the clocks, while
the stack content w defines the content of the stack.



Transition Relation: We first define timed transitions.
Consider a real number v ∈ R≥0. For a clock valuation
X, we define X+v to be the clock valuation X′ such that
X′(x) = X(x) + v for all clocks x ∈ X . For a stack content
w = ⟨a1, k1⟩ ⟨a2, k2⟩⋯ ⟨an, kn⟩, we define w+v to be the
stack content w′ = ⟨a1, k1 + v⟩ ⟨a2, k2 + v⟩⋯ ⟨an, kn + v⟩. For
configurations γ = ⟨s,X,w⟩ and γ′ = ⟨s′,X′,w′⟩, we have
γ v

Time γ
′ if s′ = s, X = X+v , and w′ = w+v . The system

makes a timed transition (of length v) to γ′. The local state
of the automaton and the symbols inside the stack are not
changed. The values of the clocks and the ages of the stack
symbols are all increased by v. We write γ Time γ

′ to
denote that γ v

Time γ
′ for some v ∈ R≥0.

Now, we define discrete transitions. Let t = ⟨s,op, s′⟩ ∈ ∆
be a transition. For configurations γ = ⟨s,X,w⟩ and γ′ =
⟨s′,X′,w′⟩, we write γ t

Disc γ
′ if one of the following

conditions is satisfied:
● op = nop, w′ = w, X′ = X. The empty operation does not

modify the clock values or the stack content.
● op = x ∈ I?, w′ = w, X′ = X, and X(x) ∈ I holds. The

transition can be performed only if the value of clock
x lies in the interval I . The clock values and the stack
content are not changed.

● op = x ← I , w′ = w, and X′ = X[x ← v] where v ∈ I . The
clock x is assigned an arbitrary value in I . The values of
the rest of clocks and the stack content are not changed.

● op = pop(a, I ), X′ = X, and w = w′ ⋅⟨a, v⟩ for some v ∈ I .
The operation checks whether the top-most symbol in the
stack is a and whether its age value is in I . In such a case
it removes the top-most stack symbol. The clock values
are not changed.

● op = push(a, I ), X′ = X, and w′ = w ⋅ ⟨a, v⟩ for some
v ∈ I . The operation places a at the top of the stack and
defines its age to be some (arbitrary) value v in I . The
clock values are not changed.

Notice that the local states of γ and γ′ agree with the source
and target local states in t. We define Disc ∶= ∪t∈∆ t

Disc .
We define the transition relation ∶= Time ∪ Disc and
define ∗ to be the reflexive transitive closure of .

Reachability: We fix a clock valuation Xinit defined by
Xinit(x) ∶= 0 for all x ∈X . We define the initial configuration
γinit ∶= ⟨sinit ,Xinit , ε⟩. In other words, the system starts
running from a configuration where the automaton is in its
initial local state, where all clocks have values 0, and where
the stack is empty. A configuration γ is said to be reachable
if γinit ∗ γ. A (target) local state sF is said to be reachable
if there is a clock valuation X and a stack content w such
that the configuration ⟨sF ,X,w⟩ is reachable. An instance of
the Reachability Problem is defined by a final (target) state
sF ∈ S. The task is to check whether sF is reachable.

V. SYMBOLIC ENCODING

Given a TPDA T = ⟨ST , sTinit ,ΓT ,∆T ⟩, we will show
how we can simulate T by an (untimed) PDA P =
⟨SP , sPinit ,ΓP ,∆P⟩. Sometimes, we refer to the latter as the
symbolic automaton. The simulation relies on a symbolic

encoding that P uses for representing, in a finite way, the
(infinite set of) configurations in T .

A. Regions

Each symbol in the stack of P is a region. We define a set
of items that we use to build regions, then define their syntax
and semantics.

Items: A region contains two sets of items, namely plain
items and shadow items. The plain items include (i) one copy
of each clock in T , used to describe the value of the clock,
(ii) exactly one symbol from the stack alphabet of T , used
to describe the name and the age of the top-most symbol in
the stack of T , and (iii) a fresh symbol ⊢ that is used as a
reference clock whose value is 0 unless we are simulating a
pop operation. Similarly, the shadow symbols include a copy
of each clock together with a copy of exactly one stack symbol,
and one copy ⊢●of ⊢. The shadow clocks record the values of
the clocks at the point where a push operation is performed.
Their values are then updated only through timed transitions.
The same applies for ⊢● The shadow stack symbol reflects
the value of the next-top-most symbol in the stack. As in the
classical definition of regions, items are abstracted by storing
their integral parts, and the relative ordering of the fractional
parts. This is done up to a certain constant (defined below).

Let Γ ∶= ΓT ∪ {bottom} where bottom /∈ ΓT is a special
symbol indicating the bottom of the stack. Define the set Y ∶=
X∪Γ∪{⊢} of plain items, and define the sets of shadow clocks
X● ∶= {x●∣ x ∈X}, shadow stack symbols Γ● ∶= {a●∣ a ∈ Γ},
and shadow items Y ● ∶= X● ∪ Γ● ∪ {⊢●}. Define the set of
items Z ∶= Y ∪ Y ●.

Syntax: Let cmax be the largest natural number that oc-
curs syntactically in the definition of T , i.e., cmax is the largest
natural number that appears in an interval that is used in the
definition of of a testing, assignment, pop, or push transition
in ∆T . Define the set Max = {0,1, . . . , cmax ,∞}, i.e., Max
contains all natural numbers up to cmax together with a special
constant ∞. A region R is a word r1r2⋯rn ∈ (2Z×Max )+
such that the following conditions are satisfied (below, let
r ∶= ∪1≤i≤nri):

● ∣(Γ ×Max) ∩ r∣ = 1 and ∣(Γ● ×Max) ∩ r∣ = 1, i.e., there
is exactly one occurrence of a stack symbol and one
occurrence of a shadow stack symbol in the region.

● ∣({⊢} ×Max) ∩ r∣ = 1 and ∣({⊢●} ×Max) ∩ r∣ = 1, i.e.,
there is exactly one occurrence of ⊢ and one occurrence
of the shadow symbol ⊢● in the region.

● ∣({x} ×Max) ∩ r∣ = 1 and ∣({x●} ×Max) ∩ r∣ = 1, for
all clocks x ∈X , i.e., each clock and each shadow clock
occurs exactly once in the region.

● ri ≠ ∅ for all i ∶ 2 ≤ i ≤ n, i.e., the sets (except possibly
r1) are not empty.

For x ∈ X ∪ X● ∪ {⊢,⊢●}, consider the unique k ∈ Max
and i ∶ 1 ≤ i ≤ n such that ⟨x, k⟩ ∈ ri. We define
Val (R) (x) ∶= k and define Index (R) (x) ∶= i . For a ∈ Γ∪Γ●,
we define Val (R) (a) and Index (R) (a) in a similar manner
except that it may be the case that Val (R) (a) = � and
Index (R) (a) = � (in case a is missing from R). We define



R⊺ ∶= {z ∈ Z ∣ Index (R) (z) ≠ �}. In other words, it gives the
set of items that occur in R. Notice that X∪X●∪{⊢,⊢●} ⊆ R⊺,
∣R⊺ ∩ Γ∣ = 1 and ∣R⊺ ∩ Γ●∣ = 1. Sometimes, abusing notation,
we write z ∈ ri to indicate that there is a k ∈ Max such that
⟨z, k⟩ ∈ ri; and, for a set A of items we write ri ∩A for the
set {⟨z, k⟩ ∣ ⟨z, k⟩ ∈ ri ∧ z ∈ A}.

Semantics: A valuation of a region R is a total function
θ ∶ R⊺ → R≥0. Consider a region R = r1r2⋯rn and a valuation
θ of R. We write θ ⊧ R to denote that the following conditions
are satisfied for all z, z1, z2 ∈ R⊺:

● θ(z) ≥ cmax + 1 iff Val (R) (z) =∞. Values larger than
or equal to cmax +1 are all abstracted to ∞ in the region.

● If θ(z) < cmax +1 then ⌊θ(z)⌋ = Val (R) (z). The region
stores only the integral parts of the item values.

● fract (θ(z1)) ≤ fract (θ(z2)) iff Index (R) (z1 ) ≤
Index (R) (z1 ). The ordering of the sets in the region
reflects the ordering of the fractional parts of the items
in these sets.

● fract (θ(z)) = 0 iff Index (R) (z) = 1 . The items in the
first set are those with integer values.

We define JRK ∶= {θ∣ θ ⊧ R}.
Example. Consider R1 in Figure 2. We have ∣R1∣ = 5, x3 ∈
r2, Index (R1 ) (x3 ) = 2 , Val (R1) (x●2) = 5, R⊺

1 ∩ Γ = {a},
R⊺

1 ∩ Γ● = {b●}. Furthermore, we have θ ⊧ R1 where θ =
[x1 ← 0.5, x2 ← 3.9, x3 ← 2.3, x●1 ← 2.0, x●2 ← 5.7, x●3 ←
4.3, a← 1.9, b● ← 6.7,⊢← 0.0,⊢●← 3.5].
B. Operations on Regions

We define a number of operations on regions that we use
to describe how we perform the simulation.

Satisfiability: For an item z ∈ Z, an interval I ∈ I, and a
region R with z ∈ R⊺, the operation checks that the value of z
in R lies in I . More precisely, we write R ⊧ (z ∈ I) iff one of
the following three conditions is satisfied: (i) Index (R) (z) =
1 , Val (R) (z) ≠∞, and Val (R) (z) ∈ I . (ii) Index (R) (z) >
1 , Val (R) (z) ≠∞, and (Val (R) (z) + v) ∈ I for some (all)
v ∈ R≥0 ∶ 0 < v < 1. (iii) Val (R) (z) = ∞ and I is of the
form (k ∶ ∞) or of the form [k ∶ ∞). If the fractional part
of z is zero then the test is equivalent to whether the integral
part of z lies in I . Otherwise, the test is equivalent to whether
the integral part of z, increased by some arbitrary real number
v ∶ 0 < v < 1, lies in the interval.
Example. In the example of Figure 2, we have that R1 ⊧ x3 ∈
(2,5), R1 /⊧ x3 ∈ (4,5), R1 ⊧ b● ∈ [2,∞), R1 /⊧ b● ∈ [2,5].

Assignment: The following operation describes the effect
of assigning a new value to an item z in a region. The operation
is used in simulating the assignment of a new value to a clock.
We define the operation in two steps, namely by first deleting
the item from the region, and then re-introducing it with its
new value. First, we define an operation that deletes an item
from a region. Consider a region R = r1⋯rn and an item
z ∈ R⊺ where Index (R) (z) = i . We define R ⊖ z to be the
(unique) word R′ ∈ (2Z×Max )+ satisfying one of the following
conditions:

● i > 1, ∣ri∣ = 1, and R′ = r1⋯ri−1ri+1⋯rn. If the set
ri is not the left-most set, and it becomes empty after

removing the item then we delete ri. This is done in order
to maintain the invariant that all sets except (possibly) the
left-most one are non-empty.

● R′ = r1⋯ri−1 (ri − {⟨z, k⟩}) ri+1⋯rn, otherwise. Here
k = Val (R) (z)

Next, we define an operation that adds an item. For a word
R = r1⋯rn ∈ (2Z×Max )+, item z ∈ Z, and k ∈ Max , we
define R⊕ ⟨z, k⟩ to be the set of words R′ either of the form
r1⋯ri−1 {⟨z, k⟩} ri⋯rn where i ∶ 2 ≤ i ≤ n + 1, or of the
form r1⋯ (ri ∪ {⟨z, k⟩})⋯rn where i ∶ 1 ≤ i ≤ n. In other
words, we insert the pair ⟨z, k⟩ somewhere in the word, either
by inserting it between two sets, or by adding it to one set.
For a region R1, and an item z ∈ Z with z ∈ R⊺

1 , we define
R1[z ← I] to be the set of regions R2 such that:

● There is an R3 and a k ∈ Max such that R3 = R1 ⊖ z,
and R2 ∈ R3 ⊕ ⟨z, k⟩, i.e., we get R3 by first deleting z
and then re-introducing it with a new value (possibly in
a different position inside the region).

● R2 ⊧ (z ∈ I). The new value of z should belong to I .
The above conditions imply that R⊺

2 = R⊺
1 . The operation, as

defined, amounts to keeping the values of all the items, except
z which is assigned a new value in I .
Example. Consider the region R3 in Figure 2. Then R4 ∈
R3[x2 ← (2 ∶5]]

Passage of Time: To simulate timed transitions, we define
an operation that describes the effect of the passage of time on
regions. For this, we need a number of definitions. For a pair
⟨z, k⟩ ∈ (Z×Max), we define ⟨z, k⟩+ ∶= ⟨z, k′⟩ where k′ = k+1
if k < cmax and k′ = ∞ otherwise. For a set r ∈ 2Z×Max , we
define r+ ∶= {⟨z, k⟩+∣ ⟨z, k⟩ ∈ r}. The operation increases the
integral parts of the clock values by one up to cmax . Consider
a region R = r1r2⋯rn. We define R+ ∶= R′ where R′ satisfies
one of the following two conditions:

● r1 ≠ ∅ and R′ = ∅r1r2⋯rn.
● r1 = ∅ and R′ = r+nr1⋯rn−1.

We write R′ ∈ R++, to denote that there are regions R0, . . . ,Rn
such that R0 = R, Rn = R′, and Ri+1 ∈ R+

i for all i ∶ 0 ≤ i < n.
We also define R+

⊢ to be the region R′ such that there are R1

and R2 satisfying the following properties:
● R1 = R⊖ ⊢, i.e., we get R1 from R by deleting the

symbol ⊢.
● R2 = R+

1 , i.e., we obtain R2 by letting time elapses.
● R′ ∈ R2⊕⟨⊢,0⟩ and R′ ⊧ (⊢∈ [0,0]), i.e., we re-introduce

the symbol ⊢ s.t. its value in R′ is 0 and such that it is
placed in the left-most set of R′. Notice that R′ is unique.

We extend R+
⊢ to R++

⊢ in a similar manner to above.
Example. In Fig. 2 and Fig. 3, we have that R′

1 = R+
1 , R5 ∈

R++
1 , and R3 ∈ (R2)++⊢ .

Product: The product operation, denoted ⊙, “merges”
the information in two regions. The operation is used in the
simulation of pop transitions in which the top-most stack
symbol is removed and its information merged with the next
symbol in the stack. The operation can be performed only
under the assumption that the two regions are consistent in
the sense that each plain item in P should “match” its shadow



counter-part in Q. More precisely, for regions P = p1p2⋯pnP
and Q = q1q2⋯qnQ , and an injection h from P to Q (recall the
definition of an injection from Section III), we write P ⪯h Q
if the following conditions are satisfied:

● Val (Q) (y●) = Val (P ) (y) for all y ∈ P ⊺ ∩ Y .
● For every i > 1, h(i) ≠ � iff there is a y ∈ Y such that
Index (P) (y) = i .

● h(1) = 1.
● If Index (P) (y) = i and Index (Q) (y●) = j then h(i) =
j.

We say that P supports Q, denoted P ⪯ Q, if P ⪯h Q for
some h. Notice that, for any P,Q, there is at most one h
for which P ⪯h Q. Let P /h = pi1 ⟨P1⟩pi2⋯pim ⟨Pm⟩, and let
Q/h = qj1 ⟨Q1⟩ qj2⋯qjm ⟨Qm⟩. Define p′k ∶= pik∩(Y ●∪Γ), and
q′k ∶= qjk∩(X∪{⊢}). Define r1 ∶= p′1∪q′1, and for k ∶ 2 ≤ k ≤m,
define rk ∶= p′k ∪ q′k if p′k ∪ q′k ≠ ∅, and rk ∶= ε if p′k ∪ q′k = ∅,
Then, R ∈ P⊙Q if R = r1 ⋅R1 ⋅ri2⋯rim ⋅Rm and Rk ∈ Pk⊗Qk
for k ∶ 1 ≤ k ≤m.

For regions P,Q, we define P ∗ Q ∶=
{P ′ ⊙Q∣ P ′ ∈ P ++ ∧ P ′ ⪯ Q}. In other words, we let
time pass on P until it supports Q after which we compute
their product.
Example. In Fig. 2, we have that R5 ⪯ R4, R6 ∈ R5⊙R4, and
R6 ∈ R1 ∗R4.

Resetting: The operation is used when describing the
simulation of push operations. In P we add a new region to
the top of the stack. The operation resets the shadow clocks
and ⊢● in the sense that it forgets their previous values and
instead makes their values identical to the corresponding plain
clocks. In other words, the value of each x● will now be made
equal to the value of x. The new shadow clocks (which record
the values of the clocks when the push operation was made)
should therefore be equal to those of their plain counter-parts.
Furthermore, we add a new plain symbol to the stack whose
age should be in the interval specified by the push operation.
We first extend the operation ⊖ that deletes items (see the
text on variable assignment) to sets of items as follows. For
a region R and a set A = {z1, . . . , zn} ⊆ R⊺ we define
R ⊖ A ∶= (⋯((R ⊖ z1) ⊖ z2)⋯) ⊖ zn, i.e., it is the region
we get by deleting from R all the items in A. For a region
R1, a stack symbol a ∈ Γ, and an interval I ∈ I, we define
Reset(R1)[a ← I] to be the set of regions R2 such that
there are R3 = r1 . . . rn, R4, and R5 satisfying the following
properties:

● R3 = R1 ⊖ (R⊺
1 ∩ Y ●), i.e., we get R3 by deleting all the

shadow symbols from R1.
● R4 = r′1⋯r′n where r′i = ri ∪ {⟨y●, k⟩ ∣ ⟨y, k⟩ ∈ ri} for
i ∶ 1 ≤ i ≤ n. In other words, for each plain item we
add the shadow counter-part with an identical value and
index.

● R5 = R4 ⊖ b where b ∈ R⊺
1 ∩ Γ. We remove the (only)

plain stack symbol in R1 (its shadow has already been
copied in the previous step).

● R2 ∈ R5 ⊕ ⟨a, k⟩ and R2 ⊧ (a ∈ I), i.e., we add the new
plain stack symbol such that its value and index reflect

that its age belongs to I .

Example. R2 ∈ Reset(R1)[d← [1 ∶∶ 3]] in Figure 2,

VI. SIMULATION

Fix a TPDA T = ⟨ST , sTinit ,ΓT ,∆T ⟩ with a set X of
clocks. We will show how we can simulate T by an (untimed)
PDA P = ⟨SP , sPinit ,ΓP ,∆P⟩. We describe the construction
of P in different steps. First, we define the set of states SP .
Then, we describe transitions that carry out an initialization
phase in P . Finally, we give sets of transitions in P that are
used to simulate both timed transitions and different types of
discrete transitions (depending on the involved operation).

States: For each state s ∈ ST there is a copy of s in SP .
These states are called genuine states. Furthermore, the set
SP contains a number of temporary states that are used in the
simulation. Each transition of T is simulated in P in a number
of steps. To simplify the notation, we write a temporary state in
the form tmp(⋅, ⋅) where the arguments indicate the transition
in ∆T we are currently simulating and the number of steps we
have performed in this simulation. A configuration β = ⟨s,w⟩
in P is said to be genuine resp. temporary if s is genuine resp.
temporary. The simulation starts form the distinguished initial
state sPinit (which is considered to be a temporary state).

Initialization: We define the initial re-
gion Rinit ∶= {⟨x,0⟩ ∣ x ∈X ∪X● ∪ {⊢,⊢●}} ∪
{⟨bottom,0⟩ , ⟨bottom●,0⟩}. In other words, all plain/shadow
clocks and the symbols {⊢,⊢●} have initial values equal to
0. Furthermore, the region contains bottom indicating the
bottom of the stack. In fact, the value of bottom is never
used in the simulation, so taking its initial value to be 0 is
an arbitrary decision. The same applies to the values of the
shadow clocks and ⊢●. Also, the shadow bottom● of the
bottom symbol is not used in the simulation (we include
only to preserve the invariant that a region contains a shadow
stack symbol). Notice that Rinit is a word of length one (it
contains a single set). Now, the set ∆P contains a transition
⟨sPinit ,push(Rinit), sTinit⟩. This transition pushes the region
indicating the bottom of the stack, and moves from the initial
state sPinit of P to the state sTinit from which the simulation
of T is started.

Timed Transitions: For each region R, and state s ∈
ST , the set SP contains a state tmp(timed , s,R) and ∆P

contains the transitions ⟨s,pop(R),tmp(timed , s,R)⟩ and
⟨tmp(timed , s,R),push(R+

⊢), s⟩. In other words, we let time
pass on the top-most region R in the stack by popping it and
replacing by the region R+. We also keep ⊢ in the left-most
position of the top-most region. We can simulate the passage
of an arbitrary amount of time by repeatedly firing the above
two transitions. Notice that we simulate the effect of timed
transition only on the top-most region in the stack.

nop: For each transition ⟨s,nop, s′⟩ ∈ ∆T , the set ∆P

contains the transition ⟨s,nop, s′⟩. Since the empty operation
only changes the local state of T it is simulated in a straight-
forward manner in P .



x ∈ I?: For each transition ⟨s, x ∈ I?, s′⟩ ∈ ∆T and
region R such that R ⊧ (x ∈ I), the set SP con-
tains the state tmp(t,R), and ∆P contains the transitions
⟨s,pop(R),tmp(t ,R)⟩ and ⟨tmp(t,R),push(R), s ′⟩. The en-
abledness of the transition is checked by first popping the
region (to check that the condition is satisfied), and then
pushing it back to the stack. Since neither the clock values
nor the stack content is affected in T , the stack content in P
is not affected.

x ← I: For each transition ⟨s, x← I, s′⟩ ∈ ∆T and
region R, the set SP contains the state tmp(t,R), and ∆P

contains the transition ⟨s,pop(R),tmp(t ,R)⟩. Furthermore,
for each R′ ∈ R[x ← I], ∆P contains the transition
⟨tmp(t,R),push(R′), s ′⟩. In other words, P first moves to
tmp(t,R) to indicate that it is about to assign a new value to
x. From tmp(t,R) there are several outgoing transitions each
corresponding to the assignment of one particular value that
belongs in I . Each of these transitions leads to the state s′.

pop(a, I ): We remove the top-most region Q in the
stack in case its symbol is a and its age lies in the interval
I . The main difficulty is to update the information in the next
region P in the stack. Recall that when performing timed
transitions, the items of P are not changed to reflect the
passage of time. The update operation is performed in two
steps. First we let time pass on P until it is transformed
to a region that supports Q after which we compute the
product R and use it to replace both Q and P . Formally,
for each transition t = ⟨s,pop(a, I ), s ′⟩ ∈ ∆T , we add the
following states and transitions. For regions P,Q with Q ⊧
(a ∈ I), SP contains the states tmp(t,Q) and tmp(t,Q,P ),
and ∆P contains the transitions ⟨s,pop(Q),tmp(t ,Q)⟩
and ⟨tmp(t,Q),pop(P),tmp(t ,P ,Q)⟩. Furthermore, for
each region R ∈ P ∗ Q, ∆P contains the transition
⟨tmp(t, P,Q),push(R), s ′⟩. Observe that the plain symbol ⊢
is in the left-most position of the newly pushed region R.

push(a, I ): We create a new top-most region in the
stack. In the new region, the values of the plain clocks are
copied, and the shadow items are all reset making them equal
to the values of their plain counter-parts. Finally, the new stack
symbol a is assigned an age in the interval I . Formally, for
each transition t = ⟨s,push(a, I ), s ′⟩ ∈ ∆T and region R,
the set SP contains the states tmp1(t,R) and tmp2(t,R).
The set ∆P contains the transitions ⟨s,pop(R),tmp1 (t ,R)⟩
and ⟨tmp1(t,R),push(R),tmp2 (t ,R)⟩ . Furthermore, for
each R′ ∈ Reset(R)[a ← I], ∆P contains the transition
⟨tmp2(t,R),push(R′), s ′⟩. Observe that the plain symbol ⊢
is in the left-most position of the newly pushed region R′.

VII. CORRECTNESS

In this section we show correctness of the construction de-
scribed in Section VI. Given a TPDA T = ⟨ST , sTinit ,ΓT ,∆T ⟩
consider the PDA P = ⟨SP , sPinit ,ΓP ,∆P⟩ derived from T as
described in Section VI. Consider a state sF ∈ ST . Then:

Theorem 1. sF is reachable in T iff sF is reachable in P .

Let A be a non-empty set of symbols. An extended region
RA over A is a word r1r2⋯rn ∈ (2A×Max )+ such that the
following conditions are satisfied (below, let r ∶= ∪1≤i≤nri):
∣(A ×Max) ∩ r∣ ≤ 1 and ri ≠ ∅ for all i ∶ 2 ≤ i ≤ n. Observe
that a region is an extended region over the set Z. We extend
all notations and operations on regions (when meaningful) to
extended regions in the natural manner.

Below, we give the proof of Theorem 1 in both direction.
From T to P: A stack region, or simply an s-region,

is a word R = R0R1⋯Rn over the set of regions. Notice
that the stack content of P is always an s-region. For regions
P,Q, we say that P weakly supports Q, denoted P ⪷ Q, if
there is a region P ′ ∈ P ++ such that P ′ ⪯ Q. An s-region
R = R0R1⋯Rn is said to be weakly coherent if Ri ⪷ Ri+1

for all i ∶ 0 ≤ i < n; and is said to be coherent if Ri ⪯ Ri+1

for all i ∶ 0 ≤ i < n. A configuration ⟨s,R⟩ in P is said to
be (weakly) coherent if R is (weakly) coherent. We show the
following property for reachable configurations in P .

Lemma 2. All reachable genuine configurations are weakly
coherent.

Consider a weakly coherent s-region R = R0R1⋯Rn, we
say that Q = Q0Q1⋯Qn is a strengthening of R if Qn = Rn,
and Qi ∈ R++

i and Qi ⪯ Qi+1 for all i ∶ 0 ≤ i < n. Notice that
this operation is well-defined by the following lemma.

Lemma 3. If R1 ⪷ R2 and R3 ∈ R++
2 then R1 ⪷ R3

Consider a coherent s-region R = R0R1⋯Rn. Define ZR
to be the set of symbols Z ×n(0). A collapsing C of R is an
extended region over ZR such that the following conditions
are satisfied:

● C⊺ = ⋃ni=0(R⊺
i × {i}).

● Val (Ri) (z) = Val (C) (z, i) for all i ∶ 0 ≤ i ≤ n and
z ∈ R⊺

i .
● Index (Ri) (z) = 1 iff Index (C ) (z , i) = 1 for all i ∶ 0 ≤
i ≤ n and z ∈ R⊺

i .
● Index (Ri) (z1 ) ≤ Index (Ri) (z2 ) if and only if
Index (C ) (z1 , i) ≤ Index (C ) (z2 , i) for all i ∶ 0 ≤ i ≤ n
and z1, z2 ∈ R⊺

i .
● Val (C) (y●, i) = Val (C) (y, i − 1) and
Index (C ) (y●, i) = Index (C ) (y , i − 1 ) for all
y ∈ (R⊺

i−1 ∩ Y ) and i ∶ 1 ≤ i ≤ n.

Consider a coherent configuration β = ⟨s,R⟩ in P , a
collapsing C of R, and a configuration γ = ⟨s′,X,w⟩ in T .
Let w = ⟨a1, v1⟩⋯ ⟨an, vn⟩ and let R = R0R1⋯Rn. We write
γ ⊧C β if there is a valuation θ of C such that θ ⊧ C and the
following conditions are satisfied:

● s′ = s.
● X(x) = θ(x,n) for all x ∈X .
● ai ∈ R⊺

i for all i ∶ 1 ≤ i ≤ n.
● vi = θ(ai, i) for all i ∶ 1 ≤ i ≤ n.

Lemma 4. For any genuine reachable configuration β in P ,
strengthening β′ = ⟨s,R⟩ of β, and collapsing C of R, there
is a configuration γ in T such that γ ⊧C β and γinit ∗ γ.



Now, if the final state sF is reachable in P then we know
that there a genuine reachable configuration β whose state is
precisely sF . Notice that Lemma 2 implies that β is weakly
coherent (and hence we can speak about the existence of at
least one strengthening β′ = ⟨s,R⟩). Moreover, it is easy to
show that for the coherent s-region R, there exists at least
one collapsing C of R. Thus, we can apply Lemma 4 to the
genuine reachable configuration β in P , the strengthening β′,
and the collapsing C, to show the existence of a reachable
configuration γ in T whose state is sF (since γ ⊧C β).

From P to T : For the opposite direction, we need to
prove the following lemma:

Lemma 5. For any reachable configuration γ in T , there is
a configuration β in P , a strengthening β′ = ⟨s,R⟩ of β, and
collapsing C of R, such that γ ⊧C β and βinit

∗Ð→ β.

As an immediate consequence of Lemma 5, we get that if
a state sF is reachable in T , then sF is reachable in P .

VIII. COMPLEXITY OF THE REACHABILITY PROBLEM

In this section, we show:

Theorem 6. The reachability problem for TPDA is EXPTIME-
complete.

The rest of this section is devoted to the proof of this
theorem. Let us first prove the EXPTIME lower bound of
Theorem 6.

Lemma 7. The reachability problem for TPDA is EXPTIME-
hard.

Proof: It is known that the following problem is
EXPTIME-complete [19]: Given a labeled pushdown automa-
ton P recognizing a language L, and n finite state automata
Ai recognizing languages Li, check the non-emptiness of
L ∩⋂ni=1Li. We can show that this problem can be reduced,
in polynomial time, to the reachability problem for a TPDA
T . The pushdown part of T simulates the labeled pushdown
automaton P , while each clock xi is used to simulate the
automaton Ai. The valuation of the clock xi gives the current
state of Ai. (We assume here that the automaton Ai does
not contain epsilon-transitions.) Moreover, we use an auxil-
iary clock to ensure that no time elapses during the whole
simulation.

The simulation proceeds as follows: An ε-transition of P is
simulated by a transition of the pushdown part of T while the
clocks remain unchanged. A labeled transition of P with an
input symbol a, is simulated by a transition of the pushdown
part of T , followed by a sequence of transitions in which
the clocks are checked and then updated, one after the other,
to ensure each automaton Ai is able to perform a transition
labeled by a.

The following lemma shows the EXPTIME upper bound of
Theorem 6.

Lemma 8. The reachability problem for TPDA is in EXPTIME.

Proof: It is well-known that the reachability problem for
(untimed) pushdown automata can be solved in polynomial
time (see for instance [8]). On the other hand, in Sections VI
and VII, we showed that it is possible to construct a PDA P ,
whose size is exponential in the given TPDA T , such that the
reachability problem for T is reducible to its corresponding
one for P . This implies that the reachability problem for TPDA
is in EXPTIME.

IX. CONCLUSIONS AND FUTURE WORK

We have considered TPDA, an extension of two classical
models, namely those of pushdown automata and timed au-
tomata. We have shown the decidability of the reachability
problem for TPDA through a reduction to the corresponding
problem for pushdown automata. The reduction relies on a
non-trivial extension of the classical region encoding in a
manner that allows to reason about unbounded sets of clocks.
Interesting directions for future research include considering
more general verification problems such as the model checking
problem wrt. temporal logics such as LTL, decision problems
over the game-based semantics, and the verification of priced
TPDA models.
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APPENDIX

PROOFS OF SOME LEMMAS

Before going into the details of the proofs, we introduce
some notions and operations.

For configuration β = ⟨s,w⟩ of P we define β[state ←
s′] ∶= ⟨s′,w⟩, i.e., it is the configuration we get from β by
changing the state of β to s′ while keeping the stack content.
We define β[stack ← w′] ∶= ⟨s,w′⟩. For a configuration γ =
⟨s,X,w⟩ of T we define γ[state ← s′] and and γ[stack ←
w′] similarly. For a clock x ∈ X and v ∈ R≥0, we define
γ[x ← v] ∶= ⟨s,X′,w⟩, where X′ = X[x ← v], i.e., it is the
configuration we get from γ by changing the value of x to v.

For a configuration β = ⟨s,w⟩ in P , we define
StateOf (β) ∶= s and StackOf (β) ∶= w. For a configuration
γ = ⟨s,X,w⟩ in T , we define StateOf (γ) ∶= s, CValOf (γ) ∶=
X, and StackOf (γ) ∶= w.

Let A and B be two sets. Let R = r1r2⋯rn be an extended
region over A and f ∶ A→ B a total function that maps A to B.
We use f(R) to denote the extended region R′ = r′1r′2⋯r′n over
B such that r′i ∶= {⟨f(a), k⟩∣ ⟨a, k⟩ ∈ ri} for all i ∶ 1 ≤ i ≤ n.

Let R = R0R1⋯Rn be a coherent s-region, and C be a
collapsing of R. Let θ be a valuation of C. For every i ∶
0 ≤ 1 ≤ n, we define the valuation θ(i) of Ri from θ as
θ(i)(z) ∶= θ(z, i) for all z ∈ R⊺

i .
Consider a coherent configuration β = ⟨s,R⟩ in P , a

collapsing C of R, a valuation θ of C, and a configuration
γ = ⟨s′,X,w⟩ in T . Let w = ⟨a1, v1⟩⋯ ⟨an, vn⟩ and let
R = R0R1⋯Rn. Then, we use γ ⊳ θ to denote that the
following conditions are satisfied:

● X(x) = θ(x,n) for all x ∈X .
● ai ∈ R⊺

i for all i ∶ 1 ≤ i ≤ n.
● vi = θ(ai, i) for all i ∶ 1 ≤ i ≤ n.

Notice that γ ⊧C β iff s′ = s, θ ⊧ C and γ ⊳ θ.
For a mapping θ ∶ A → R≥0, we use θReg to denote the

unique extended region R over A such that θ ⊧R.

PROOF OF LEMMA 4

Suppose that βinit
∗Ð→β for some genuine configuration β

in P . We use induction on the number of transition steps from
βinit to β to show that that for any strengthening β′ of β and

collapsing C of β′, there is a configuration γ in T such that
γ ⊧C β and γinit ∗ γ.

Initialization

Consider the transition βinit
tÐ→β where t =

⟨sPinit ,push(Rinit), sTinit⟩. We know that StateOf (β) = sinit ,
StackOf (β) = Rinit . The only strengthening of Rinit

is Rinit itself. Notice that R⊺
init ∩ Γ = {bottom} and

R⊺
init ∩ Γ● = {bottom●}. The only collapsing C of Rinit

is Rinit . Let θ be a valuation of C defined as follows:
θ(x,0) = 0, θ(x●,0) = 0 for all clocks x ∈ X , and
θ(bottom,0) = θ(bottom●,0) = 0. It is easy to see that
θ ⊧ C. We show that γinit ⊳ θ:

● Take any clock X . We have that θ(x,0) = 0 =
CValOf (γinit) (x).

● The condition ai ∈ R⊺
i and θ(ai, i) = vi for all i ∶ 1 ≤ i ≤

n, hold trivially since n = 0.
Since θ ⊧ C, γinit ⊳ θ, and StateOf (γinit) = sTinit =
StateOf (β) it follows that γ ⊧C β.

nop

If there is a transition t = ⟨s,nop, s′⟩ ∈ ∆ and
βinit

∗Ð→β1
t1Ð→β where t1 = ⟨s,nop, s′⟩, StateOf (β1) = s,

and StateOf (β) = s′. Let StackOf (β1) = R = R0⋯Rn. We
know that StackOf (β) =R. Let R′ be a strengthening of R
and let C be a collapsing of R′. By the induction hypothesis,
there is a configuration γ1 such that γ1 ⊧C β1 and γinit ∗ γ1.
Define γ ∶= γ1[state ← s′]. Since StateOf (γ) = s′ =
StateOf (β), γ1 ⊧φ β1, and StackOf (γ) = StackOf (γ1),
it follows that γ ⊧C β. Also γ1

t γ since StateOf (γ1) = s,
StateOf (γ) = s′, and StackOf (γ) = StackOf (γ1).

x ∈ I?

If there is a transition ⟨s, x ∈ I?, s′⟩ ∈ ∆ and
βinit

∗Ð→β1
t1Ð→β2

t2Ð→β where t1 = ⟨s,pop(R),tmp(t ,R)⟩,
t2 = ⟨tmp(t,R),push(R), s ′⟩, R ⊧ (x ∈ I), StateOf (β1) = s,
and StateOf (β) = s′. Let StackOf (β1) = R = R0⋯Rn
where Rn = R. We know that StackOf (β) = R. Let
R′ be a strengthening of R and let C be a collapsing
of R′. By the induction hypothesis, there is a configura-
tion γ1 such that γ1 ⊧C β1 and γinit

∗ γ1. Define γ ∶=
γ1[state ← s′]. Since StateOf (γ) = s′ = StateOf (β),
StackOf (γ) = StackOf (γ1), CValOf (γ) = CValOf (γ1),
and StackOf (β) = StackOf (β1) it follows that γ ⊧C β.
Now, we show that γ1 γ. Since C is a collapsing of R′

and γ ⊧C β, there is a valuation θ of C such that γ1 ⊳ θ and
θ ⊧ C. From γ1 ⊳ θ we know that CValOf (γ1) (x) = θ(x,n).
From θ ⊧ C we know that θ(n) ⊧ Rn. Since θ(n) ⊧ Rn
and R ⊧ (x ∈ I) we have that θC(n)(x) ∈ I . Since
θ(n)(x) = θ(x,n) by definition, it follows that θ(x,n) ∈ I
and hence CValOf (γ1) (x) ∈ I .

x← I

If there is a transition ⟨s, x← I, s′⟩ ∈ ∆ and
βinit

∗Ð→β1
t1Ð→β2

t2Ð→β where t1 = ⟨s,pop(P),tmp(t ,P)⟩,
t2 = ⟨tmp(t, P ),push(Q), s ′⟩, Q ∈ P [x ← I],



StateOf (β1) = s, and StateOf (β) = s′. Let
StackOf (β1) = R1 = R0⋯Rn−1P . We know that
StackOf (β) = R = R0⋯Rn−1Q. Let R′ = R′

0⋯R′
n−1Q

be a strengthening of R and let C = c1c2⋯cm be a collapsing
of R′. It follows that R′

1 = R′
0⋯R′

n−1P is a strengthening of
R1. Define an extended region C1 over C⊺as follows:

● Index (C ) (z) = 0 iff Index (C1 ) (z) = 0 for all z ∈
C⊺ ∖ {(x,n)}.

● Val (C) (z) = Val (C1) (z) for all z ∈ C⊺ ∖ {(x,n)}.
● Index (C ) (z1 ) ≤ Index (C ) (z2 ) iff Index (C1 ) (z1 ) ≤
Index (C1 ) (z2 ) for all z1, z2 ∈ C⊺ ∖ {(x,n)}.

● Val (C1) (x,n) = Val (P ) (x).
● Index (C1 ) (x ,n) = 0 iff Index (P) (x) = 0 .
● Index (C1 ) (x ,n) ≤ Index (C1 ) (z ,n) iff
Index (P) (x) ≤ Index (P) (z) for all z ∈ P ⊺.

Observe that an extended region C1 respecting the above
conditions can be effectively constructed from C and P . We
skip here its explicit construction since we need only the
above constraints. Furthermore, we can see that that C1 is
a collapsing of R′

1. By the induction hypothesis there is a
configuration γ1 such that γ1 ⊧C1 β1 and γinit

∗ γ1. Since
γ1 ⊧C1 β1, we know that StateOf (β1) = StateOf (γ1), and
that there is a valuation θ1 of C1 such that θ1 ⊧ C1 and γ1 ⊳ θ1.
Since γ1 ⊳ θ1, we know that StackOf (γ1) is of the form
⟨a1, v1⟩⋯ ⟨an, vn⟩ and the following conditions are satisfied:

● CValOf (γ1) (x′) = θ1(x′, n) for all x′ ∈X .
● (ai, i) ∈ C⊺

1 for all i ∶ 1 ≤ i ≤ n.
● vi = θ1(ai, i) for all i ∶ 1 ≤ i ≤ n.
From the valuation θ1, we can effectively define a valuation

θ of C such that θ ⊧ C and θ(z) = θ1(z) for all z ∈ C⊺ ∖
{(x,n)}. On the other hand, we know that θC(n) ⊧ Q and
that θC(n)(x) = θ(x,n). Since θC(n) ⊧ Q and Q ⊧ (x ∈ I)
it follows that θ(x,n) ∈ I .

Define γ such that StateOf (γ) ∶= s′,
CValOf (γ) ∶= CValOf (γ) [x ← θ(x,n)], and
StackOf (γ) ∶= StackOf (γ1) = ⟨a1, v1⟩⋯ ⟨an, vn⟩. We
show that γ ⊳ θ:

● CValOf (γ) (x′) = θ(x′, n) for all x′ ∈ X ∖ {x}
since CValOf (γ1) (x′) = θ1(x′, n), CValOf (γ1) (x′) =
CValOf (γ) (x′), and θ1(x′, n) = θ(x′, n).

● CValOf (γ) (x) = θ(x,n) (by definition).
● (ai, i) ∈ C⊺ for all i ∶ 1 ≤ i ≤ n.
● vi = θ(ai, i) for all i ∶ 1 ≤ i ≤ n since θ1(ai, i) = θ(ai, i)

and vi = θ1(ai, i).
Since θ ⊧ C, γ ⊳ θ, and StateOf (β) = StateOf (γ) it
follows that γ ⊧ β.

Finally, we show that γ1 γ. Since CValOf (γ) (x) =
θ(x,n) and θ(x,n) ∈ I , we know that CValOf (γ) (x) ∈ I .
Then it follows from the fact that StateOf (γ1) = s,
StateOf (γ) = s′, StackOf (γ) = StackOf (γ1),
CValOf (γ) = CValOf (γ1) [x ← θ(x,n)], and
CValOf (γ) (x) ∈ I .

Timed Transitions
If βinit

∗Ð→β1
t1Ð→β2

t2Ð→β where t1 =
⟨s,pop(P),tmp(timed , s,P)⟩, t2 =

⟨tmp(timed , s, P ),push(P+
⊢ ), s⟩, StateOf (β1) = s,

StateOf (β2) = tmp(timed , s, P ) and StateOf (β) = s.
Let StackOf (β1) = R1 = R0⋯Rn−1P . We know that
StackOf (β) = R = R0⋯Rn−1Q with Q = P +

⊢ . Before
giving the proof for timed transitions, we need to prove the
following lemmata:

Lemma 9. Let R be a region such that Index (R) (⊢) = 1 and
Val (R) (⊢) = 0. Let R′ be a region such that R′ ∈ R++ and
Index (R) (⊢) > 1 or Val (R) (⊢) > 0. Then, the following
conditions are satisfied:

● If Val (R′) (⊢) <∞ or Index (R′) (⊢) > 1 then there is
a unique region R′′ such that R′ = (R′′)+ and R′′ ∈ R++.

● If Val (R′) (⊢) = ∞ and Index (R′) (⊢) = 1 then there
for every k ∈ {cmax ,∞}, there is a unique R′′ such that
R′ = (R′′)+, R′′ ∈ R++, and Val (R′′) (⊢) = k.

Proof: This is an immediate consequence of the time
passing operations.

For every number k ∈ (N ∪ {∞}), we define [k]cmax as
follows:

● k > cmax iff [k]cmax =∞.
● k ≤ cmax iff [k]cmax = k.

Lemma 10. Let R and R′ be two regions such that R′ ∈
R++. Let z1, z2 ∈ R⊺ be two symbols such that Val (R) (z1) ≤
Val (R) (z2). Then, we have:

● For every ∼∈ {≤,>}, if Index (R) (z1 ) ∼ Index (R) (z2 )
and Index (R′) (z1 ) ∼ Index (R′) (z2 ), then
if Val (R′) (z1) = ∞ then Val (R′) (z2) = ∞
otherwiseVal (R′) (z2) = [k]cmax with k =
Val (R) (z2) +Val (R′) (z1) −Val (R) (z1).

● If Index (R) (z1 ) < Index (R) (z2 ) and
Index (R′) (z1 ) > Index (R′) (z2 ), then if
Val (R′) (z1) = ∞ then Val (R′) (z2) = ∞,
otherwise Val (R′) (z2) = [k + 1]cmax with
k = Val (R) (z2) +Val (R′) (z1) −Val (R) (z1).

● If Index (R) (z1 ) > Index (R) (z2 ), Index (R′) (z1 ) <
Index (R′) (z2 ), and Val (R) (z1) < Val (R) (z2), then
if Val (R′) (z1) = ∞ then Val (R′) (z2) = ∞, otherwise
Val (R′) (z2) = [k − 1]cmax with k = Val (R) (z2) +
Val (R′) (z1) −Val (R) (z1).
Proof: The proof can be done by induction on the number

of time passing operations performed from R to reach the
region R′.

Lemma 11. Let P and Q be two regions such that
Index (P) (⊢) = 1 , Val (P ) (⊢) = 0, and P ⪷ Q. Let P ′ ∈
P ++ and Q′ ∈ Q++ be two regions such that Val (P ′) (⊢) =
Val (Q′) (⊢●). Then, for every ∼∈ {<,=,>}, and every plain
symbol y ∈ Y such that Index (P ′) (y) ∼ Index (P ′) (⊢) and
Index (Q ′) (y●) ∼ Index (Q ′) (⊢●), we have Val (P ′) (y) =
Val (Q′) (y●).

Proof: Since P ⪷ Q, this implies that there is a region
P ′′ such that P ′′ ∈ P ++ and P ′′ ⪯ Q.

Lemma 12. Let R′ = R′
0⋯R′

n−1Q be a strengthening of R.
Then for every i ∶ 0 ≤ i < n, we have:



● If Val (R′
i) (⊢) <∞ or Index (R′

i) (⊢) > 1 then there is
a unique region R′′

i such that R′
i = (R′′

i )
+ and R′′

i ∈ Ri++.
● If Val (R′) (⊢) = ∞ and Index (R′

i) (⊢) = 1 then there
for every k ∈ {cmax ,∞}, there is a unique R′′

i such that
R′
i = (R′′

i )
+, R′′

i ∈ Ri++, and Val (R′′
i ) (⊢) = k.

Proof: Since Q = P⊢+ (i.e., some time has been elapsed),
we have that one of the following two cases occurs: (1)
Index (Q) (⊢●) > 1 or (2) Val (Q) (⊢●) > 0. Furthermore,
we have that R′

n−1 ⪯ Q. This implies that one of the
following two cases occurs: (1) Index (R′

n−1 ) (⊢) > 1 or (2)
Val (R′

n−1) (⊢) > 0. Step by step, we can show that for every
i ∶ 0 ≤ i < n, we have that one of the following two cases
occurs: (1) Index (R′

i) (⊢) > 1 or (2) Val (R′
i) (⊢) > 0.

Since, for every i ∶ 0 ≤ i < n, Index (Ri) (⊢) = 1 and
Val (Ri) (⊢) = 0, we know that R′

i ∈ (Ri+)
++. Then, we can

apply Lemma 9 to R′
i and Ri to show that the following two

conditions are satisfied :
● If Val (R′

i) (⊢) <∞ or Index (R′
i) (⊢) > 1 then there is

a unique region R′′
i such that R′

i = (R′′
i )

+ and R′′
i ∈ Ri++.

● If Val (R′
i) (⊢) = ∞ and Index (R′

i) (⊢) = 1 then there
for every k ∈ {cmax ,∞}, there is a unique R′′

i such that
R′
i = (R′′

i )
+, R′′

i ∈ Ri++, and Val (R′′
i ) (⊢) = k.

Let jmin = min{j ∣ z ∈ (Z ∖ {⊢}) and j = Index (Q) (z)}
and zmin be an item of (Z∖{⊢}) such that Index (Q) (zmic) =
jmin . Observe that jmin ≤ 2 from the definition of a region.

Lemma 13. Let R′ = R′
0⋯R′

n−1Q be a strengthening of R
and C be a collapsing of R′. If Index (C ) (zmin ,n) > 2 then
there is a strengthening U = U0⋯Un−1Q ofR and a collapsing
C ′ of U such that:

● R′
i ∈ Ui++ for all i ∶ 0 ≤ i < n.

● Index (C ′) (zmin ,n) = Index (C ) (zmin ,n) − 1.
● C ⊖ {⟨⊢,0⟩} ∈ (C ′ ⊖ {⟨⊢,0⟩})++.

Proof: Let us assume that C = c1c2⋯cm. Then there are
two cases:

● ∣c1∣ > 1. Let us assume that c1 =
{⟨(⊢, n),0⟩ , ⟨(z1, i1), k1⟩ , ⟨(z2, i1), k1⟩ ,⋯, ⟨(z`, i`), k`⟩}.
Observe that (from the definition of jmin and the fact
that Index (C ) (zmin ,n) > 2) we have 0 ≤ ij < n for
all 1 ≤ j ≤ `. Then, consider the following s-region
U = U0⋯Un−1Un such that Un = Q and for every
i ∶ 0 ≤ i < n, Ui is defined inductively as follows:

– If there is j ∶ 1 ≤ j ≤ ` such that i = ij then
Ui is defined such that R′

i = U+
i , Ui ∈ Ri++, and

Val (Ui) (⊢) = Val (Ui+1) (⊢●). Observe that the
existence of such a region Ui (which is unique) is
guaranteed by the following facts:
∗ if Index (R′

i+1 ) (⊢●) > 1 then
Index (R′

i) (⊢) > 1 . This implies that
Val (R′

i+1) (⊢●) = Val (Ui+1) (⊢●). By Lemma
12 there is a unique region Ui such that R′

i = U+
i

and Ui ∈ Ri
++. Now, it is easy to see that

Val (R′
i) (⊢) = Val (Ui) (⊢). This implies that

Val (Ui+1) (⊢●) = Val (Ui) (⊢).

∗ if Val (R′
i+1) (⊢●) <∞ and Index (R′

i+1 ) (⊢●) =
1 then Val (R′

i) (⊢) = Val (R′
i+1) (⊢●) and

Index (R′
i) (⊢) = 1 . Since Index (R′

i) (⊢) =
Index (R′

i+1 ) (⊢●) = 1 , this implies that (⊢●
, i + 1) ∈ c1 and (⊢, i) ∈ c1. Thus we have
that Val (Ui+1) (⊢●) = Val (R′

i+1) (⊢●) − 1 and
Index (Ui+1 ) (⊢●) > 1 . By Lemma 12 there
is a unique region Ui such that R′

i = U+
i and

Ui ∈ Ri
++. This means that Val (Ui) (⊢) =

Val (R′
i) (⊢) − 1. Hence, Val (Ui+1) (⊢●) =

Val (Ui) (⊢).
∗ if Val (R′

i+1) (⊢●) =∞ and Index (R′
i+1 ) (⊢●) =

1 then Val (R′
i) (⊢) = ∞ and Index (R′

i) (⊢●) =
1 . Also, we have that Val (Ui+1) (⊢●) ∈
{cmax,∞}. We can apply Lemma 12 to show that
there is a unique region Ui such that R′

i = U+
i ,

Ui ∈ Ri++, and Val (Ui) (⊢) = Val (Ui+1) (⊢●).

– if there is no j ∶ 1 ≤ j ≤ ` such that i = ij then
Ui = R′

i.

Let us prove that U is a coherent s-region.

Lemma 14. For every i ∶ 0 ≤ i < n, we have Ui ⪯ Ui+1.

Proof: The proof is done by induction on i.

– [Basis i = n−1] If Un−1 = R′
n−1 then we have Un−1 ⪯

Un since R′
n−1 ⪯ Un (the s-region R′ is coherent).

Now, let us assume that R′
n−1 = U+

n−1, Un−1 ∈
Rn−1

++, and Val (Un−1) (⊢) = Val (Un) (⊢●).
From the definition of Un−1, we know that there
is j ∶ 1 ≤ j ≤ ` such that n − 1 = ij .
Since Index (C ) (zij ,n − 1) = 1 , this implies that
Index (R′

n−1 ) (zij ) = 1 . Let us assume that R′
n−1 =

r1r2⋯rm′ . Then, Un−1 is of the form ∅r2⋯rm′rm′+1

such that r1 = rm′+1
+.

Since c1 does not contain any symbol of the form
(z, n) with z ∈ (Z ∖ {⊢}), this implies that there is
no a ∈ Y such that (a,n−1) ∈ c1. From the definition
of the collapsing C, we have that the sets r1 and
rm′+1 contain only shadow symbols. Hence, there is
no plain symbol a ∈ Y such that a ∈ r1 or a ∈ rm′+1.
Since R′

n−1 ⪯ Q this implies that there is an injection
h from R′

n−1 to Q such that:

∗ Val (Q) (y●) = Val (R′
n−1) (y) for all y ∈

R′
n−1

⊺ ∩ Y .
∗ for every o > 1, h(o) ≠ � iff there is a y ∈ Y such

that Index (R′
n−1 ) (y) = o.

∗ h(1) = 1.
∗ If Index (R′

n−1 ) (y) = o and Index (Q) (y●) = d
then h(o) = d.

Now, we can show that Un−1 ⪯h Q since
we have: Val (Un−1) (y) = Val (R′

n−1) (y) and
Index (Un−1 ) (y) = Index (R′

n−1 ) (y) for all y ∈
R′
n−1

⊺ ∩ Y .
– [Induction i < n − 1] There are four cases:

Case 1: If Ui = R′
i and Ui+1 = R′

i+1, then it is easy
to see that Ui ⪯ Ui+1.



Case 2: Let us assume that Ui+1 = R′
i+1 and R′

i =
U+
i , Ui ∈ Ri++, and Val (Ui) (⊢) = Val (Ui+1) (⊢●).

From the definition of Ui, we know that there is j ∶
1 ≤ j ≤ ` such that i = ij . Since Index (C ) (zij , i) =
1 , this implies that Index (R′

i) (zij ) = 1 . Let us
assume that R′

i = r1r2⋯rm′ . Then, Ui is of the form
∅r2⋯rm′rm′+1 such that r1 = rm′+1

+.
Since c1 does not contain any symbol of the form
(z, i + 1) with z ∈ Z, this implies that there is no
a ∈ Y such that (a, i) ∈ c1. From the definition
of the collapsing C, we have that the sets r1 and
rm′+1 contain only shadow symbols. Hence, there is
no plain symbol a ∈ Y such that a ∈ r1 or a ∈ rm′+1.
Since R′

i ⪯ R′
i+1 = Ui+1 this implies that there is an

injection h from R′
i to R′

i+1 such that:
∗ Val (R′

i+1) (y●) = Val (R′
i) (y) for all y ∈ R′

i
⊺ ∩

Y .
∗ for every o > 1, h(o) ≠ � iff there is a y ∈ Y such

that Index (R′
i) (y) = o.

∗ h(1) = 1.
∗ If Index (R′

i) (y) = o and Index (R′
i+1 ) (y●) = d

then h(o) = d.
Now, we can show that Ui ⪯h R′

i+1 since we have:
Val (Ui) (y) = Val (R′

i) (y) and Index (Ui) (y) =
Index (R′

i) (y) for all y ∈ R′
i
⊺ ∩ Y .

Case 3: Let us assume that Ui = R′
i and

R′
i+1 = U+

i+1, Ui+1 ∈ Ri+1
++, and Val (Ui+1) (⊢) =

Val (Ui+2) (⊢●).
From the definition of Ui+1, we know that there
is j ∶ 1 ≤ j ≤ ` such that i + 1 = ij .
Since Index (C ) (zij , i + 1) = 1 , this implies that
Index (R′

i+1 ) (zij ) = 1 . Let us assume that R′
i+1 =

r1r2⋯rm′ . Then, Ui+1 is of the form ∅r2⋯rm′rm′+1

such that r1 = rm′+1
+.

Since c1 does not contain any symbol of the form
(z, i) with z ∈ Z, this implies that there is no
a ∈ Y such that (a, i) ∈ c1. From the definition
of the collapsing C, we have that the sets r1 and
rm′+1 contain only plain symbols. Hence, there is
no shadow symbol a● ∈ Y ● such that a● ∈ r1 or
a● ∈ rm′+1.
Since R′

i ⪯ R′
i+1 this implies that there is an injection

h from R′
i to R′

i+1 such that:
∗ Val (R′

i+1) (y●) = Val (R′
i) (y) for all y ∈ R′

i
⊺ ∩

Y .
∗ for every o > 1, h(o) ≠ � iff there is a y ∈ Y such

that Index (R′
i) (y) = o.

∗ h(1) = 1.
∗ If Index (R′

i) (y) = o and Index (R′
i+1 ) (y●) = d

then h(o) = d.
Now, we can show that R′

i ⪯h Ui+1 since
we have: Val (Ui+1) (y●) = Val (R′

i+1) (y●) and
Index (Ui+1 ) (y●) = Index (R′

i+1 ) (y●) for all y ∈
R′
i
⊺ ∩ Y . (This is an immediate consequence of the

fact that there is no shadow symbol a● ∈ Y ● such

that a● ∈ r1 or a● ∈ rm′+1.)

Case 4: Let us assume that Ri = U+
i = R′

i, Ui ∈ Ri++,
and Val (Ui) (⊢) = Val (Ui+1) (⊢●). Moreover, let
R′
i+1 = U+

i+1, Ui+1 ∈ Ri+1
++, and Val (Ui+1) (⊢) =

Val (Ui+2) (⊢●).
∗ If c1 does not contain any plain (resp.

shadow) symbol of the form (a, i) (resp.
(a●, i + 1)) with a ∈ Y , this implies there is
no a ∈ Y such that Index (R′

i) (a) = 1 (resp.
Index (R′

i+1 ) (a●) = 1 ). From the definition
of collapsing this implies that there is no
symbol a ∈ Y such that Index (R′

i+1 ) (a●) = 1
(resp. Index (R′

i) (a) = 1 ). This implies
that we have: Val (Ui) (y) = Val (R′

i) (y),
Index (Ui) (y) = Index (R′

i) (y),
Val (Ui+1) (y●) = Val (R′

i+1) (y●) and
Index (Ui+1 ) (y●) = Index (R′

i+1 ) (y●) for
all y ∈ R′

i
⊺ ∩ Y .

Since R′
i ⪯ R′

i+1 this implies that there is an
injection h from R′

i to R′
i+1. Now, we can show

that R′
i ⪯h Ui+1.

∗ If c1 contains a plain (resp. shadow) symbol of the
form (a, i) (resp. (a●, i+ 1)) with a ∈ Y , this im-
plies there is a ∈ Y such that Index (R′

i) (a) = 1
(resp. Index (R′

i+1 ) (a●) = 1 ). From the defi-
nition of collapsing this implies that there is a
symbol a ∈ Y such that Index (R′

i+1 ) (a●) = 1
(resp. Index (R′

i) (a) = 1 ).
Let us assume that R′

i = ri1ri2⋯rimi and R′
i+1 =

ri+1
1 ri+1

2 ⋯ri+1
mi+1 . This implies that Ui and Ui+1 are

of the following form: Ui = ∅ri2⋯rimir
i
mi+1 and

Ui+1 = ∅ri+1
2 ⋯ri+1

mi+1r
i+1
mi+1+1 with ri1 = (rimi+1)

+

and ri+1
1 = (ri+1

mi+1+1)
+

.
Since R′

i ⪯ R′
i+1 this implies that there is an

injection h from R′
i to R′

i+1 such that:
⋅ Val (R′

i+1) (y●) = Val (R′
i) (y) for all y ∈ R′

i
⊺∩

Y .
⋅ for every o > 1, h(o) ≠ � iff there is a y ∈ Y

such that Index (R′
i) (y) = o.

⋅ h(1) = 1.
⋅ If Index (R′

i) (y) = o and Index (R′
i+1 ) (y●) =

d then h(o) = d.
Consider the injection h′ from Ui to Ui+1 con-
structed from h as follows:
⋅ for every o ∶ 1 ≤ o ≤mi, we have h′(o) = h(o).
⋅ h(mi + 1) =mi+1 + 1.

Let us show that Ui ⪯h′ Ui+1.
∗ for every o > 1, we have that h′(0) ≠ � iff there

is a y ∈ Y such that Index (Ui) (y) = o. This is
an immediate consequence of the fact that: (1)
for every 1 < o ≤ mi, we have h′(o) = h(o),
(2) for y such that Index (R′

i) (y) > 1 , we have
Index (Ui) (y) = Index (R′

i) (y) (observe that
Index (R′

i) (y) ≤ mi ), and (3) h(mi +1) ≠ � and



there is a plain symbol a ∈ y such that a ∈ r1
mi+1.

∗ h′(1) = 1 since h′(1) = h(1) = 1.
∗ If Index (Ui) (y) = o and Index (Ui+1 ) (y●) =

d then h′(o) = d. This is an immedi-
ate consequence of the fact that for y such
that 1 < Index (Ui) (y) ≤ mi , we have
(1) Index (Ui) (y) = Index (R′

i) (y) and
Index (Ui+1 ) (y●) = Index (R′

i+1 ) (y●), (2) If
Index (R′

i) (y) = o and Index (R′
i+1 ) (y●) = d

then h(o) = d, and (3) h′(o) = h(o) since
1 ≤ o ≤ mi. Moreover, if Index (Ui) (y) =
mi + 1 , then Index (R′

i) (y) = 1 . This implies
that Index (R′

i+1 ) (y●) = 1 and it follows that
Index (Ui+1 ) (y●) = mi+1 + 1 . Thus, our condi-
tion is satisfied since h′(mi) =mi+1 + 1.

∗ Val (Ui+1) (y●) = Val (Ui) (y) for all y ∈ R′
i
⊺∩Y

such that Index (Ui) (y) ≤ mi . It remains to show
that for all y such that Index (U ) (y) = mi + 1 ,
we have Val (Ui+1) (y●) = Val (Ui) (y).

● ∣c1∣ = 1. This implies that c1 = {⟨⊢,0⟩} and that for
every i ∶ 1 ≤ i < i, there is no symbol z ∈ R⊺

i such
that Index (R′

i) (z) = 1 .

Then, let R′ = R′
0⋯R′

n−1Q be a strengthening of R and let
C be a collapsing of R′.

Lemma 15. There is a strengthening R′′ = R′′
0⋯R′′

n−1P of
R1 and a collapsing C1 of R1 such that:

● R′
i = (R′′

i )
++ for all i ∶ 0 ≤ i < n.

● C ⊖ {⟨⊢,0⟩} = (C1 ⊖ {⟨⊢,0⟩})++.

Proof: Let us assume that C = c1c2⋯cm and P =
p1p2⋯pn. In the following, we assume that ∣p1∣ > 1 (the other
case can be treated in a similar way). Then, we have that
Q = {⟨⊢,0⟩} (p1 − {⟨⊢,0⟩})p2⋯pn.

Lemma 16. Let z ∈ p1 with z ≠⊢ and j = Index (C ) (z ,n)
with j > 0. If j > 2 then there is a strengthening R′′ =
R′′

0⋯R′′
n−1Q of R and a collapsing C ′ of R′′ such that:

● R′
i = (R′′

i )
++ for all i ∶ 0 ≤ i < n,s

● C ⊖ {⟨⊢,0⟩} = C ′++ ⊖ {⟨⊢,0⟩}, and
● Index (C ′) (z ,n) = j − 1 .

Proof: If j = 1 then take C ′ = C and R′′ = R′. Then
there are two cases:

● ∣c1∣ = 1. This implies that c1 = {⟨⊢,0⟩} and that for
every i ∶ 1 ≤ i < i, there is no symbol z ∈ R⊺

i such
that Index (R′

i) (z) = 1 .

pop(a, I )
If there is a transition t = ⟨s,pop(a, I ), s ′⟩ ∈

∆ and βinit
kÐ→β1

t1Ð→β2
t2Ð→β3

t3Ð→β where
t1 = ⟨s,pop(Q),tmp(t ,Q)⟩, t2 =
⟨tmp(t,Q),pop(P),tmp(t ,P ,Q)⟩, t3 =
⟨tmp(t, P,Q),push(R), s ′⟩, R ∈ P ∗ Q, StateOf (β1) = s,
a ∈ Q⊺, Q ⊧ a ∈ I and StateOf (β) = s′. Let StackOf (β1)
be of the form R1 = R0⋯RnPQ. Then, StackOf (β) will
be of the form R = R0⋯RnR. Let R′ = R′

0⋯R′
nR be a

strengthening of R and let C be a collapsing of R′. Since
R ∈ P ∗ Q, we know that there is a region P ′ ∈ P ++ such
that P ′ ⪯ Q and R ∈ P ′ ⊙Q. Since R′

2 is a strengthening of
R2, we know that R′

n ⪯ R. It follows that R′
n ⪯ P ′. This

means that R′
1 = R′

0⋯R′
nP

′Q is a strengthening of R1. Let
P ⊺ ∩ Γ = {b}. Since R ∈ P ′ ⊙Q, we know that there are D1

and D2 such that the following conditions are satisfied:

● D1 is a collapsing of the (coherent) s-region P ′Q.
● D2 =D1⊖({⟨y●,2⟩ ∣ y● ∈ Q⊺} ∪ {⟨a,2⟩} ∪ {⟨x,1⟩ ∣ x ∈X}).
● R = f1(D2) where f1(x,2) = x for all x ∈X , f1(y●,1) =
y● for all y● ∈ P ⊺ ∩ Y ●, and f1(b,1) = b.

Define D3 ∶= f2(D1) where f2(z,2) = ⟨z, n + 2⟩ and
f2(z,1) = ⟨z, n + 1⟩ for all z ∈ Z. Let h be the (unique)
injection from D3 to C such that the following properties are
satisfied:

● h(1) = 1.
● If Index (D3 ) (x ,n + 2 ) = i and Index (C ) (x ,n + 1 ) =
j for some x ∈X then h(i) = j.



● If Index (D3 ) (y●,n + 1 ) = i and
Index (C ) (y●,n + 1 ) = j for some y● ∈ P ⊺ ∩ Y ●

then h(i) = j.
● If Index (D3 ) (b,n + 1 ) = i and Index (C ) (b,n + 1 ) =
j then h(i) = j.

Let D3/h = di1 ⟨D1⟩di2⋯dim ⟨Dm⟩, and let C/h =
cj1 ⟨C1⟩ cj2⋯cjm ⟨Cm⟩. Define C1 ∶= c11C

1
1c

1
2⋯c1mC1

m such
that the following conditions are satisfied:

● c1k = (cjk ∩ ((Z × n(0)) ,Max)) ∪ dik for all k ∶ 1 ≤ k ≤
m.

● C1
k ∈ Ck ⊗Dk for all k ∶ 1 ≤ k ≤m.

From the definitions it follows that C1 is a collapsing of R1

By the induction hypothesis, there is a configuration γ1 such
that γinit ∗ γ1, and there is a valuation θ1 of C1 such that
θ1 ⊧ C1 and γ1 ⊳ θ1. Define the valuation θ of C as follows:

● θ(z, i) ∶= θ1(z, i) for all z ∈ Z and i ∶ 1 ≤ i ≤ n.
● θ(x,n + 1) ∶= θ1(x,n + 2) for all x ∈X .
● θ(y●, n + 1) ∶= θ1(y●, n + 1) for all y● ∈ Y ● ∩ P ⊺.
● θ(b, n + 1) ∶= θ1(b, n + 1).

We know that StackOf (γ1) is of the form
⟨a1, v1⟩⋯ ⟨an+1, vn+1⟩ ⟨an+2, vn+2⟩ where ⟨an+2, vn+2⟩ =
⟨a, v⟩. Define γ ∶= γ1[state ← s′][stack ←
⟨a1, v1⟩⋯ ⟨an+1, vn+1⟩]. It follows that θ ⊧ C, γ ⊳ θ.
Next, we show that γ1

t γ. From γ1 ⊳ θ1 we know that
θ1(a,n + 2) = v. From θ1 ⊧ C1 we know that θ1(n + 2) ⊧ Q.
Since θ1(n + 2) ⊧ Q and Q ⊧ (a ∈ I) we have that
θ1(n + 2)(a) ∈ I . Since θ1(n + 2)(a) = θ1(a,n + 2) by
definition, it follows that θ1(a,n + 2) ∈ I and hence v ∈ I .
The result follows immediately.

push(a, I )
If there is a transition t = ⟨s,pop(a, I ), s ′⟩ ∈

∆ and βinit
kÐ→β1

t1Ð→β2
t2Ð→β3

t3Ð→β where
t1 = ⟨s,pop(P),tmp1 (t ,P)⟩, t2 =
⟨tmp1(t, P ),push(R),tmp2 (t ,P)⟩, t3 =
⟨tmp2(t, P ),push(Q), s ′⟩, StateOf (β1) = s, and
Q ∈ Reset(P )[a ← I]. Let StackOf (β1) be of the
form R1 = R0⋯RnP where −1 ≤ n (i.e., P can be the
bottom region in R1). Then, StackOf (β) will be of
the form R = R0⋯RnPQ. Let R′ = R′

0⋯R′
nP

′Q be a
strengthening of R and let C be a collapsing of R′. First
we will show that P ′ = P . Suppose that this is not the
case. Since P ′ ∈ P ++ and P ′ ≠ P it follows that either
Val (P ′) (⊢) > 0 or Index (P ′) (⊢) > 1 . By definition, we
know that Val (Q) (⊢) = 0 and Index (Q) (⊢) = 1 . This
implies P ′ /⪯ Q which is a contradiction since R′ is coherent.
The fact that P ′ = P means that R′

1 = R′
0⋯R′

nP is coherent.
Define the collapsing C1 ∶= C ⊖ {⟨z, n + 2⟩ ∣ z ∈ Z} of R′

1 By
the induction hypothesis, there is a configuration γ1 and a
valuation θ1 of C1 such that γ1 ⊳ θ1, θ1 ⊧ C1, and γinit ∗ γ1.
Define the valuation θ of C as follows:

● θ(z, i) ∶= θ1(z, i) for all i ∶ 0 ≤ i ≤ n and z ∈ R⊺
i .

● θ(z, n + 1) ∶= θ1(z, n + 1) for all z ∈ P ⊺.
● θ(x,n + 2) ∶= θ1(x,n + 1) for all x ∈X .
● θ(y●, n + 2) ∶= θ1(y, n + 1) for all y ∈ P ⊺ ∩ Y .

● ⌊θ(a,n + 2)⌋ ∶= Val (Q) (a). If Index (C ) (a,n + 2 ) = 1
then fract (θ(a,n + 2)) ∶= 0. Otherwise
fract (θ(a,n + 2)) ∶= v where v is any number
such that v ∈ (0 ∶ 1) and for all ⟨z, i⟩ ∈ C⊺ − {⟨a,n + 2⟩},
we have that fract (θ(z, i)) ≤ v iff Index (C ) (z , i) ≤
Index (C ) (a,n + 2 ) and v ≤ fract (θ(z, i)) iff
Index (C ) (a,n + 2 ) ≤ Index (C ) (z , i).

Define the configuration γ ∶= γ[stack ← StackOf (γ1) ⋅
⟨a, θ(a,n + 2)⟩]. By the definitions it follows that γ ⊳ θ,
θ ⊧ C, and γ1

t γ.

PROOF OF LEMMA 5

Suppose that γinit ∗ γ. We use induction on the number of
transition steps from γinit to γ to show that that there is a a
configuration β in P , strengthening β′ of β, and a collapsing
C of β′, such that γ ⊧C β and βinit

∗Ð→β.

Initialization

In the base, the number of steps is equal to 0. In P , we have
the transition βinit

tÐ→β where t = ⟨sPinit ,push(Rinit), sTinit⟩.
We know that StateOf (β) = sinit , StackOf (β) = Rinit . We
take the strengthening of Rinit to be Rinit , and the collapsing
C of Rinit to be Rinit . Notice that R⊺

init ∩Γ = {bottom} and
R⊺

init ∩ Γ● = {bottom●}. We define the valuation θ of C as
follows: θ(x,0) = 0, θ(x●,0) = 0 for all clocks x ∈ X , and
θ(bottom,0) = θ(bottom●,0) = 0. It is easy to see that θ ⊧ C.
As shown in the initialization case for the other direction of
the proof, we also have that γinit ⊳ θ.

nop

If there is a transition ⟨s,nop, s′⟩ ∈ ∆ and γinit ∗ γ1
t γ

where StateOf (γ1) = s, and StateOf (γ) = s′. By the
induction hypothesis, there is a configuration β1 = ⟨s,R⟩, a
strengthening R′ of R, a collapsing C of R′, and a valuation
θ of C such that θ ⊧ C, γ1 ⊳ θ, and βinit

∗Ð→β1. Since
CValOf (γ) = CValOf (γ1) and StackOf (γ) = StackOf (γ1)
it follows that γ ⊳ θ. Define β ∶= β1[state ← s′]. It
follows that β1

∗Ð→β. Since θ ⊧ C, γ ⊳ θ, and StateOf (β) =
StateOf (γ) it follows that γ ⊧C β.

x ∈ I?

If there is a transition ⟨s, x ∈ I?, s′⟩ ∈ ∆ and γinit ∗ γ1
t γ

where γ1 = ⟨s,X,w⟩, γ = ⟨s′,X,w⟩, and X(x) ∈ I . Let
w = ⟨a1, v1⟩⋯ ⟨an, vn⟩. By the induction hypothesis, there
is a configuration β1 = ⟨s,R⟩, a strengthening R′ of R, a
collapsing C of R′, and a valuation θ of C such that θ ⊧ C,
γ1 ⊳ θ, and βinit

∗Ð→β1. Since CValOf (γ) = CValOf (γ1) and
StackOf (γ) = StackOf (γ1) it follows that γ ⊳ θ. Define
β ∶= β1[state ← s′]. Since γ1 ⊳ θ we know that θ(x,n) =
θ(n)(x) = X(x) and hence θ(n)(x) ∈ I . Since θ ⊧ C it follows
that θ(n) ⊧ Rn which implies Rn ⊧ (x ∈ I). It follows that
β1

∗Ð→β. Since θ ⊧ C, γ ⊳ θ, and StateOf (β) = StateOf (γ)
it follows that γ ⊧C β.



x← I

If there is a transition ⟨s, x← I, s′⟩ ∈ ∆ and γinit ∗ γ1
t γ

where γ1 = ⟨s,X1,w⟩, γ = ⟨s′,X,w⟩, and X(x) = X1[x ← v]
with v ∈ I . Let w = ⟨a1, v1⟩⋯ ⟨an, vn⟩. By the induction
hypothesis, there is a configuration β1 = ⟨s,R1⟩, a strength-
ening R′

1 of R1, a collapsing C1 of R′
1, and a valuation

θ1 of C1 such that θ1 ⊧ C1, γ1 ⊳ θ1, and βinit
∗Ð→β1.

Let R1 = R1⋯Rn−1Rn and let R′
1 = R′

1⋯R′
n−1Rn. Define

θ ∶= θ1[⟨x,n⟩ ← v], C ∶= θReg . By definition it follows that
θ ⊧ C. Notice that γ ⊳ θ. Let R′ be the unique coherent
s-region whose collapsing is C. Notice that R′ is of the
form R′

1⋯R′
n−1R. Define R ∶= R1⋯Rn−1R. Notice that R′

is a strengthening of R. From the definitions it follows that
R ∈ Rn[x ← I], and hence β1

∗Ð→β. Since θ ⊧ C, γ ⊳ θ, and
StateOf (β) = StateOf (γ) it follows that γ ⊧C β.

Timed Transitions

If γinit ∗ γ1
v

Time γ for some v > 0, γ1 = ⟨s,X1,w1⟩, γ =
⟨s,X,w⟩, X = X+v1 , and w = w+v

1 . Let w1 = ⟨a1, v1⟩⋯ ⟨an, vn⟩.
By the induction hypothesis, there is a configuration β1 =
⟨s,R1⟩, a strengthening R′

1 of R1, a collapsing C1 of R′
1,

and a valuation θ1 of C1 such that θ1 ⊧ C1, γ1 ⊳ θ1,
and βinit

∗Ð→β1. Let R1 = R1⋯Rn−1Rn. Define θ such that
θ(z, i) ≠ � iff θ1(z, i) ≠ �, and for every ⟨z, i⟩ ∈ R⊺

1 we have
that θ(z, i) ∶= θ1(z, i) + v. Define C ∶= θReg . By definition it
follows that θ ⊧ C. Notice that γ ⊳ θ. Let R′ be the unique
coherent s-region whose collapsing is C. Notice that R′ is
of the form R′

1⋯R′
n−1R

′
n where R′

i ∈ R++
i for i ∶ 0 ≤ i ≤ n.

Define R ∶= R1⋯Rn−1R
′
n, and define β ∶= ⟨s′,R⟩. Notice that

R′ is a strengthening of R. Since R′
n ∈ R++

n it follows that
β1

∗Ð→β. Since θ ⊧ C, γ ⊳ θ, and StateOf (β) = StateOf (γ)
it follows that γ ⊧C β.

pop(a, I )
If there is a transition t = ⟨s,pop(a, I ), s ′⟩ ∈ ∆ and

γinit
∗ γ1

t γ where γ1 = ⟨s,X,w1⟩, γ = ⟨s′,X,w⟩, w1 =
⟨a1, v1⟩⋯ ⟨an−1, vn−1⟩ ⟨an, vn⟩, an = a, vn ∈ I , and w =
⟨a1, v1⟩⋯ ⟨an−1, vn−1⟩. By the induction hypothesis, there is
a configuration β1 = ⟨s,R1⟩, a strengthening R′

1 of R1, a
collapsing C1 of R′

1, and a valuation θ1 of C1 such that
θ1 ⊧ C1, γ1 ⊳ θ1, and βinit

∗Ð→β1. Let R1 = R1⋯Rn−1Rn and
let R′

1 = R′
1⋯R′

n−1Rn. Define θ ∶ Z × (n − 1)(0) as follows:
● θ(z, i) ∶= θ1(z, i) for all i ∶ 0 ≤ i ≤ n − 2 and z ∈ R⊺

i .
● θ(y●, n + 1) ∶= θ1(y●, n + 1) for all y● ∈ Y ● ∩R⊺

n−1.
● θ(⊢●, n + 1) ∶= θ1(⊢●, n + 1).
● θ(b, n + 1) ∶= θ1(b, n + 1) where Y ∩R⊺

n−1 = {b}.
● θ(x,n + 1) ∶= θ1(x,n + 2) for all x ∈X .
● θ(⊢, n + 1) ∶= 0.

Define C ∶= θReg . By definition it follows that θ ⊧ C. Notice
that γ ⊳ θ. Let R′ be the unique coherent s-region whose
collapsing is C. Observe that R′ is of the form R′

1⋯R′
n−1R

where Q ∈ R′
n−1 ⊙ Rn. By definition of ⊙ and the fact that

R′
n−2 ⪯ R′

n−1 we know that R′
n−2 ⪯ Q and hence R′ is

coherent. Define R ∶= R1⋯Rn−2Q, and define β ∶= ⟨s′,R⟩.
Since R′

i ∈ R++
i for all i ∶ 0 ≤ i ≤ n − 2, R′

i ⪯ R′
i+1 for all

i ∶ 0 ≤ i ≤ n−3, and R′
n−2 ⪯ Q it follows thatR′ is stregthening

of R. Since R′
n−1 ∈ R++

n−1 and Q ∈ R′
n−1 ⊙ R′

n it follows by
definition that Q ∈ Rn−1 ∗ Rn. Since vn ∈ I and γ1 ⊳ θ1 it
follows that θ1(n) = θ1(a,n) ∈ I . Since θ1 ⊧ C1 it follows
that θ1(n) ⊧ Rn and hence Rn ⊧ (a ∈ I). It follows that
β1

∗Ð→β. Since θ ⊧ C, γ ⊳ θ, and StateOf (β) = StateOf (γ)
it follows that γ ⊧C β.

push(a, I )
If there is a transition t = ⟨s,push(a, I ), s ′⟩ ∈ ∆ and

γinit
∗ γ1

t γ where γ1 = ⟨s,X,w1⟩, γ = ⟨s′,X,w⟩, w1 =
⟨a1, v1⟩⋯ ⟨an, vn⟩, w = ⟨a1, v1⟩⋯ ⟨an, vn⟩ ⟨a, v⟩, and an = a.
By the induction hypothesis, there is a configuration β1 =
⟨s,R1⟩, a strengthening R′

1 of R1, a collapsing C1 of R′
1,

and a valuation θ1 of C1 such that θ1 ⊧ C1, γ1 ⊳ θ1,
and βinit

∗Ð→β1. Let R1 = R1⋯Rn−1Rn and let R′
1 =

R′
1⋯R′

n−1Rn. Define θ as follows:
● θ(z, i) ∶= θ1(z, i) for all i ∶ 0 ≤ i ≤ n and z ∈ R⊺

i .
● θ(n+ 1)(x) ∶= θ(n)(x) and θ(n+ 1)(x●) ∶= θ(n)(x) for

all x ∈X .
● θ(b●, n + 1) ∶= θ1(b, n) where Y ∩R⊺

n = {b}.
● θ(a,n + 1) ∶= v.
● θ(n + 1)(⊢) ∶= 0 and θ(n + 1)(⊢●) ∶= 0.

Define C ∶= θReg . By definition it follows that θ ⊧ C. Notice
that γ ⊳ θ. Let R′ be the unique coherent s-region whose
collapsing is C. Notice that R′ is of the form R′

1⋯RnR where
R ∈ Reset(Rn)[a ← I]. Define R = R1⋯RnR, and define
β ∶= ⟨s′,R⟩. Since Rn ⪯ R it follows thatR′ is coherent. Since
R′
i ∈ R++

i for all i ∶ 0 ≤ i < n it follows that R′ is strengthening
of R. Since R ∈ Reset(Rn)[a ← I] we know that β1

∗Ð→β.
Since θ ⊧ C, γ ⊳ θ, and StateOf (β) = StateOf (γ) it
follows that γ ⊧C β.


