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Abstract. We study priced dense-timed pushdown automata that are a
generalization of the classic model of pushdown automata, in the sense
that they operate on real-valued clocks, and that the stack symbols have
real-valued ages. Furthermore, the model allows a cost function that
assigns transition costs to transitions and storage costs to stack symbols.
We show that the optimal cost, i.e., the infimum of the costs of the set of
runs reaching a given control state, is computable.

1 Introduction

Pushdown automata are a widely used model both in language theory and
program verification. Recently, several models have been introduced that extend
pushdown automata with clocks and real-time constraints [10, 12, 1]. In the mean
time, several works have extended the model of timed automata [5] with prices
(weights) (e.g., [6, 7, 9]). Weighted timed automata are used in the modeling of
embedded systems, where the behavior of the system is usually constrained by
the availability of different types of resources.

In this paper, we consider Priced Dense-Timed Pushdown Automata (Ptpa)
that subsume all the above models. Ptpa are a generalization of classic pushdown
automata with real-valued clocks, timed constraints, and prices for computations.
More precisely, a Ptpa contains a finite set of global clocks, and each symbol in
the stack is equipped with a real number indicating its age. The global clocks
admit the same kind of operations as in timed automata, and timed transitions
increase the clock values and the ages of stack symbols at the same rate. Pop
operations may only be performed if the age of the topmost stack symbol is
within a given time interval. Furthermore, the model is priced in the sense that
there is a cost function that assigns transition costs to transitions and storage
costs to stack symbols.

We study the problem of computing the optimal cost to reach a given control
state. In general, a cost-optimal computation may not exist (e.g., even in priced
timed automata it can happen that there is no computation of cost 0, but
there exist computations of cost ≤ ε for every ε > 0). However, we show that
the infimum of the costs is computable. To do this, we perform a sequence of
reductions that ultimately translates the problem to the problem of control state
reachability for plain (unpriced and untimed) pushdown automata. The latter
problem is known to be decidable [8].
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Related Work. Priced extensions of timed models have been studied in the
literature. The paper [4] studies a priced dense-timed extension of Petri nets,
where the optimal cost is computed for satisfying coverability objectives (reaching
an upward closed set of markings). Proofs for solving the coverability problem
in Petri nets are in general quite different from those for the solving control
state reachability problem in pushdown systems. This is already the case for
the unpriced untimed case, where the former relies on Karp-Miller constructions
[11] or backward reachability analysis [3], while the latter uses finite automata
constructions [8]. This difference is also reflected in the priced timed case. In
particular, [4] (using backward reachability analysis) reduces optimal cost com-
putation to the reachability problem for a more powerful model than plain Petri
nets, namely that of Petri nets with one inhibitor arc. In our case, we reduce the
problem to the plain pushdown model.

Several timed extensions of pushdown automata have been considered [12,
10, 1]. Since our model extends these, some of the techniques need to be reused.
However, priced timed models are nontrivial extensions of (unpriced) timed
models. Here, in a similar manner to priced extensions of timed Petri nets [4]
and timed automata [9], we need to reason about special forms of computations,
and a nontrivial modification of the (region-based) symbolic encoding is also
necessary to represent the infinite state space.

In [2] we study priced discrete-timed pushdown automata. In the discrete-time
case, time is interpreted as being incremented in discrete steps and thus the
clock values and ages of stack symbols are in a countable domain. The method
of [2] cannot be extended to the dense time case. It is well-known that, in timed
models, using discrete domains represents a substantial simplification compared
to using dense time. In particular, the absence of fractional parts in clock values
and stack symbol ages leads to a much simpler symbolic representation of the
stack. The model of priced discrete-timed pushdown automata is generalized in
[13], where the authors consider pushdown systems that can modify the whole
stack using transducers.

2 Preliminaries

We use R≥0 to denote the non-negative reals. For r ∈ R≥0, where r = n + r′

for n ∈ N, r′ ∈ R≥0 and r′ < 1, we let brc = n denote the integral part and
fract (r) = r′ denote the fractional part of r. Given a set A, we use 2A for the
powerset of A. For sets A and B, f : A→ B denotes a (possibly partial) function
from A to B. If f is undefined at a, we write f(a) = ⊥. We use dom (f) and
range (f) to denote the domain and range of f . Given a function f and a set A,
we use f(A) for the image {f(x) |x ∈ A} of A under f . The image img(f) of f
is then defined as f(dom (f)). We write f [a← b] to denote the function f ′ such
that f ′(a) = b and f ′(x) = f(x) for x 6= a. Given a function f : A×B → C, we
sometimes write f(a)(b) = c to make explicit that f might be applied partially,
i.e. to get a function f(a) : B → C. The set of intervals of the form [a : b], (a : b],
[a : b),(a : b),[a :∞) or (a :∞), where a, b ∈ N, is denoted by I. Given a set A,
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we use inf(A), max(A) and min(A) to denote the infimum, the maximum and
the minimum of A, respectively.

Let A be an alphabet. We denote by A∗, (resp. A+) the set of all words (resp.
non-empty words) over A. The empty word is denoted by ε. For a word w, |w|
denotes the length of w (we have |ε| = 0). For words w1, w2, we use w1 ·w2 for the
concatenation of w1 and w2. We extend · to sets W1,W2 of words by defining W1 ·
W2 = {w1 ·w2 |w1 ∈W1, w2 ∈W2}. For a word w = a0 . . . an, and i ∈ {0, . . . , n},
we let w[i] denote ai. Given a word w = 〈x0, y0〉 . . . 〈xn, yn〉 ∈ (X×Y )∗, we define
the first projection proj 1(t) = x0 . . . xn and the second projection proj 2(t) =
y0 . . . yn. We define a binary shuffle operation ⊗ inductively: For w ∈ (2A)∗,
define w ⊗ ε = ε⊗ w = w. For sets r1, r2 ∈ 2A and words w1, w2 ∈ (2A)∗, define
(r1 ·w1)⊗(r2 ·w2) = (r1 ·(w1⊗(r2 ·w2)))∪(r2 ·((r1 ·w1)⊗w2)))∪((r1∪r2)·(w1⊗w2)).

3 Priced Timed Pushdown Automata

In this section, we introduce Ptpa and define cost-optimal reachability.

Model. Formally, a Ptpa is a tuple T = 〈Q, qinit , Γ,X,∆,Cost〉, where Q is a
finite set of states, qinit ∈ Q is the initial state, Γ is a finite stack alphabet, X is
a finite set of clocks, and Cost : (Γ ∪∆)→ N is a function assigning transition
costs to transition rules and storage costs to stack symbols. The set ∆ consists
of a finite number of transition rules of the form 〈q, op, q′〉, where q, q′ ∈ Q and
op is either (i) nop, an operation that does not modify the clocks or the stack,
(ii) push(a), where a ∈ Γ , which pushes a onto the stack with initial age 0, (iii)
pop(a, I), where a ∈ Γ and I ∈ I, which pops a of the stack if its age is in I, (iv)
test(x, I), where x ∈ X and I ∈ I, which is only enabled if x ∈ I, or (v) reset(x),
where x ∈ X, which sets the value of the clock x to 0.

Semantics. A clock valuation is a function X : X → R≥0 which assigns a concrete
value to each clock. A stack content is a word w ∈ (Γ ×R≥0)∗, i.e. a sequence of
stack symbols and their corresponding ages. A configuration is a tuple 〈q, X, w〉,
where q ∈ Q is a state, X is a clock valuation, and w is a stack content. For a
configuration γ = 〈q, X, w〉, define the functions State (γ) = q, ClockVal (γ) = X,
and Stack (γ) = w. For any transition rule t = 〈q, op, q′〉 ∈ ∆, define Op(t) = op.
Given a Ptpa T , we use Conf (T ) to denote the set of all configurations of T .
Let Xinit be the clock valuation such that Xinit(x) = 0 for each x ∈ X. The initial
configuration γinit is the configuration 〈qinit , Xinit, ε〉. The operational semantics
of a Ptpa T are defined by a transition relation over the set of configurations
Conf (T ). It consists of two types of transitions; timed transitions, which simulate
time passing, and discrete transitions, which are applications of the transition
rules in ∆.

Timed Transitions. Fix some r ∈ R≥0. Given a clock valuation X, let X+r be
the function defined by X+r(x) = X(x) + r for all x ∈ X. For any stack content
w = 〈a0, v0〉 · · · 〈an, vn〉, let w+r be the stack content 〈a0, v0 + r〉 · · · 〈an, vn + r〉.
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Fig. 1. A fragment of a computation

Given configurations γ = 〈q, X, w〉 and γ′ = 〈q′, X′, w′〉, we have γ
r−→ γ′ if q′ = q,

X′ = X+r and w′ = w+r. This means that a Ptpa may perform a timed transition,
whereby it advances all clocks and ages of stack symbols by some non-negative
real number.

Discrete Transitions. Let t = 〈q, op, q′〉 ∈ ∆ be a transition rule. For con-

figurations γ = 〈q, X, w〉 and γ′ = 〈q′, X′, w′〉, we have γ
t−→ γ′ if either (i)

op = nop, w′ = w, and X′ = X, (ii) op = push(a), w′ = w · 〈a, 0〉, and X′ = X, (iii)
op = pop(a, I), w = w′ · 〈a, v〉 for some v ∈ I, and X′ = X, (iv) op = test(x, I),
w′ = w, X′ = X, and X(x) ∈ I, or (v) op = reset(x), w′ = w, and X′ = X[x← 0].

A computation π to a configuration γ of a Ptpa T is a finite sequence of the

form γ0
t1−→ γ1

t2−→ · · · tn−→ γn, where γ0 = γinit , γn = γ, and for all 1 ≤ i ≤ n,
γi ∈ Conf (T ), and either ti ∈ ∆ or ti ∈ R≥0. We define Comp(T , q) to be
the set of computations to a configuration γ such that State (γ) = q. If π is a
computation to γ, and State (γ) = q, we say that π is a computation to q.

Cost of Computation. We will now extend the cost function Cost , which we
originally defined on stack symbols and transition rules, to transitions and
computations. The cost of a discrete transition is given by the cost of the
corresponding transition rule, and the cost of a timed transition is the total
cost of the stack scaled by the length of the timed transition. Fix a discrete

or timed transition γ
t−→ γ′, and let γ = 〈q, X, 〈a0, v0〉 · · · 〈an, vn〉〉. Formally,

Cost(γ
t−→ γ′) = Cost(t) if γ

t−→ γ′ is discrete, and Cost(γ
t−→ γ′) = t ·∑n

i=0 Cost(ai) if γ
t−→ γ′ is timed. The cost of a computation π = γ0

t1−→
γ1

t2−→ · · · tn−→ γn is defined as the sum of the costs of its transitions, i.e.

Cost(π) =
∑n
i=1 Cost(γi−1

ti−→ γi). Fig. 1 shows a fragment of a computation of
a Ptpa where the set of clocks is {x1, x2} and the stack alphabet is {a, b, c} (the
stack not shown is filled with c). We assume that the storage costs of a, b and c
are 4, 3 and 0, respectively, that the transition cost of 〈q1, push(a), q2〉 is 1, and
that the transition cost of 〈q2, pop(a, [0 : 1]), q3〉 is 2. The accumulated cost for
the example is 9.64.

Cost-Optimality. In this paper, we address the problem of computing the op-
timal cost required to reach a certain state. The optimal cost is defined as
the infimum of the set of reachability costs. Formally, we define the opti-
mal cost Costopt(T , q) as Costopt(T , q) = inf{Cost(π) |π ∈ Comp(T , q)} if
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Comp(T , q) 6= ∅ and Costopt(T , q) =∞ otherwise. The cost-optimal reachability
problem is then, given a Ptpa T and a state q, to compute the optimal cost
Costopt(T , q).

Theorem 1. Let T be Ptpa and q be a state. Then Costopt (T , q) is computable.

The rest of the paper is devoted to the proof of the above theorem. In Sec. 4,
we show that it is sufficient to consider computations in a certain form in order
to compute the optimal cost. In Sec. 5, we introduce our symbolic automata
(Ppa) to which we reduce the cost-optimal reachability problem for Ptpa. In Sec.
6, we formally define the region encoding and some related operations. Finally,
we construct a Ppa that simulates all the computations (in a certain form) of
Ptpa in Sec. 7.

4 Forms of Computations

Detailed Computations. In order to solve the cost-optimal reachability problem,
we will only consider computations that are of a certain form, called detailed. This
yields a closer correspondence between computations of Ptpa and computations
in the untimed automaton, defined in section 7. Consider a timed transition
〈q, X, 〈a0, v0〉 · · · 〈an, vn〉〉

r−→ 〈q′, X′, 〈a0, v′0〉 · · · 〈an, v′n〉〉. Let V = fract (X(X)) ∪
fract ({v0, . . . , vn}) and let m = min(V ) and d = max(V ). In other words, m is
the minimal fractional part and d is the maximal fractional part of any value.
We can classify the timed transition into two different types:
– Type 1: A transition which is taken when no value has fractional part 0, and

which may make the values with the largest fractional parts reach the next
integer. This is the case when r > 0, m > 0 and r ≤ 1− d.

– Type 2: A transition which is taken when some values have fractional parts 0,
which makes the fractional parts of those value positive, and which does not
change the integral part of any value. This is the case when r > 0, m = 0
and r < 1− d.

A detailed computation is a computation where all timed transitions are of
either type 1 or 2. We use Compd(T , q) to denote all the detailed computa-
tions in Comp(T , q). Since the cost function is linear, considering only detailed
computations is not a restriction. Formally, we have:

Lemma 2. ∀. π ∈ Comp(T , q), ∃. π′ ∈ Compd(T , q) s.t. Cost(π′) = Cost(π).

Computations in δ-form. A computation is in δ-form if the values of all clocks and
symbol ages along the computation are strictly within δ of an integer. Formally,
given some δ : 0 < δ < 1

10 , we say that a configuration 〈q, X, 〈a0, v0〉 · · · 〈am, vm〉〉
is in δ-form if (i) for all x ∈ X, fract (X(x)) < δ or fract (X(x)) > 1 − δ, and
(ii) for all i : 1 ≤ i ≤ m, fract (vi) < δ or fract (vi) > 1 − δ. A computation

π = γ0
t1−→ γ1

t2−→ · · · tn−→ γn is in δ-form if for each i : 1 ≤ i ≤ n, the
configuration γi is in δ-form. Note that we need an upper bound (e.g. 1

10 ) on δ to
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ensure that short and long timed transitions are not mixed. We use Compd
δ (T , q)

to denote all the computations in Compd(T , q) in δ-form.
We use established linear programming techniques, first used for priced timed

automata [9] and later for priced timed Petri nets [4], to show that the feasible
delays for a set of computations with fixed “structure”, i.e. discrete transitions,
form a polyhedron with integral vertices. Since the cost-function is linear, its
extreme values in the vertices of the polyhedron, which means that the optimal
cost is a natural number.

Lemma 3. For any Ptpa T and state q of T , we have Costopt(T , q) ∈ N.

Due to strict inequalities in the structure of the computation, the exact delays
represented by the vertex which represents the optimal cost might not be feasible,
but by choosing the delays arbitrarily close to the vertex, we can get arbitrarily
close to the optimal cost.

Lemma 4. For every π ∈ Compd(T , q) and δ : 0 < δ < 1
10 , there is π′ ∈

Compd
δ (T , q) such that Cost(π′) ≤ Cost(π).

From Lemma 4 it follows that in order to find the optimal cost, we only need
to consider computations in δ-form for arbitrarily small δ, i.e.

Lemma 5. ∀δ : 0 < δ < 1
10 ,Costopt(T , q) = inf{Cost(π) |π ∈ Compd

δ (T , q)}.

The fact that a computation is detailed and in δ-form implies that the length
of any timed transition is either in (0 : δ) (a short timed transition) or in (1−δ : 1)
(a long timed transition). For example, if δ = 1

11 , the timed transition between γ3
and γ4 in Fig. 1 is long, while the other two are short. We use this to construct
a Ppa (the symbolic automaton), which simulates Ptpa computations that are
detailed and in δ-form for arbitrarily small δ. Since δ is arbitrarily small, the
model simulates long timed transitions with length arbitrarily close to 1, and
short timed transition with length arbitrarily close to 0. Therefore, in the discrete
model, we pay the full stack cost for long timed transitions and nothing for short
timed transitions. The cost for simulating the computation in Fig. 1 would be
10, i.e. slightly higher than the real cost of 9.64. However, the difference between
the real and symbolic computations can be made arbitrarily small by decreasing
δ. We build on techniques from [1] to handle the simulation of the timed part,
and extend the concepts with the necessary information to handle costs.

5 Priced Pushdown Automata

A priced pushdown automaton (Ppa) P is a tuple 〈Q, qinit , Γ,∆1, ∆2,Cost〉,
where Q is a finite set of states, qinit ∈ Q is an initial state, Γ is a finite stack
alphabet, ∆1 and ∆2 are finite sets of transition rules, and Cost : (∆1 ∪Γ )→ N
is a cost function assigning costs to both transition rules in ∆1 and stack symbols
in Γ . Intuitively, we separate the transition rules into two different sets. When
we perform transitions in ∆1, we pay the transition cost, and when we perform
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Fig. 2. Example regions used in the simulation of the example in Fig. 1

transitions in ∆2, we pay for each stack symbol in the stack. The set ∆1 contains
transition rules of the form 〈q, op, q′〉, where op is one of (i) nop, an operation
that does not modify the stack, (ii) push(a), which pushes a on top of the stack,
or (iii) pop(a) which pops a off the stack. The set ∆2 contains transition rules of
the form 〈q, sc, q′〉, where q, q′ ∈ Q (sc stands for “stack cost”).

Semantics. A configuration β of P is a tuple 〈q, w〉, where q ∈ Q is a state and
w is a word over Γ . The initial configuration βinit is the configuration 〈qinit , ε〉.
Let Conf (P) denote the set of configurations of P.

For two configurations β = 〈q, w〉 and β′ = 〈q′, w′〉, we have γ
t−→ γ′ if either

(i) w′ = w and t = 〈q,nop, q′〉 ∈ ∆1, (ii) w′ = w · a and t = 〈q, push(a), q′〉 ∈ ∆1

for some a ∈ Γ , (iii) w = w′ · a and t = 〈q, pop(a), q′〉 ∈ ∆1 for some a ∈ Γ ,
or (iv) w′ = w and t = 〈q, sc, q′〉 ∈ ∆2. We define the functions State (β) = q
and and Stack (β) = w. A computation π to a configuration β of P is a finite

sequence β0
t1−→ β1

t2−→ · · · tn−→ βn where β0 = βinit , βn = β, and for all
1 ≤ i ≤ n, βi ∈ Conf (P) and ti ∈ ∆1 ∪∆2. We define Comp(P, q) to be the set
of computations to a configuration β such that State (β) = q. In this case, we
also say that π is a computation to q.

Cost of Computations. For a transition β
t−→β′, where β = 〈q, a0 · · · am〉 and

β′ = 〈q′, w〉, we define its cost as Cost(β
t−→β′) = Cost(t) if t ∈ ∆1 and

Cost(β
t−→β′) =

∑m
i=0 Cost(ai) if t ∈ ∆2. The cost of a computation π =

β0
t1−→β1

t2−→· · · tn−→βn is then defined as Cost(π) =
∑n
i=1 Cost(βi−1

ti−→βi). We
define the cost-optimal reachability problem for Ppa in the same manner as
for Ptpa. Lemma 6 follows by a reduction to the same problem for priced
discrete-timed pushdown automata [2]:

Lemma 6. Let P be a Ppa and q be a state. Then Costopt (P, q) is computable.

6 Regions

For timed automata, the proof of reachability is achieved using the classical region
encoding [5], which is a finite-state abstraction of an uncountable state space.
In [1], we showed that it is possible to extend this encoding to timed pushdown
automata. More precisely, we show that given a timed pushdown automaton, it
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is possible to construct an untimed pushdown automaton that simulates it w.r.t.
reachability properties. This works by storing regions in the stack of the untimed
automaton. The main difficulty in the construction is that the automaton can
only access the top element of the stack. However, we might need to remember
relationships between elements that lie arbitrarily far apart in the stack. We
showed that it is possible to extend the regions in a finite way to capture all such
dependencies.

Let T = 〈Q, qinit , Γ,X,∆,Cost〉 be a Ptpa. We define the set Y = X∪Γ∪{`}
of plain items and a corresponding set Y • = X•∪Γ •∪{`•} of shadow items. We
then define the set of items Z = Y ∪Y •. Intuitively, a shadow item in a region on
the stack records the value of its plain counterpart in the region below. Let cmax

be the largest constant in the definition of T and Max = {0, 1, . . . , cmax ,∞}.
Here, ∞ is a symbolic value representing anything larger than cmax . A region
R is a tuple 〈w, k〉, consisting of a word w = r0r1 . . . rn ∈ (2Z×Max )+ and a
boundary position k : 0 ≤ k ≤ n, such that w satisfies the following conditions:

–
∑n
i=0 |ri ∩ (Γ ×Max )| = 1 and

∑n
i=0 |ri ∩ (Γ • ×Max )| = 1. There is exactly

one occurrence of a stack symbol and one occurrence of a shadow stack
symbol.

–
∑n
i=0 |ri ∩ ({`} ×Max )| = 1 and

∑n
i=0 |ri ∩ ({`•} ×Max )| = 1. There is

exactly one occurrence of ` and one occurrence of `•.
– For all clocks x ∈ X,

∑n
i=0 |ri ∩ ({x} ×Max )| = 1 and

∑n
i=0 |ri ∩ ({x•} ×

Max )| = 1. Each plain clock symbol and shadow clock symbol occurs exactly
once.

– ri 6= ∅ for all 1 ≤ i ≤ n. Only the first set may be empty.

The purpose of the boundary position is to separate the items with low frac-
tional parts from those with high fractional parts. For z ∈ Z, if 〈z,m〉 ∈ ri
for some (unique) m ∈ Max and i ∈ {0, . . . , n}, then let Val (R) (z) = m and
Index (R) (z) = i. Otherwise, define Val (R) (z) = ⊥ and Index (R) (z) = ⊥ (this
may only be the case for stack symbols). We define R> = {z ∈ Z | Index (R) (z) 6=
⊥}. Note that the set of regions, w.r.t. fixed X, Γ and cmax , is finite. As an
example, the region R0 in Fig. 2 is the topmost region in the symbolic stack
representing the configuration γ0 in Fig. 1.

Next, we define a number of operations on regions that we need for the
construction of the symbolic automaton.

Satisfiability. Given an item z ∈ Z, an interval I ∈ I, and a region R such that
z ∈ R>, we write R |= (z ∈ I) if one of the following conditions holds:

– Index (R) (z) = 0, Val (R) (z) 6=∞ and Val (R) (z) ∈ I. If the fractional part
of z is 0, we test if the value of z is in I.

– Index (R) (z) > 0, Val (R) (z) 6=∞ and (Val (R) (z) + v) ∈ I for all v ∈ R≥0
such that 0 < v < 1. If the fractional part of z is greater than 0, we test if its
integral part increased by any real number v : 0 < v < 1 is in the interval.

– Val (R) (z) =∞, and I is of the form (m :∞) or of the form [m :∞). If the
integral part of z is ∞, then the interval cannot have an upper bound.
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Adding and Removing Items. For a region R = 〈r0 . . . rn, k〉, an item z ∈ Z, and
m ∈ Max , we define R⊕ 〈z,m〉 to be the set of regions R′ which satisfy one of
the following conditions:
– R′ = 〈r0 . . . ri−1(ri ∪ {〈z,m〉})ri+1 . . . rn, k〉, where 0 ≤ i ≤ n. The item is

added into an existing set, in which case k is unchanged.
– R′ = 〈r0 . . . ri{〈z,m〉}ri+1 . . . rn, k + 1〉, where 1 ≤ i ≤ k. The item is added

as a new singleton set to the left of k, in which case k is increased by 1.
– R′ = 〈k, r0 . . . ri{〈z,m〉}ri+1 . . . rn, k〉, where k ≤ i ≤ n. The item is added

as a new set to the right of k, which is left unchanged.
We define R	z to be the region R′ = 〈r0 · · · rj−1(rj \ ({z} ×Max ))rj+1 . . . rn, k

′〉,
where j is the unique value s.t. rj ∩ ({z} ×Max ) 6= ∅ and where k′ = k − 1 if
0 < j ≤ k and |rj | = 1, and k′ = k otherwise. In other words, we delete z from a
set, if it exists, and update k accordingly. We extend the definition of 	 to sets
of items by letting R	 {z1 . . . zn} = (· · · ((R	 z1)	 z2) · · · )	 zn.

Resetting. For a region R = 〈r0 . . . rn, k〉 and an item z ∈ Z, we define R[z ← 0]
to be the unique region 〈(r′0 ∪ {〈z, 0〉})r′1 · · · r′n, k〉, where r′0r

′
1 · · · r′n = R	 z. We

delete z from the region and reintroduce it with value 0. This operation is used
when we simulate the resetting of clocks.

Pushing New Regions. This operation is used to simulate the pushing of new
regions. It takes a region R and a stack symbol a ∈ Γ , and creates a new region
R′ in which the shadow items record the values of the plain items in R and
where the value of a is 0. We define New(R, a) to be the region R′ such that
there are R1, R2, R3 satisfying the following conditions (for example, in Fig. 2,
R2 = New(R1, a)):
– R1 = 〈r0 · · · rn1 , k〉 = R	 (R> ∩ Y •). Delete all shadow items from R.
– R2 =

〈
r′0 . . . r

′
n1
, k
〉
, where r′i = ri ∪ {〈y•,m〉 | 〈y,m〉 ∈ ri} for 0 ≤ i ≤ n1.

Add fresh shadow items with the same values and the same indices as their
plain counterparts.

– R3 =
〈
r′′0 . . . r

′′
n2
, k
〉

= R2 	 (R> ∩ Γ ). Delete the previous stack symbol.

– R′ =
〈
(r′′0 ∪ {〈a, 0〉})r′′1 . . . r′′n2

, k
〉
. Introduce a with value 0.

Passage of Time. Next, we describe operations that simulate the passage of
time. Given a pair 〈z,m〉 ∈ Z × Max , define 〈z,m〉⊕ = 〈z,m′〉, where m′ =
m + 1 if m < cmax , and m′ = ∞ otherwise. For a set r ∈ 2Z×Max , define
r⊕ = {〈z,m〉⊕ | 〈z,m〉 ∈ r}. In other words, we increase the integral part of each
item by 1, up to cmax . For a region R = 〈r0 . . . rn, k〉, define R⊕ = 〈w′, k′〉 in the
following way:
– If r0 6= ∅, then w′ = ∅r0 . . . rn, and k′ = k+ 1. A small amount of time passes,

which results in the first region being “pushed” out.
– If r0 = ∅ and k < n, then w′ = rn

⊕r1 . . . rn−1 and k′ = k. The items in
the last region reach their next integral value but the small fractional parts
remain small.

– If r0 = ∅ and k = n, then w′ = w and k′ = 0. All small fractional parts
become large, but no integral part changes.
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We denote by R⊕⊕ the set {R,R⊕, (R⊕)
⊕
, . . .}. Note that this set is finite. We

define R⊕` to be the region R′ such that there are R1 and R2 satisfying the
following conditions:
– R1 = R⊕	 `. We remove the item `.
– R2 ∈ R1 ⊕ (`, 0) and R2 |= (`∈ [0..0]). We reintroduce ` by placing it in the

leftmost set. Note that R2 is unique.
The operation R⊕` simulates passage of time while maintaining the value and
index of `. We define R⊕⊕` similarly to R⊕⊕. In Fig. 2, we have that R3 ∈ R2

⊕⊕.

Product. We now define the product operator � that merges the information
in two regions. This operation is used when simulating pop transitions. For
regions R1 = 〈w1, k1〉 and R2 = 〈w2, k2〉, we write R1 � R2 if there are i0 <
i1 < · · · < i` ≤ |w1| and j0 < j1 < · · · < j` ≤ |w2| such that: (1) i0 = j0 =
0, (2) {i1, . . . , i`} ⊆ Index (R1)

(
R>1 ∩ Y

)
⊆ {i0, i1, . . . , i`}, (3) {j1, . . . , j`} ⊆

Index (R2)
(
R2
> ∩ Y •

)
⊆ {j0, j1, . . . , j`}, (4) (R2

> ∩ Y •) = {y• | y ∈ (R>1 ∩ Y )},
and (5) for every h : 0 ≤ h ≤ ` and y ∈ (R>1 ∩Y ), we have: (i) Index (R1) (y) = ih
iff Index (R2) (y•) = jh, and (ii) jh ≤ k2 iff ih ≤ k1. In this case we say that R1

supports R2. Intuitively, this means that the shadow items in R2 match their
plain counterparts in R1 and that the information in the two regions can be
merged. In Fig. 2, we have that R′1 � R4. The matching is illustrated by dotted
lines.

Assume that R1 � R2, w1 = r0 . . . rn and w2 = r′0 . . . r
′
n′ . Let vh = rih+1

· · · rih+1−1, v′h = r′ih+1 · · · r′ih+1−1 for all h : 0 ≤ h < `, v` = ri`+1 · · · rn, and

v′` = r′i`+1 · · · r′n′ . Note that the sequences of indices i0, . . . i` and j0, . . . , j` are
unique. We define ph = rih∩(Y •∪Γ ) and p′h = r′jh∩(X∪{`}) for all h : 0 ≤ h ≤ `.
We define q0 = p0 ∪ p′0 and, for 1 ≤ h ≤ `, define qh = ph ∪ p′h if ph ∪ p′h 6= ∅ and
qh = ε otherwise. Then, w ∈ w1�w2 if w = q0 ·w′0 ·q1 · · · q` ·w′` and w′h ∈ (vh⊗v′h)
for h : 0 ≤ h ≤ `. Intuitively, we take the clocks from w2, and the shadow items
and stack symbol from w1. For regions R1 = 〈w1, k1〉 and R2 = 〈w2, k2〉, we have
R = 〈w, k〉 ∈ R1 �R2 if w ∈ w1 � w2 and for all z ∈ Z, the following conditions
hold (in Fig. 2 we have R5 ∈ R′1 �R4):
– Index (R) (z) ≤ k iff Index (R1) (z) ≤ k1, for z ∈ Γ •∪X•∪Γ . The boundary

should be preserved for the shadow items and the stack symbol from R1.
– Index (R) (z) ≤ k iff Index (R2) (z) ≤ k2, for z ∈ X. The boundary should

be preserved for the clocks taken from R2.

7 Simulation

We will describe how, given a Ptpa T = (Q, qinit , Γ,X,∆,Cost), one can con-
struct a priced pushdown automaton Ppa P = (QP , qPinit , Γ

P , ∆P1 , ∆
P
2 ,CostP)

that simulates detailed computations in δ-form of T for arbitrarily small δ.
The states of P contain both the states of T , which are called genuine, and

a set of temporary states which are used as intermediate states to simulate
the transitions of T . More precisely, we use a set Qtmp of temporary states s.t.
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Qtmp ∩Q = ∅. We write tmp(. . . ), tmp1(. . . ), tmp2(. . . ) and tmp3(. . . ) to denote
unique elements of Qtmp, where the arguments are used to uniquely identify
elements of Qtmp. We also assume that qPinit 6∈ Q and qPinit 6∈ Qtmp. Then, QP is
defined as Q ∪Qtmp ∪ {qPinit}.

The stack alphabet ΓP of P is the set of regions over the stack alphabet
Γ ∪ {⊥}, the set of clocks X and the maximal constant cmax , where ⊥ 6∈ Γ is a
special symbol that represents the bottom of the stack. Note that ΓP is finite. We
define CostP(⊥) = 0. The cost of a region R is defined as CostP(R) = Cost(a),
where a is the unique stack symbol s.t. R> ∩ Γ = {a}.

Let winit = {〈z, 0〉 | z ∈ X ∪X• ∪ {`,`•}} ∪ {〈⊥, 0〉 , 〈⊥•, 0〉}. The symbolic
automaton starts in its initial configuration

〈
qPinit , ε

〉
and pushes the initial region

Rinit = 〈winit , 0〉 on the stack while moving to the initial state of T , i.e. ∆P1
contains the rule

〈
qPinit , push(Rinit), qinit

〉
. We define

CostP(
〈
qPinit , push(Rinit), qinit

〉
) = 0.

Then, P starts the simulation of T . The transitions of T are simulated in the
following way (as an example, Fig. 2 shows the regions involved in the simulation
of Fig. 1):
– Nop. For every t = 〈q1,nop, q2〉 ∈ ∆, the set ∆P1 contains t = 〈q1,nop, q2〉.

Define CostP(t) = Cost(t).
– Push. We need two temporary states to simulate this transition. First, we

move to a temporary state and pop the topmost region in order to remem-
ber its content. Then, we push back that region, moving to the second
temporary state. Finally, we push a new topmost region that we construct
using the remembered values. For every t = 〈q1, push(a), q2〉 ∈ ∆, and
every region R, the set ∆P1 contains t1 = 〈q1, pop(R), tmp1(t, R)〉, t2 =
〈tmp1(t, R), push(R), tmp2(t, R)〉, and t3 = 〈tmp2(t, R), push(New(R, a)), q2〉.
We define CostP(t1) = 0, CostP(t2) = 0 and CostP(t3) = Cost(t).

– Pop. To simulate pop transitions, we use two temporary states. We first pop
the topmost region. The new topmost region then needs to be updated to
reflect the changes that occurred while it was inaccessible. To do this, we rotate
it until it matches the popped region. Then, we merge the information in both
regions. In this way, the information about changes “ripples” down the stack as
elements are popped. The effect of both these steps is captured by popping the
new topmost region and pushing a region which is a product of the two popped
regions. Formally, for every t = 〈q1, pop(a ∈ I), q2〉 ∈ ∆, and all regionsR1, R2

such that R2 |= a ∈ I, the set ∆P1 contains t1 = 〈q1, pop(R2), tmp1(t, R2)〉 and
t2 = 〈tmp1(t, R2), pop(R1), tmp2(t, R2, R1)〉. Additionally, ∆P1 contains tR3 =
〈tmp2(t, R2, R1), push(R3), q2〉 for all R3 ∈ {R′1�R2 |R′1 ∈ R1

⊕⊕, R′1 � R2}.
We define their costs as CostP(t1) = 0, CostP(t2) = 0 and CostP(tR3

) =
Cost(t) for all the above R3. In Fig. 2, R5 is the result of popping R4 when
R1 is the second topmost region.

– Test. We simulate a test transition with two transitions. First, we pop the
region if it satisfies the condition, while moving to a temporary state. Next,
we push the same region and move to the new genuine state. For every
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t = 〈q1, test(x ∈ I), q2〉 ∈ ∆, and every region R such that R |= x ∈ I, the
set ∆1 contains t1 = 〈q1, pop(R), tmp(t, R)〉 and t2 = 〈tmp(t, R), push(R), q2〉.
Define CostP(t1) = 0 and CostP(t2) = Cost(t).

– Reset. We simulate resetting x by popping the topmost region and push-
ing back a region which is identical, except that x is 0. For every t =
〈q1, reset(x), q2〉 ∈ ∆, and every region R, the set of ∆P1 contains t1 =
〈q1, pop(R), tmp(t, R)〉 and t2 = 〈tmp(t, R), push(R[x← 0]), q2〉.

Define CostP(t1) = 0 and CostP(t2) = Cost(t).

– Timed Transitions. To simulate timed transitions, we pop the topmost region,
rotate it, and push it back. Let R = 〈r0 . . . rn, k〉 be a region.
• If r0 6= ∅ (resp. r0 = ∅ and k < n), then we simulate a short timed

transition which makes the fractional part of all value positive (resp. the
highest fractional part 0). In this case, ∆P1 contains

t1 = 〈q, pop(R), tmp1(time, q, R)〉 and

t2 =
〈
tmp1(time, q, R), push(R⊕` ), q

〉
.

We define CostP(t1) = CostP(t2) = 0.
• If r0 = ∅ and k = n, then we simulate a long timed transition. In this

case, ∆P1 contains

t1 = 〈q, pop(R), tmp1(time, q, R)〉 and

t2 =
〈
tmp1(time, q, R), push(R⊕` ), tmp2(time, q, R)

〉
.

Define CostP(t1) = CostP(t2) = 0. Since the transition is long, we must
pay the stack cost. Therefore, ∆P2 contains 〈tmp2(time, q, R), sc, q〉.

Correctness. Consider a detailed computation πT in δ-form of length n in T and
its simulation πP in P. We will give a bound on the difference in cost between
each step in πT compared to its corresponding steps in πP . The costs of the
discrete steps are identical. Now we consider timed transitions. If the timed
transition is short, its cost is bounded by δ multiplied by the stack cost at that
step, while the cost of the corresponding steps in πP is equal to 0. On the other
hand, if the timed transition is long, the cost is bounded by (1− δ) multiplied
by the stack cost, while the cost of the corresponding steps is exactly equal to
the stack cost. Consequently, the difference is always bounded by δ multiplied
by the stack cost. Since the stack cost is bounded by the length of the stack
multiplied by the cost of the most expensive symbol, and since the length of
the stack is bounded by n, the difference in price at each step is bounded by
δ · |πT | · max{Cost(a) | a ∈ Γ}. This implies that the total difference in cost
between πT and πP is bounded by δ · |πT |2 ·max{Cost(a) | a ∈ Γ}. This gives
the following lemma:

Lemma 7. ∀δ : 0 < δ < 1
10 and ∀πT . πT ∈ Compd

δ (T , q), ∃πP . πP ∈ Comp(P, q)
s.t. |CostP(πP)− Cost(πT )| ≤ δ · |πT |2 ·max{Cost(a) | a ∈ Γ}.
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The other direction can be explained in a similar manner:

Lemma 8. ∀πP . πP ∈ Comp(P, q), and ∀δ : 0 < δ < 1
10 , ∃πT . πT ∈ Compd

δ (T , q)
s.t. |CostP(πP)− Cost(πT )| ≤ δ · |πT |2 ·max{Cost(a) | a ∈ Γ}.

We now combine Lemma 2, Lemma 4, and Lemmas 8 and 7 to prove the following:

Theorem 9. Costopt(T , q) = Costopt(P, q) for any state q ∈ Q.

Thus, the cost-optimal reachability problem for Ptpa reduces to the same problem
for Ppa, which is computable by Lemma 6. This concludes the proof of Theorem
1.

8 Conclusion

We have studied the cost-optimal reachability problem for priced dense-timed
pushdown automata, and shown that this problem can be reduced to the same
problem for priced (untimed) pushdown automata, which in turn can be reduced
to the reachability problem for ordinary pushdown automata. This yields an
algorithm for computing the optimal reachability cost for Ptpa. To simplify the
exposition, we assumed that push (resp. reset) operations result in the stack
symbol having age (resp. affected clock having value) 0. The model still strictly
subsumes that of [1] (we can encode the intervals in the stack symbols).

A simple generalization is to make the stack symbol storage cost dependent
on the current control-state. Our construction can be trivially extended to handle
this case. (We need to consider a similar extension for the priced pushdown
automata.)

A challenging problem which we are currently considering is to extend our
results to the case of negative costs.
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