
Monotonic and Downward Closed Games*
PAROSH AZIZ ABDULLA, Uppsala University, Sweden.
E-mail: parosh@it.uu.se

AHMED BOUAJJANI and JULIEN D’ORSO, University of Paris 7, France.

Abstract
In an earlier work [Abdulla et al. (2000, Information and Computation, 160, 109–127)] we presented a general framework for
verification of infinite-state transition systems, where the transition relation is monotonic with respect to a well quasi-ordering
on the set of states. In this article, we investigate extending the framework from the context of transition systems to that of
games with infinite state spaces. We show that monotonic games with safety winning conditions are in general undecidable.
In particular, we show this negative results for games which are defined over Petri nets. We identify a subclass of monotonic
games, called downward closed games. We provide algorithms for analysing downward closed games subject to safety winning
conditions. We apply the algorithm to games played on lossy channel systems. Finally, we show that weak parity games are
undecidable for the above classes of games.

Keywords: infinite-state games, lossy channel systems, Vector Addition Systems, Petri nets.

1 Introduction

One of the main challenges undertaken by the model checking community has been to develop
algorithms which can deal with infinite state spaces. In a previous work [1], we presented a general
framework for verification of infinite-state transition systems. The framework is based on the
assumption that the transition relation is monotonic with respect to a well quasi-ordering on the
set of states (configurations). The framework has been used both to give uniform explanations of
existing results for infinite-state systems such as Petri nets, Timed automata [2], lossy channel systems
[5], and relational automata [7, 9]; and to derive novel algorithms for model checking of Broadcast
protocols [12, 13], timed Petri nets [6] and cache coherence protocols [11], etc.

A related approach to model checking is that of control [3]. Behaviours of reactive systems can
naturally be described as games [10, 21], where control problems can be reduced to the problem
of providing winning strategies. Since the state spaces of reactive systems are usually infinite, it is
relevant to try to design algorithms for solving games over infinite state spaces.

We consider turn-based games, played between two players A and B, and investigate two types
of winning conditions: (i) safety winning conditions in which player A tries to avoid a given set
of final (bad) configurations, while player B tries to force the play into such a configuration; and
(ii) weak parity winning conditions, where each configuration is equipped with a rank chosen from
a finite set of natural numbers. The winning condition is defined by the parity of the lowest rank of
a configuration appearing in the play. For simplicity, we sometimes refer to games with the above
winning conditions as safety and weak parity games, respectively.

In this article, we investigate extending the framework of [1] from the context of transition systems
to that of games with infinite state spaces. This turns out to be non-trivial. In fact, for one of the
simplest classes of monotonic games, namely those induced by Petri nets, and for the simplest possible

*A preliminary version of this article appeared in Proc. CSL/KGC’03, Computer Science Logic and 8th Kurt Gödel
Colloquium, 2003.

Vol. 18 No. 1, © The Author, 2007. Published by Oxford University Press. All rights reserved.
For Permissions, please email: journals.permissions@oxfordjournals.org
Published online 22 November 2007 doi:10.1093/logcom/exm062

154 Monotonic and Downward Closed Games

winning condition, namely safety conditions, we show that it is undecidable to check whether a
configuration is winning for a given player. On the other hand, we show decidability of safety games
for a subclass of monotonic games, namely downward closed games: if a player can make a move
from a configuration c1 to another configuration c2, then all configurations which are larger than c1
(with respect to the ordering on the state space) can also make a move to c2. Typical examples of
downward closed systems are those with lossy behaviours such as lossy channel systems [5] and
lossy VASS [8]. For these models, a configuration c3 which is larger than c1 can perform a silent
transition to c1 from which it can move to c2. This behaviour explains the name downward closed
which we use for this class of games.

We summarize our (un)decidability results as follows:

• Decidability of safety games where player B has a downward closed behaviour
(a B-downward closed game). Considering the case where only one player is downward closed
is relevant, since it allows, for instance, modeling behaviours of systems where one player
(representing the environment) may lose messages in a lossy channel system (a so-called
B-LCS game). In case player A has a deterministic behaviour (has no choices), our algorithm
for B-downward closed games degenerates to the symbolic backward algorithm presented
in [1, 5] for checking safety properties. It turns out that the sets of winning and losing
configurations are regular languages provided that the set of target configurations are regular.
In fact, we show that these sets are effectively constructable. Observe that the decidability
result implies decidability of the special case when both players have downward closed
behaviours.

• Decidability of safety games for A-downward closed games. In case player B has a deterministic
behaviour, our algorithm for A-downward closed games degenerates to the forward algorithms
described in [1, 5] and [14, 15] for checking eventuality properties (of the form ∀�p). Although,
the sets of winning and losing configurations are both regular, we show (in contrast to
B-downward closed games), that these sets are not effectively constructible.

• Decidability of safety properties for downward closed games do not extend to monotonic games.
In particular, we show that checking safety properties for games based on VASS (VectorAddition
Systems with States) is undecidable.AVASS is an extended finite-state automaton which operates
on a finite set of weak counters (and are hence computationally equivalent to the classical model
of Petri nets). The undecidability result holds even if both players are assumed to have monotonic
behaviours.

• Undecidability of weak parity games for both A- and B-downward closed games. In particular,
we show undecidability of weak parity games for both A-LCS and B-LCS games. On the other
hand, if both players can lose messages, the problem is decidable.

In the first two cases, the winning strategy for the relevant player is positional.
It is worth noting that Raskin et al. [20] have shown decidability for another class of monotonic

games, namely those based on systems modeled with a counter abstraction. This class is different
from the class of downward closed games which we consider in this article.

Outline. In the next Section, we recall some basic definitions for games. In Section 3, we introduce
monotonic and downward closed games. We present a symbolic algorithm for solving B-downward
closed games with safety winning conditions in Section 4; and apply the algorithm to B-LCS in
Section 5. In Section 6, we consider A-downward closed games. In Section 7, we show that safety
monotonic games are undecidable. In Section 8, we study decidability of weak parity games for the
above models. Finally, we give some conclusions and remarks in Section 9.

Monotonic and Downward Closed Games 155

2 Preliminaries

In this section, we recall some standard definitions for games. We consider turn-based games, played
between two players A and B.

A game G is a tuple
(
C,CA,CB,−→,CF

)
, where C is a (possibly infinite) set of configurations,

CA,CB is a partitioning of C, −→⊆(
CA ×CB

)∪(
CB ×CA

)
is a set of transitions, and CF ⊆CA is

a set of final configurations. The sets CA and CB represent the configurations of A and B. From a
configuration in CA, Player A is allowed to move to a configuration in CB. The choices of player A
should be consistent with the transition relation. Player B makes moves in an analogous manner.

We write c1 −→c2 to denote that
(
c1,c2

)∈−→. For a configuration c, we define Pre(c)={
c′|c′ −→c

}
, and define Post(c)={

c′|c−→c′}. We extend Pre to sets of configurations such that
Pre(D)=∪c∈DPre(c). The function Post can be extended in a similar manner. Without loss of
generality, we assume that there is no deadlock, i.e. Post(c) �=∅ for each configuration c. For a

set D⊆CA of configurations, we define
A¬D to be the set CA \D. The operator

B¬ is defined in a

similar manner. For a set D⊆CA, we use P̃re(D) to denote
B¬

(
Pre

(
A¬D

))
. For E ⊆CB, we define

P̃re(E) in a similar manner.
A play P (of G) from a configuration c is an infinite sequence c0,c1,c2,... of configurations such

that c0 =c, and ci −→ci+1, for each i≥0. We will consider safety games in which player A tries to
avoid states in CF (such a game can also be seen as a reachability games in which player B tries to
force the play into CF). A play c0,c1,c2,... is winning for player A if there is no j≥0 with cj ∈CF .

A strategy for player A (or simply an A-strategy) is a partial function σA :CA �→CB such
that c−→σA(c). A B-strategy is a partial function σB :CB �→CA and is defined in a similar
manner to an A-strategy. A configuration c∈CA together with strategies σA and σB (for
players A and B respectively) define a play P(c,σA,σB)=c0,c1,c2,... from c where c0 =c,
c2i+1 =σA(c2i), and c2i+2 =σB(c2i+1), for i≥0. A similar definition is used in case c∈
CB (interchanging the order of applications of σA and σB to the configurations in the
sequence).

An A-strategy σA is said to be winning for player A from a configuration c, if for all B-strategies
σB, it is the case that P(c,σA,σB) is winning for player A. A configuration c is said to be winning for
player A if there is a winning A-strategy from c. We shall consider the safety problem for games:

The safety problem
Instance A game G with safety winning conditions and a configuration c.
Question Is c winning for player A?
Observe that solving the safety game for player A can be done by solving the reachability game

for player B. In the latter, player B tries to force the game into a configuration belonging CF . It is
well known that safety/reachability games are positionally determined (see e.g. [16]).

3 Ordered games

In this section, we introduce monotonic and downward closed games.
Orderings Let A be a set and let � be a quasi-order (i.e. a reflexive and transitive binary relation)

on A. We say that � is a well quasi-ordering (wqo) on A if there is no infinite sequence a0,a1,a2,...

with ai ��aj for i< j. Consider a well quasi-ordering �. For B⊆A, we say that B is canonical if there
are no a,b∈B with a �=b and a�b. We use min to denote a function where, for B⊆A, the value of
min(B) is a canonical subset of B such that for each b∈B there is a∈min(B) with a�b. We say that

156 Monotonic and Downward Closed Games

� is decidable if, given a,b∈A we can check whether a�b. A set B⊆A is said to be upward closed
if a∈B and a�b imply b∈B. A downward closed set is defined in an analogous manner.

Monotonic games An ordered game G is a tuple
(
C,CA,CB,−→,CF ,�)

, where(
C,CA,CB,−→,CF

)
is a game and �⊆(

CA ×CA
)∪(

CB ×CB
)

is a decidable wqo on the sets
CA and CB. The ordered game G is said to be monotonic with respect to player A (or simply
A-monotonic) if, for each c1,c2 ∈CA and c3 ∈CB, whenever c1 �c2 and c1 −→c3, there is a c4 with
c3 �c4 and c2 −→c4. A B-monotonic game is defined in a similar manner. A monotonic game is both
A-monotonic and B-monotonic.

Downward closed games An ordered game G=(
C,CA,CB,−→,CF ,�)

is said to be
A-downward closed if, for each c1,c2 ∈CA and c3 ∈CB, whenever c1 −→c3 and c1 �c2, then
c2 −→c3. A B-downward closed game is defined in a similar manner. A game is downward closed if
it is both A- and B-downward closed. Notice that each class of downward closed games is included
in the corresponding class of monotonic games. For instance, each A-downward closed game is
A-monotonic. From the definitions we get the following property.

Lemma 3.1
For an A-downward closed game G and any set E ⊆CB, the set Pre(E) is upward closed.An analogous
result holds for B-downward closed games.

4 B-Downward closed games

In this section, we present a standard scheme for solving the safety problem [22]. We instantiate the
scheme to obtain a symbolic algorithm for solving B-downward closed safety games. In the rest of
this section, we assume a B-downward closed game G=(

C,CA,CB,−→,CF ,�)
.

Scheme Given a configuration c in G, we want to decide whether c is winning for player A or
not. To do that, we introduce a scheme by considering a sequence s of sets of configurations of the
form:

s : D0 , E0 , D1 , E1 , D2 , E2 ,...

where Di ⊆CA and Ei ⊆CB. Intuitively, the sets Di and Ei characterize the configurations (in CA and
CB respectively) which are winning for player B. The elements of the sequence are defined by

D0 = CF E0 = Pre(D0)

Di+1 = Di ∪ P̃re(Ei) Ei+1 = Ei ∪ Pre(Di+1) i=0,1,2,...

We say that s converges (at �) if D�+1 ⊆D� or E�+1 ⊆E�. In such a case, the set D�∪E� characterizes
exactly the set of configurations which are winning for player B. The question of whether a given
configuration c is winning for player A amounts therefore to whether c �∈(

D�∪E�

)
. The sets Di and

Ei are referred to in [16] as the attractors of the set CF . To show that our characterization is correct,
we show the following two lemmas. The first lemma shows that if c appears in one of the generated
sets then it is a winning configuration for player B. The second lemma states that if the sequence
converges, then the generated sets contain all configurations which are winning for player B.

Lemma 4.1
If c∈Di ∪Ei, for some i≥0, then c is winning for player B.

Proof. For a play P=c0,c1,c2,... and a configuration c with c−→c0, we use c•P to denote the
play c,c0,c1,c2,....

Monotonic and Downward Closed Games 157

We let D′
0 =D0, E′

0 =E0, D′
i+1 =Di+1 \Di, and let E′

i+1 =Ei+1 \Ei.
We define a B-strategy σB such that, for each c∈∪i≥0Di ∪Ei and A-strategy σA, the play P(c,σA,σB)

is winning for player B. We can take σB to be any B-strategy such that, for each i≥0 and c∈E′
i , we

have σB(c)=c′ for some c′ ∈Di. By definition of E′
i , we know that such a c′ exists, and that σB(c) is

well-defined.
Let σA be any A-strategy and let c be any configuration with c∈Di ∪Ei. We show that P

(
c,σA,σB

)
is winning for player B. We use induction on the positions of the sets Di and Ei in the sequence s
above.

Base Case If c∈D0 then the result follows from the definitions.
Induction Step We show that P(c,σA,σB) is winning for player B. We consider two cases. First,

we show the case where c∈Ei. If i>0 and c∈Ei−1 then it follows by the induction hypothesis that
P(c,σA,σB) is winning for player B. Otherwise, we know that c∈E′

i , which means that σB(c)=c′
for some c′ ∈Di. By the induction hypothesis we know that P(c′,σA,σB) is winning for player B. It
follows that P(c,σA,σB)=c•P(c′,σA,σB) is winning for player B.

Next, we consider the case where c∈Di+1. If c∈Di then it follows by the induction hypothesis
that P(c,σA,σB) is winning for player B. Otherwise, let σA(c)=c′. Since c∈Di+1, we know that
c′ ∈Ei. By the induction hypothesis it follows that P(c′,σA,σB) is winning for player B. This means
that P(c,σA,σB)=c•P(c′,σA,σB) is winning for player B. �
Lemma 4.2
If s converges at � and c �∈D�∪E� then c is winning for player A.

Proof. Suppose that s converges at �. We define an A-strategy σA such that, for each c �∈∪i≥0
(
Di ∪Ei

)
and B-strategy σB, the play P(c,σA,σB) is winning for player A. We can take σA to be any A-strategy

such that, for each c∈A¬(∪i≥0Di
)
, we have σA(c)=c′ for some c′ ∈B¬(∪i≥0Ei

)
. Such a c′ exists

according to the following argument: Suppose that c′ does not exist. This means that, for each
c′ ∈Post(c), there is a j such that c′ ∈Ej. Since s converges at �, it follows that Post(c)⊆E�. This
implies that c∈D�+1 which is a contradiction.

Let σB be any B-strategy and let c be any configuration with c �∈∪i≥0
(
Di ∪Ei

)
. We show that

P
(
c,σA,σB

)=c0,c1,c2,... is winning for player A. First, we show the following property: for each
j≥0 we have cj �∈∪i≥0

(
Di ∪Ei

)
. We use induction on j.

Base Case Trivial.
Induction Step We consider two cases. If cj+1 ∈CA. Suppose that cj+1 ∈Di for some i :0≤ i≤�.

This means that cj ∈Ei which contradicts the induction hypothesis.
If cj+1 ∈CB. Suppose that cj+1 ∈Ei for some i≥0. We know that cj+1 =σA(cj). From the definition

of σA it follows that cj ∈Dk for some k :0≤k ≤�, which again is a contradiction to the induction
hypothesis.

Now we can prove the lemma. Suppose that P
(
c,σA,σB

)=c0,c1,c2,... is winning for player B.
This means that there is a j≥0 such that cj ∈CF . This implies that cj ∈D0 which is a contradiction
to the above property. �

Below, we present a symbolic algorithm based on the scheme above. We shall work with constraints
which we use as symbolic representations of sets of configurations.

Constraints An A-constraint denotes a (potentially infinite) set [[φ]]⊆CA of configurations.
A B-constraint is defined in a similar manner. For constraints φ1 and φ2, we use φ1 �φ2 to denote
that [[φ2]]⊆[[φ1]]. For a set � of constraints, we use [[�]] to denote

⋃
φ∈�[[φ]]. For sets of constrains

�1 and �2, we use �1 ��2 to denote that [[�2]]⊆[[�1]]. Sometimes, we identify constraints with
their interpretations, so we write c∈φ, φ1 ⊆φ2, φ1 ∩φ2, ¬φ, etc. We consider a particular class of

158 Monotonic and Downward Closed Games

B-constraints which we call upward closed constraints. A constraint φ is said to be upward closed if
[[φ]] is upward closed with respect to �, i.e., c∈[[φ]] and c�c′ implies c′ ∈[[φ]].

A set � of constraints is said to be effective with respect to the game G if

• The set CF is characterized by a finite set �F ⊆�, i.e., [[�F]]=CF .
• For a configuration c and a constraint φ∈�, we can decide whether c∈[[φ]]. For finite sets of

constraints �1,�2, we can decide whether �1 ��2.
• For each A-constraint φ∈�, we can compute a finite set �′ of upward closed B-constraints

such that [[�′]]=Pre
([[φ]]). In such a case we use Pre(φ) to denote the set �′. Notice that

Pre
([[φ]]) is upward closed by Lemma 3.1. Also, observe that computability of Pre(φ) implies

that, for a finite set �⊆�, we can compute a finite set �′ of upward closed constraints such
that [[�′]]=Pre

([[�]]). We use Pre(�) to denote the set �′.
• For each finite set � of B-constraints, we can compute a finite set �′ ⊆� of A-constraints such

that [[�′]]= P̃re
([[�]]). In such a case we use P̃re(�) to denote the set �′.

The game G is said to be effective if there is a set � of constraints which is effective with respect
to G.

Symbolic algorithm Given a constraint system � which is effective with respect to the game G,
we can solve the safety game problem by deriving a symbolic algorithm from the scheme described
earlier. Each Di will be characterized by a finite set of A-constraints �i ⊆� , and each Ei will be
represented by a finite set of B-constraints �′

i. More precisely:

�0 = �F �′
0 = Pre(�0)

�i+1 = �i ∪ P̃re(�′
i) �′

i+1 = �′
i ∪ Pre(�i+1) i=0,1,2,...

The algorithm terminates in case �′
j ��′

j+1. In such a case, a configuration c is winning for player B

if and only if c∈[[�j]]∪[[�′
j]]. This gives an effective procedure for deciding the safety game problem

according to the following

• Since � is effective with respect to G we can:
– perform each step of the algorithm.
– check whether c∈[[φ]], for any configuration c and constraint φ in �i or �′

i.
– check the termination condition.

• Termination is guaranteed due to well quasi-ordering of � as follows. Suppose that the algorithm
does not terminate. Then, there is an infinite sequence �′

0,�
′
1,�

′
2,..., where each �′

i is a finite
set of B-constraint, such that �′

i ���′
i+1 for each i≥0. This means that [[�′

j]] �⊆[[�′
i+1]] for each

i≥0. By definition, we know that [[�′
0]]⊆[[�′

1]]⊆[[�′
2]]⊆···. It follows that [[�′

0]]⊂[[�′
1]]⊂[[�′

2]]⊂···. In other words the are configurations c0,c1,c2,... where cj ∈[[�′
j]] and cj �∈ [[�′

i]] if

j< i. Since �′
i is a set of B-constraints, it follows that [[�′

i]] is upward closed for each i≥0. This
implies that ci ��cj if j> i, and hence the sequence of configurations violates the assumption that
the set CB is well quasi-ordered.

From this we get the following:

Theorem 4.3
The safety problem is decidable for the class of effective B-downward closed games in case the set
CF is characterized by a finite set of constraints.

Monotonic and Downward Closed Games 159

5 B-Lossy channel systems

In this section, we apply the symbolic algorithm presented in Section 4 to solve the safety game
problem for B-LCS games: games between two players operating on a finite set of channels
(unbounded FIFO buffers), where player B is allowed to lose any number of messages before each
move.

For a function f , we use f [� :=a] to denote the function f ′ such that f ′(�)=a and f ′(�′)= f (�′) if
�′ �=�.

For a finite set M and words x1,x2 ∈M∗, we use x1 •x2 to denote the concatenation of x1 and x2.
For x∈M∗ and X ⊆M∗, we use X •x to denote the set of words x′ •x with x′ ∈X. Also, we use x−1 •X
to denote the left quotient of X with respect to x, i.e. to denote the set of words x′ such that x•x′ ∈X.
For x1,x2 ∈M∗, we use x1 �x2 to denote that x1 is a (not necessarily contiguous) substring of x2.

A B-lossy channel system (B-LCS) is a tuple
(
S,SA,SB,L,M,T ,SF

)
, where S is a finite set of

(control) states, SA,SB is a partitioning of S, L is a finite set of channels, M is a finite message
alphabet, T is a finite set of transitions, and SF ⊆SA is the set of final states. Each transition in T is
a triple

(
s1,op,s2

)
, where

• either s1 ∈SA and s2 ∈SB, or s1 ∈SB and s2 ∈SA.
• op is of one of the forms: �!m (sending message m to channel �), or �?m (receiving message m

from channel �), or nop (not affecting the contents of the channels).

A B-LCS L=(
S,SA,SB,L,M,T ,SF

)
induces a B-downward closed game G=(

C,CA,CB,−→,CF ,�)
as follows:

• Configurations: Each configuration c∈C is a pair
(
s,w

)
, where s∈S, and w, called a channel

state, is a mapping from L to M∗. In other words, a configuration is defined by the control state

and the contents of the channels. We partition the set C into CA =
{(

s,w
)|s∈SA ∧w∈LM∗}

and

CB =
{(

s,w
)|s∈SB ∧w∈LM∗}

.

• Final configurations: The set CF is defined to be
{(

s,w
)|s∈SF

}
.

• Ordering: For channel states w1,w2, we use w1 �w2 to denote that w1(�)�w2(�) for each �∈L.
For configurations c1 =(

s1,w1
)

and c2 =(
s2,w2

)
, we use c1 �c2 to denote that both s1 =s2 and

w1 �w2.
The ordering � is decidable and wqo (by Higman’s Lemma [17]).
For a set D of configurations, we use D↑ to denote the upward closure of D with respect to �.
In other words, D↑ is the set

{
c′|∃c∈D.c�c′}.

• Non-loss transitions:
(
s1,w1

)−→(
s2,w2

)
if one of the following conditions is satisfied

– There is a transition in t ∈T of the form
(
s1,�!m,s2

)
, and w2 is the result of appending m to

the head of w1(�), i.e., w2 =w1[� :=m•w1(�)].
– There is a transition in t ∈T of the form

(
s1,�?m,s2

)
, and w2 is the result of removing m from

the end of w1(�), i.e., w1 =w2[� :=w1(�)•m].
– There is a transition in t ∈T of the form

(
s1,nop,s2

)
, and w2 =w1.

In the above three cases we use t(s1,w1) to denote
(
s2,w2

)
and use t−1(s2,w2) to denote(

s1,w1
)
. For a set C of configurations and a transition t ∈T , we use t(C) to denote the set

{c2|∃c1 ∈C. t(c1)=c2}. We define t−1(C) in a similar manner.
• Loss transitions: If s1 ∈SB and

(
s1,w1

)−→ (
s2,w2

)
according to one of the previous three rules

then
(
s′
1,w

′
1

)−→ (
s2,w2

)
for each

(
s′
1,w

′
1

)
with

(
s1,w1

)�(
s′
1,w

′
1

)
.

160 Monotonic and Downward Closed Games

Remark. To satisfy the condition that there are no deadlock states in games induced by B-LCS, we
will add a number of states. The idea is that the player who deadlocks is considered to be a loser. More
precisely, we add two ‘winning’states s∗

1 ∈SA s∗
2 ∈SB for player A. We also add two ‘winning’states for

player B, namely s∗
3 ∈SA, s∗

4 ∈SB, where s∗
3 ∈SF , and s∗

1 �∈SF . We add four transitions
(
s∗
1,nop,s∗

2

)
,(

s∗
2,nop,s∗

1

)
,
(
s∗
3,nop,s∗

4

)
, and

(
s∗
4,nop,s∗

3

)
. Furthermore, we add transitions

(
s,nop,s∗

4

)
for each

s∈SA, and
(
s,nop,s∗

1

)
for each s∈SB. Intuitively, if player A enters a configuration, where he has

no other options, then he is forced to move to s∗
4 losing the game. A similar reasoning holds for

player B.
We show decidability of the safety problem for B-LCS using Theorem 4.3. In order to do that we

introduce regular constraints which are effective with respect to B-LCS. A regular constraint over
M is a finite-state automaton (or equivalently a regular expression) characterizing a regular set over
M. A regular constraint φ over channel states is a mapping from L to regular constraints over M, with
an interpretation [[φ]]={w|∀�∈L.w(�)∈[[φ(�)]]}. A regular constraint φ (over configurations) is of
the form

(
s,φ′), where s∈S and φ′ is a regular constraint over channel states, with an interpretation

[[φ]]={(
s,w

)|w∈[[φ′]]}.
Next we show that regular constraints are effective for B-LCS games (Lemma 5.4). First, we show

three auxiliary lemmas.

Lemma 5.1
For a regular constraint

(
s2,φ2

)
and a transition t, we can effectively compute a regular constraint

which denotes t−1(s2,φ2).

Proof. If t is of the form
(
s1,�!m,s2

)
then t−1(s2,φ2)=(

s1,φ2[� :=m−1 •φ2(�)]). The result follows
from the fact that regular languages are closed under taking the left quotient with respect to a word
(and in particular with respect to a symbol of the alphabet).

If t is of the form
(
s1,�?m,s2

)
then t−1(s2,φ2)=(

s1,φ2[� :=φ2(�)•m]). The result follows since
regular languages are closed under concatenation.

If t is of the form
(
s1,nop,s2

)
then t−1(s2,φ2)=(

s1,φ2
)
. The result follows from regularity

of φ2. �
Lemma 5.2
For a regular constraint φ1, we can effectively compute a regular constraint φ2 such that φ2 =φ1↑.

Proof. For a regular language L1 represented by a finite-state automaton A1, we can construct a new
automaton A2 representing L1↑. We can derive A2 from A1 by adding a self-loop for each symbol in
the alphabet and each state in A1. �
Lemma 5.3
For a regular constraint φ1, we can effectively compute a regular constraint φ2 such that φ2 =¬φ1.

Proof. For a regular constraint φ over channel states (with a set L of channels and a set M of
messages), the complement ¬φ is the set of constraints φ′ where there is an �∈L such that φ′(�)=
¬φ(�) and φ′(�′)=M∗ if �′ �=�. For a regular constraint φ1 =(

s,φ
)
, the complement ¬φ1 is given

by the set of constraints of the form φ2 =(
s′,φ′) where either s′ �=s or φ′ ∈¬φ. �

Lemma 5.4
Regular constraints are effective for B-LCS games.

Proof.
• The set CF is characterized by the (finite) set of constraints of the form

(
s,φ

)
where s∈SF and

φ(�)=M∗ for each �∈L. This set is obviously regular.

Monotonic and Downward Closed Games 161

• For a configuration c and a regular constraint φ we can check whether c∈[[φ]] as it amounts
to checking membership of a word in a regular set. For regular constraints φ1,φ2 ∈�, we can
check whether φ1 �φ2 as it amounts to deciding inclusion between regular languages.

• For each regular A-constraint φ, we can compute a finite set � of upward closed B-constraints,
such that �=Pre(φ). The result follows from Lemma 5.1, Lemma 5.2 and the fact that Pre(φ)=(⋃

t∈T t−1(φ)
)↑.

• For each finite set �1 of regular B-constraints, we can compute a finite set �2 of regular

A-constraints, such that �2 = P̃re(�1). We recall that P̃re(�)=A¬
(

Pre

(
B¬�

))
. The result

follows from Lemma 5.1 and Lemma 5.3.

�
From Theorem 4.3 and Lemma 5.4 we get the following:

Theorem 5.5
The safety problem is decidable for B-LCS games.

6 A-Downward closed games

We present an algorithm for solving the safety problem for A-downward closed games. We use the
algorithm to prove decidability of the safety problem for a variant of lossy channel games, namely
A-LCS.

An A-downward closed game is said to be executable if for each configuration c, the set Post(c) is
finite and computable. Observe that this implies that the game is finitely branching.

Suppose that we want to check whether a configuration cinit ∈CA is winning for player A. The
algorithm builds an AND-OR tree, where each node of the tree is labelled with a configuration.
OR-nodes are labelled with configurations in CA, while AND-nodes are labelled with configurations
in CB.

We build the tree successively, starting from the root, which is labelled with cinit (the root is
therefore an OR-node). At each step we pick a leaf with label c and perform one of the following
operations:

• If c∈CF then we declare the node unsuccessful and close the node (we will not expand the tree
further from the node).

• If c∈CB, c �∈CF , and there is predecessor node in the tree with label c′ where c′ �c then we
declare the node successful and close the node.

• Otherwise, we add a set of successors, each labelled with an element in Post(c). This step is
possible by the assumption that the game is executable.

The procedure terminates by Köning’s Lemma and by well quasi-ordering of �. The resulting tree is
evaluated interpreting AND-nodes as conjunction, OR-nodes as disjunction, successful leaves as the
constant true and unsuccessful leaves as the constant false. More precisely, we compute a function
eval which takes as input a node n in the tree and returns a Boolean value as follows:

• If n is successful then eval(n)= true.
• If n is unsuccessful then eval(n)= false.
• Otherwise, let {n1,...,nm} be the set of children of n, and let c be the label of n. If c∈CA then

let eval(n) :=eval(n1)∨···∨eval(nm); and if c∈CA then let eval(n) :=eval(n1)∧···∧eval(nm).

162 Monotonic and Downward Closed Games

Notice that, when the tree is completely built, a node is a leaf iff it has been declared
successful/unsuccessful. The algorithm answers ‘yes’ if and only if eval(nroot)= true where nroot is
the root of the tree. We show that the construction is correct. More precisely, depending on whether
eval(nroot) is true resp. false, we construct a winning strategy for player A resp. B.

Suppose that eval(nroot)= true. We define a winning strategy σA for player A. We let σA to be
any strategy which satisfies the following properties. For each c∈CA such that there is an interior
node n of the tree with eval(n)= true and label c, we consider a node n′ which is child of n and with
eval(n′)= true (such an n′ exists by definition). We define σA(c) :=c′, where c′ is the label of n′.

Suppose that eval(nroot)= false. We define a winning strategy σB for player B. For each c∈CB
which is the label of an interior node we define σB(c) in a similar manner to above (replacing the
constant true by false). For a configuration c which is the label of an unsuccessful node n, let n′
be a predecessor node of n such that n′ is labeled with a configuration c′ �c (such an n′ exists by
definition). We let σB(c) :=σB(c′).

From this, we get the following.

Theorem 6.1
The safety problem is decidable for executable A-downward closed games.

A-LCS An A-LCS has the same syntax as a B-LCS. The difference is that it is now player A who
loses messages (rather than player B). The game induced by an A-LCS has a similar behaviour to
that induced by a B-LCS. The difference is that in the definition of the loss transitions:

• If s1 ∈SA and
(
s1,w1

)−→ (
s2,w2

)
according to a non-loss transition then

(
s′
1,w

′
1

)−→ (
s2,w2

)
for each

(
s′
1,w

′
1

)
with

(
s1,w1

)�(
s′
1,w

′
1

)
.

It is straightforward to check that a game induced by an A-LCS is A-downward closed and executable.
This gives the following.

Theorem 6.2
The safety problem is decidable for A-LCS games.

Although the safety problem is decidable for A-LCS games, it is not possible to compute a
characterization of the set of winning configurations as we did for B-LCS. This is shown as follows.
Observe that the set of winning configurations for player A is upward closed. Therefore, this set can
be characterized by a finite set of regular constraints. However, we show that we cannot compute a
finite set of regular constraints � such that [[�]] is the set of winning configurations for player A.
To do that, we use a result reported in [8] for transition systems induced by lossy channel systems.
The result in [8] implies that we cannot compute a finite set of regular constraints characterizing
the set of configurations c satisfying the property c |=∃∞�¬SF , i.e. we cannot compute a finite
set of regular constraints characterizing the set of configurations from which there is an infinite
computation which never visits a given set SF of control states. Given a lossy channel system
L (inducing a transition system) and a set SF of states, we derive an A-LCS L′ (inducing an
A-downward closed game). For each configuration c in L, it is the case that c |=∃∞�¬SF if and only
if the configuration corresponding to c is winning in the game induced by L′. Intuitively, player A
simulates the transitions of L, while player B follows passively. More precisely, each state s in L has a
copy s∈CA in L′. For each transition t =(

s1,op,s2
)

in L, there is a corresponding ‘intermediate state’
st ∈CB and two corresponding transitions

(
s1,op,st

)
and

(
st,nop,s2

)
in L′. Furthermore, we have

two state s∗
1 ∈CA and s∗

2 ∈CB which are losing for player A (defined in a similar manner to Section 5).
Each configuration in CA can perform a transition labelled with nop to s∗

2. It is straightforward to
check that a configuration c is winning for player A in L′ if and only if c |=∃∞�¬SF .

Monotonic and Downward Closed Games 163

Notice that this implies we cannot either compute a finite set of regular constraints characterizing
the set of winning configurations for player B.

From this, we get the following:

Theorem 6.3
We cannot compute finite sets of regular constraints characterizing the sets of winning configurations
for players A and B in an A-LCS (although such sets always exist).

7 Undecidability of monotonic games

We show that the decidability of the safety problem does not extend from downward closed games
to monotonic games. We show undecidability of the problem for a particular class of monotonic
games, namely VASS games. The proof is inspired by ideas from Jančar showing undecidability of
bisimulation for Petri nets [18]. In the definition of VASS games below, both players are assumed to
have monotonic behaviours. Obviously, this implies undecidability for A- and B-monotonic games.

In fact, it is sufficient to consider VASS with two dimensions (two variables). Let N and I denote
the set of natural numbers and integers respectively.
VASS Games A (2-dimensional) VASS (Vector Addition System with States) game V is a tuple(
S,SA,SB,T ,SF

)
, where S is a finite set of (control) states, SA,SB is a partitioning of S, T is a finite

set of transitions, and SF ⊆S is the set of final states. Each transition is a triple
(
s1,

(
a,b

)
,s2

)
, where

• either s1 ∈SA and s2 ∈SB, or s1 ∈SB and s2 ∈SA.
• a,b∈I. The pair

(
a,b

)
represents the change made to values of the variables during the transition.

AVASS V =(
S,SA,SB,T ,SF

)
induces a monotonic game G=(

C,CA,CB,−→,CF ,�)
as follows:

• Each configuration c∈C is a triple
(
s,x,y

)
, where s∈S and x,y∈N . In other words, a

configuration is defined by the state and the values assigned to the variables.
• CA ={(

s,x,y
)| (s∈SA)∧(x≥0)∧(y≥0)

}
.

• CB ={(
s,x,y

)| (s∈SB)∧(x≥0)∧(y≥0)
}
.

•
(
s1,x1,y1

)−→(
s2,x2,y2

)
iff

(
s1,

(
a,b

)
,s2

)∈T , x2 =x1 +a, and y2 =y1 +b. Observe that since
x2,y2 ∈N , we implicitly require x2 ≥0 and y2 ≥0; otherwise the transition is blocked.

• CF ={(
s,x,y

)| (s∈SF)∧(x≥0)∧(y≥0)
}
.

•
(
s1,x1,y1

)�(
s2,x2,y2

)
iff s1 =s2, x1 ≤x2, and y1 ≤y2.

We can avoid deadlock in VASS games in a similar manner to Section 5.

Theorem 7.1
The safety problem is undecidable for VASS games.

Undecidability is shown through a reduction from an undecidable problem for 2-counter machines.
2-Counter machines A 2-counter machine M is a tuple

(
SM ,TM

)
, where SM is a finite set of

states, and TM is a finite set of transitions. Each transition is a triple of the form
(
s1,

(
a,b

)
,s2

)
, or(

s1,x=0?,s2
)
, or

(
s1,y=0?,s2

)
, where s1,s2 ∈SM .

A configuration of M is a triple
(
s,x,y

)
where s∈SM and x,y∈N . We define a transition relation

−→ on configurations such that
(
s1,x1,y1

)−→(
s2,x2,y2

)
iff either

•
(
s1,

(
a,b

)
,s2

)∈TM , and x2 =x1 +a, y2 =y1 +b, x2 ≥0, and y2 ≥0; or
•

(
s1,x=0?,s2

)∈TM , x2 =x1 =0, and y2 =y1; or
•

(
s1,y=0?,s2

)∈TM and x2 =x1, and y2 =y1 =0.

164 Monotonic and Downward Closed Games

The 2-counter reachability problem is defined as follows
2-Counter reachability problem

Instance A 2-counter machine M =(
SM ,TM

)
and two states sinit,sf ∈SM .

Question Is there a sequence(
s0,x0,y0

)−→(
s1,x1,y1

)−→(
s2,x2,y2

)−→ ··· −→(
sn,xn,yn

)
of transitions such that s0 =sinit, x0 =0, y0 =0, and sn =sf ?
It is well known that the 2-counter reachability problem is undecidable. In the following, we show

how to reduce the 2-counter reachability problem to the safety problem for VASS games. Given a
2-counter machine M =(

SM ,TM
)

and two states sinit,sf ∈SM , we construct a corresponding VASS
game V , such that the reachability problem over M has a positive answer if and only if the safety
game is winning over V for player B. Intuitively, player B emulates the moves of M, while player A
is passive. Tests for equality with 0 cannot be emulated directly by a VASS system. This means that
player B could try to make moves not corresponding to an actual move of the 2-counter machine.
However, if player B tries to ‘cheat’, i.e. to make a forbidden move, then we allow player A to go into
a winning escape loop. This means that player B always chooses to make legal moves. Furthermore,
we add an escape loop accessible when the system has reached the final state. This loop is winning
for player B. Thus, player B wins whenever the final state is reachable. Formally, we define the VASS
game V =(

S,SA,SB,T ,SF
)

as follows:

• SA ={
sA
t | t ∈TM

} ∪ {
sA∗ ,sA

reached,s
A
init

}
. In other words, for each transition t ∈TM there is a state

sA
t ∈SA. We also add three special states sA∗ ,sA

reached and sA
init to SA.

• SB ={
sB|s∈SM

} ∪ {
sB∗

}
. In other words, for each state in s∈SM there is a corresponding state

sB ∈SB. We also add a special state sB∗ to SB.
• For each transition t of the form

(
s1,

(
a,b

)
,s2

)∈TM , there are two transitions in T , namely(
sB
1 ,

(
a,b

)
,sA

t
)

and
(
sA
t ,

(
0,0

)
,sB

2

)
. Player B chooses a move, and player A follows passively.

• For each transition t of the form
(
s1,x=0?,s2

)∈TM , there are three transitions in T , namely(
sB
1 ,

(
0,0

)
,sA

t
)
,
(
sA
t ,

(
0,0

)
,sB

2

)
, and

(
sA
t ,

(−1,0
)
,sB∗

)
. Player B may cheat here. However, if this

is the case, player A will be allowed to move to sB∗ , which is winning.
• Transitions of the form

(
s1,y=0?,s2

)∈TM are handled in a similar manner to the previous case.
• There are five additional transitions in T , namely an initializing transition

(
sA
init,

(
0,0

)
,sB

init

)
;

an escape loop to detect that the final state has been reached
(

sB
f ,

(
0,0

)
,sA

reached

)
and(

sA
reached,

(
0,0

)
,sB

f

)
; a loop to detect illegal moves

(
sB∗ ,

(
0,0

)
,sA∗

)
and

(
sA∗ ,

(
0,0

)
,sB∗

)
.

• SF ={
sA
reached

}
.

Let G=(
C,CA,CB,−→,CF ,�)

be the monotonic game induced by V . We show that there is a
sequence(

s0,x0,y0
)−→(

s1,x1,y1
)−→(

s2,x2,y2
)−→ ··· −→(

sn,xn,yn
)

of transitions in M with s0 =sinit,
x0 =0, y0 =0, and sn =sf iff the configuration

(
sA
init,0,0

)
is winning for player B in G subject to safety

winning conditions.
(if) Suppose that

(
sA
init,0,0

)
is winning in the safety game over G for player B. Then for any

A-strategy, there exists a B-strategy such that P
((

sB
init,0,0

)
,σA,σB

)
is winning for player B. This is

true in particular if we choose the following A-strategy. We define σA(
(
sA
t ,x,y

)
)=c, where c is:

• if t =(
s1,

(
a,b

)
,s2

)
then c=(

sB
2 ,x,y

)
.

• if t =(
s1,x=0?,s2

)
and x>0 then c=(

sB∗ ,x−1,y
)
.

Monotonic and Downward Closed Games 165

• if t =(
s1,x=0?,s2

)
and x=0 then c=(

sB
2 ,x,y

)
.

• the cases for t =(
s1,y=0?,s2

)
are defined in a similar manner as the two previous cases.

Consider P
((

sB
init,0,0

)
,σA,σB

)=c0,c1,c2,.... Since P
((

sB
init,0,0

)
,σA,σB

)
is winning for player B,

there is a k :0≤k ≤ length(P) such that ck is of the form
(
sA
reached,x,y

)
. Such a configuration can only

be reached if the predecessor ck−1 is of form
(

sB
f ,x,y

)
. By the construction of V it follows that there

is no j≤k where cj is of the form
(
sA∗ ,x,y

)
or

(
sB∗ ,x,y

)
(otherwise the definition of σA would imply

that P
((

sA
init,0,0

)
,σA,σB

)
is winning for player A). This means that P

((
sA
init,0,0

)
,σA,σB

)
is in fact

of the form(
sA
init,x0,y0

)
,
(
sB
0 ,x0,y0

)
,
(
sA
t1 ,x1,y1

)
,
(
sB
2 ,x2,y2

)
,
(
sA
t3 ,x3,y3

)
, ...

By the construction of V we know that(
s0,x0,y0

)−→(
s2,x2,y2

)−→ ···
is a sequence of transitions of our 2-counter machine. Since sk−1 =sf , we know that we have

found the desired sequence.
(only if) Suppose that there is a sequence of transitions of the above form. For each i :0≤ i<n

we know that there is a transition ti =
(
si,(ai,bi),si+1

)
.Also, we can assume without loss of generality

that
(
si,xi,yi

) �=(
sj,xj,yj

)
if i �= j in the sequence above.

We now define a B-strategy σB such that P(
(
sB
init,0,0

)
,σA,σB) is winning for player B

against any A-strategy σA. We define σB to be any B-strategy such that σB(
(
sB
i ,xi,yi

)
)=(

sA
ti ,xi +ai,yi +bi

)
)=(

sA
ti ,xi+1,yi+1

)
), for each i :0≤ i<n. We observe that for any A-strategy we

have σA(
(
sA
ti ,xi+1,yi+1

)
)=

(
sB
i+1,xi+1,yi+1

)
. This follows from the fact that transitions to sB∗ are

never enabled during the above sequence.

8 Weak parity games

A weak parity game G of degree n is a tuple
(
C,CA,CB,−→,r

)
where C,CA,CB,−→ are defined as

in games (Section 2), and r is a mapping from C to the set {0,...,n} of natural numbers. We use Ck

to denote {c|r(c)=k}. The sets Ck
A and Ck

B are defined in a similar manner. We call r(c) the rank of c.
Abusing notation, we define the rank r(P) of a play P=c0,c1,c2,... to be min{r(c0),r(c1),r(c2)...}.
We say that P is weak parity winning for player A if r(P) is even. We say that c is weak parity winning
for player A if there is an A-strategy σA such that, for each B-strategy σB, it is the case that P(c,σA,σB)
is weak parity winning for player A.

The weak parity problem
Instance A weak parity game G and a configuration c in G.

Question Is c (weak parity) winning for player A?
We show below that the weak parity problem is undecidable for A-downward closed games.

In particular, we show undecidability of the problem for A-LCS games. The proof for B-downward
closed games is similar.

Theorem 8.1
The weak parity problem is undecidable for A-LCS games.

In [4] we show undecidability of the infinite computation problem, for transition systems based on
lossy channel systems.
The infinite computation problem

Instance A lossy channel systems L and a control states sinit.

166 Monotonic and Downward Closed Games

Question Is there a channel state w such that there is an infinite computation starting from
(
sinit,w

)
?

We reduce the infinite computation problem for LCS to the weak parity problem for A-LCS.
We construct a new L′ to simulate L. Intuitively, we let player A choose the moves of the original
system, while player B follows passively. An additional loop at the beginning of L′ allows us to
guess the initial contents w of the channels. If the system deadlocks, then player B wins. So the
only way for player A to win is to make the system follow an infinite sequence of moves. More
formally, L′ =(

S,SA,SB,L,M,T ,SF
)

is defined as follows. For each control state s in L, we create
a control state sA ∈SA. For each transition t in L, we create a control state sB

t ∈SB. For each transition
t =(

s1,op,s2
)

in L there are two transitions
(
sA
1 ,op,sB

t
)

and
(
sB
t ,nop,sA

2

)
in L′. Furthermore, there

are five additional states s∗
1,s∗

4 ∈SA, s∗
2,s∗

3,s∗
5 ∈SB, together with the following transitions:

• Two transitions
(
s∗
1,�!m,s∗

2

)
and

(
s∗
2,nop,s∗

1

)
for each m∈M and �∈L. These two allow to build

up the initial channel contents.
• Two transitions

(
s∗
1,nop,s∗

3

)
and

(
s∗
3,nop,sA

init

)
. This is to get to the initial state of L when the

channel content is ready.
• A transition

(
sA,nop,s∗

5

)
for each control state s in L. This transition is only taken when L is

deadlocked.
• Two transitions

(
s∗
4,nop,s∗

5

)
, and

(
s∗
5,nop,s∗

4

)
. This loop indicates a deadlock in L.

The ranks of the configurations are defined as follows:

• r
((

s∗
1,w

))=r
((

s∗
2,w

))=r
((

s∗
3,w

))=3, for each w.
• r

((
sA,w

))=r
((

sB
t ,w

))=2, for each w, each transition t in L, and each control state s in L.
• r

((
s∗
4,w

))=r
((

s∗
5,w

))=1, for each w.

We show that
(
s∗
1,ε

)
is weak parity-winning for player A if and only if there exists a w and an

infinite sequence starting from
(
sinit,w

)
.

(if) Suppose that there exists an infinite sequence of configurations of L(
s0,w0

)
,
(
s1,w1

)
,
(
s2,w2

)
, ... with a corresponding sequence of transitions ti =

(
si,opi,si+1

)
.

If there are repetitions in this sequence, we pick i< j with
(
si,wi

)=(
sj,wj

)
such that there is no

repetition in the sequence
(
s0,w0

)
,...,

(
sj−1,wj−1

)
We complete the sequence with repetitions of the

loop
(
si,wi

)
,...,

(
sj,wj

)
.

The sequence above has the property that either all configurations visited are unique, or that
whenever a configuration is repeated, it always has the same successor.

We choose a sequence of send operations

l1!m1, l2!m2,..., ln!mn

such that from empty channels, we get to w0. Let wi be the channel contents after applying send
operations 1 through i.

Then we define an A-strategy σA to be any strategy satisfying the following:

• σA(
(
s∗
1,wi

)
)=(

s∗
2,wi+1), i.e. stay in the rank 3 loop to build the initial channel contents w0;

• σA(
(
s∗
1,w0

)
)=(

s∗
3,w0

)
, i.e., when the channel content is complete, exit the loop, and go to sinit;

• σA(
(
sA
i ,wi

)
)=(

sB
ti ,wi+1

)
, i.e., follow the sequence of transitions of L.

Observe that σA is well-defined, since each configuration visited has a uniquely defined successor.
For any B-strategy, we can see that the play P

((
s∗
1,ε

)
,σA,σB

)
stays indefinitely long in the rank 2

zone. Thus, the rank of the entire play is 2, and the initial configuration is weak parity-winning.

Monotonic and Downward Closed Games 167

(only if) Let us assume that
(
s∗
1,ε

)
is weak parity-winning for the A-strategy σA. By construction

of L′, we know that the rank of a play P
((

s∗
1,ε

)
,σA,σB

)
, for any B-strategy σB, has to be 2.

This means that our play never reaches a configuration with s∗
4 or s∗

5 (otherwise, the play would
have rank 1, and wouldn’t be winning). Since the rank of any configuration with s∗

1 or s∗
2 is 3, we

deduce that our play can be split into two parts:

• a finite part with rank 3
(
s∗
1,ε

)
,...,

(
s∗
3,w0

)
;

• and an infinite part of rank 2
(
s∗
3,w0

)
,
(
sA
init,w0

)
,
(
s1,w1

)
,....

By construction of L′, we deduce that the sequence of configurations

(
sinit,w0

)
,
(
s1,w1

)
,...

is a valid sequence of transitions of L, and it is infinite.
Remark. The above construction implies also undecidability in the case of monotonic games with
Büchi and co-Büchi conditions. In the case of Büchi winning conditions we can take the set of final
states to be those with rank 2. In the case of co-Büchi winning conditions we can take the set of final
states to be those with rank 1 or 3.

9 Conclusions and remarks

We have considered a class of games played over infinite state spaces (infinite graphs), where the
movements of the players are monotonic with respect to a given well quasi-ordering on the set of
states. We show that the decidability results reported in [1] for well quasi-ordered transition systems
do not carry over to the context of games. In fact, undecidability holds for VASS games (which are
monotonic), even under safety winning conditions. On the other hand, we show decidability of safety
properties for the class of games where the moves of one player are downward closed with respect
to the ordering on the state space.

We also consider weak parity games where the rank of a play is decided by the configurations which
appear at least once in the play. This is a simpler condition than that of the standard definition which
considers configurations appearing infinitely often. We show undecidability for LCS games under
weak parity conditions (implying undecidability also in the case of the standard definition). Using
results in [19], we can strengthen this undecidability result and extend it to lossy counter games.
Such games are special cases of LCS games where the message alphabet is of size one (each channel
behaves as a lossy counter). However, in case both players can lose messages, we can show that the
parity problem is decidable. The reason is that the best strategy for each player is to empty the channels
after the next move. The problem can therefore be reduced into an equivalent problem over finite-state
graphs. Notice that the undecidability proof for parity games uses a rank set of size 3 (configurations
have ranks 1, 2 or 3). If the rank set is restricted to have size 2 or 3 the problem degenerates to the
safety problem for B-LCS and A-LCS, respectively, giving decidability in both cases.

References
[1] P. A. Abdulla, K. Čerāns, B. Jonsson, and Y.-K. Tsay. Algorithmic analysis of programs with

well quasi-ordered domains. Information and Computation, 160, 109–127, 2000.
[2] R. Alur and D. Dill. Automata for modelling real-time systems. In Proceedings of ICALP ’90.

Vol. 443 of Lecture Notes in Computer Science, pp. 322–335. Springer, Warwick, 1990.

168 Monotonic and Downward Closed Games

[3] R. Alur, T. Henzinger, and O. Kupferman. Alternating-time temporal logic. In Proceedings of
38th Annual Symposium on Foundations of Computer Science, pp. 100–109. IEEE Computer
Society, Miami Beach, Florida, 1997.

[4] P. A. Abdulla and B. Jonsson. Undecidable verification problems for programs with unreliable
channels. Information and Computation, 130, 71–90, 1996.

[5] P. A. Abdulla and B. Jonsson. Verifying programs with unreliable channels. Information and
Computation, 127, 91–101, 1996.

[6] P. A. Abdulla and A. Nylén. Timed Petri nets and BQOs. In Proc. ICATPN’2001: 22nd
International Conference on Application and Theory of Petri nets. Vol. 2075 of Lecture Notes
in Computer Science, pp. 53–70. Springer, Newcastle, UK, 2001.

[7] J. M. Barzdin, J. J. Bicevskis, and A. A. Kalninsh. Automatic construction of complete sample
systems for program testing. In IFIP Congress, 1977, Toronto, North-Holland, 1977.

[8] A. Bouajjani and R. Mayr. Model checking lossy vector addition systems. In Symposium on
Theoretical Aspects of Computer Science. Vol. 1563 of Lecture Notes in Computer Science,
pp. 323–333. Springer, Trier, Germany, 1999.

[9] K. Čerāns. Deciding properties of integral relational automata. In Proc. ICALP ’94, 21st
International Colloquium on Automata, Languages, and Programming, Serge Abiteboul and
Eli Shamir, eds. Vol. 820 of Lecture Notes in Computer Science, pp. 35–46. Springer Verlag,
Jerusalem, 1994.

[10] L. de Alfaro, T. Henzinger, and R. Majumdar. Symbolic algorithms for infinite-state games.
In Proc. CONCUR 2001, 12th International Conference on Concurrency Theory. K. G. Larsen
and M. Nielsen, eds. Vol. 2154 of Lecture Notes in Computer Science, pp. 536–550. Springer
Verlag, Aaalborg, 2001.

[11] G. Delzanno. Automatic verification of cache coherence protocols. In Proceedings 12th
International Conference on Computer Aided Verification, E. Allen Emerson and A. Prasad
Sistla, eds. Vol. 1855 of Lecture Notes in Computer Science, pp. 53–68. Springer Verlag,
Chicago, 2000.

[12] G. Delzanno, J. Esparza, and A. Podelski. Constraint-based analysis of broadcast protocols.
In Proc. CSL’99. Springer, Madrid, 1999.

[13] J. Esparza,A. Finkel, and R. Mayr. On the verification of broadcast protocols. In Proc. LICS ’99,
14th IEEE International Symposium on Logic in Computer Science, IEEE Computer Society,
Trento, Italy, 1999.

[14] A. Finkel. Decidability of the termination problem for completely specified protocols.
Distributed Computing, 7, 129–135, 1994.

[15] A. Finkel and P. Schnoebelen. Well-structured transition systems everywhere! Theoretical
Computer Science, 256, 63–92, 2001.

[16] E. Grädel, W. Thomas, and T. Wilke. Automata, Logics, and Infinite Games: A Guide to
Current Research. Vol. 2500 of Lecture Notes in Computer Science, Springer, Dagstuhl,
Germany, 2002.

[17] G. Higman. Ordering by divisibility in abstract algebras. Proceedings of London Mathematical
Society, 2, 326–336, 1952.

[18] P. Jančar. Undecidability of bisimilarity for Petri nets and related problem. Theoretical
Computer Science, 148, 281–301, 1995.

[19] R. Mayr. Undecidable problems in unreliable computations. In Theoretical Informatics
(LATIN’2000). Number 1776 in Lecture Notes in Computer Science, Springer, Punta del Este,
Uruguay, 2000.

Monotonic and Downward Closed Games 169

[20] J.-F. Raskin, M. Samuelides, and L. Van Begin. Games for counting abstractions. Electronic
Notes in Theoretical Computer Science, 128, 69–85, 2005.

[21] W. Thomas. Infinite games and verification. In Proceedings of 14th International Conference
on Computer Aided Verification, volume 2404 of Lecture Notes in Computer Science, pp. 58–64.
Springer, Copenhagen, Denmark, 2002.

[22] W. Zielonka. Infinite games on finitely coloured graphs with applications to automata on infinite
trees. Theoretical Computer Science, 200, 135–183, 1998.

Received 19 September 2005

