
Automatic Verification of Directory-based Consistency Protocols with

Graph Constraints

Parosh Aziz Abdulla

Uppsala University, Sweden

Giorgio Delzanno

Università di Genova, Italy

Ahmed Rezine

University of Uppsala, Sweden

We propose a symbolic verification method for directory-based consistency protocols

working for an arbitrary number of controlled resources and competing processes. We
use a graph-based language to specify in a uniform way both client/server interaction

schemes and manipulation of directories that contain the access rights of individual

clients. Graph transformations model the dynamics of a given protocol. Universally quan-
tified conditions defined on the labels of edges incident to a given node are used to model

inspection of directories, invalidation loops and integrity conditions. Our verification pro-

cedure computes an approximated backward reachability analysis by using a symbolic
representation of sets of configurations. Termination is ensured by using the theory of

well-quasi orderings.

1. Introduction

Several implementations of consistency and integrity protocols used in file systems,

virtual memory, and shared memory multi-processors are based on client-server

architectures. Clients compete to access shared resources (cache and memory lines,

memory pages, open files). Each resource is controlled by a server process. In order to

get access to a resource, a client needs to start a transaction with the corresponding

server. Each server maintains a directory that associates to each client the access

rights for the corresponding resource. In real implementations these information are

stored into arrays, lists, or bitmaps and are used by the server to take decisions in

response to client requests, e.g., to grant access, request invalidation, downgrade

access mode or to check integrity of meta-data. Typically, a server handles a set of

resources, e.g. cache lines and directory entries, whose cardinality depends on the

underlying hardware/software platform. Consistency protocols however are often

designed to work well independently from the number of resources to be controlled

and from a given hardware/software configuration.

The need of reasoning about systems with an arbitrary number of resources

1



2

makes verification of directory-based consistency protocols a challenging problem.

Abstraction techniques operating on the number of resources and/or the number

of clients are often applied to reduce the verification task to decidable problems for

finite-state (e.g. invisible and environment abstraction in [8, 12]) or Petri net-like

models (e.g. counting abstraction used in [15, 13, 23, 24]).

In this paper we propose a new approximated verification technique that op-

erates on models in which the number of controlled resources and the number of

competing clients is not fixed a priori. Instead of requiring a preliminary abstrac-

tion of the model, our method makes use of powerful symbolic representations of

parametric system configurations and of dynamic approximation operators applied

during symbolic exploration of the state-space.

Our verification method is defined for a specification language in which system

configurations are modeled by using a special type of graphs in which nodes are

partitioned into client and server nodes. Node labels represent the current state of

the corresponding processes. Labeled edges are used both to define client/server

transactions and to describe the local information maintained by each server (e.g.

a directory is represented by the set of edges incident to a given server node).

Protocol rules are specified here by rewriting rules that update the state of a

node and of one of its incident edges. This very restricted form of graph rewriting

naturally models asynchronous communication. Furthermore, we admit guards de-

fined by means of universally quantified conditions on the set of labels of edges of

a given node. This kind of guards is important to model the inspection of a direc-

tory or invalidation cycles without need of abstracting them by means of atomic

operations like broadcast in [15, 13]. In order to reason about parameterized formu-

lations of consistency protocols we consider here systems in which the size of graphs

(number of nodes and edges) is not bounded a priori.

The verification problem we consider here is called pattern reachability. Specifi-

cally, we fix an infinite set of initial configurations (e.g. in which clients and servers

are in their initial state) and a finite set of bad patterns that represent violations to

safety properties (e.g. a graph in which a server node is connected to two different

clients that share the corresponding resource). The pattern reachability problem

consists in checking if a configuration that contains a bad pattern is reachable from

one of the initial configurations.

To attack this problem, we propose an approximated verification algorithm

based on the notion of graph constraint. A graph constraint is a symbolic repre-

sentation of an infinite sets of configurations. More precisely, a graph constraints

G represents the set of configurations that contains G as a subgraph. Graph con-

straints can naturally be used to represent bad patterns, i.e., to locally represent a

violations of a given safety property. Furthermore, they can be used to define a sym-

bolic computation of predecessor configurations. Predecessors of graph constraints

are defined by means of graph transformations. The resulting set of operations can

be used to explore backwards the state space of a directory based protocol. To han-

dle universally quantified guards so as to ensure the termination of the analysis it is



3

necessary however to apply approximations during the computation of predecessors.

We include the approximation in the symbolic computation of predecessors in the

following way. Each server node of a graph constraint contains as a label a set of

admitted edges, called padding set, that connect the nodes to the rest of the graph.

Every time a transition applied backward adds a new edge to the node, its label is

added to the padding set. This way we abstract away the number of egdes with that

label connected to the nodes. Indeed if a label is in the padding set then the node

may have k ≥ 0 egdes with that label in the denotation of the graph constraint.

However, if a label does not belong to the padding set, then the node cannot have

edges with that label in the denotation of the graph constraint. Thus, associating

a padding set to each node allow us to symbolically represent the precondition of

a transition with universally quantified conditions on edge labels (we restrict the

padding set of a node accordingly to the guard of the transition). Termination of

the resulting approximated symbolic backward exploration algorithm is obtained

by applying the theory of well-structured transition systems [2, 16].

We have implemented a prototype version, symgraph [25], of our approximated

verification algorithm and tested on a model of the full-map cache coherence protocol

described in [19]. The protocol is defined for a multiprocessor with shared memory

and local caches. The memory controller maintains a directory for each memory line

with information about its use. The directory is used to optimize the invalidation

and downgrade phase required when a processor sends a new request for exclusive

or shared use. For this case study we consider pattern reachability problems for

checking reachability of patterns that represent violation to mutual exclusion and

consistency properties.

The prototype is available at the URL

http:\\www.disi.unige.it\person\DelzannoG\Symgraph

The advantage of working with conditional graph rewriting is twofold. On one

side it gives us enough power to formally describe each step of consistency protocols

like the full-map coherence protocol [19] in a very detailed way. On the other side it

allows us to define our verification method at a very abstract level by using graph

transformations.

1.1. Related Work

Parameterized verification methods based on finite-state abstractions have been

applied to safety properties of consistency protocols and mutual exclusion algo-

rithms. Among these, we mention the invisible invariants method [8, 20] and the

environment abstraction method [12]. Counting abstraction and Petri net-like anal-

ysis techniques are considered, e.g., in [15, 13, 23, 24].

Differently from previous work we are aware of, our algorithm is based on graph

constraints that allow us to symbolically represent infinite-sets of configurations

without need of fixing parameters like the number of clients, servers, resources, and



4

the size of directories. We apply instead dynamic approximation techniques to deal

with universally quantified global conditions. We recently used a similar approach

for systems with flat configurations (i.e. words) and with a single global context [6].

The new graph-based algorithm is a generalization of the approach in [6]. Indeed,

the symbolic configurations we used in [6] can be viewed as graphs with a single

server node and no edges, since global conditions are tested directly on the current

process states.

Furthermore, the approximation we propose in this paper is more precise than

the monotonic abstraction used to deal with global conditions in our previous work

[4] (i.e. deletion of processes that do not satisfy the condition). Indeed, consistency

property like reachability of a server in state bad in the case study presented in

Section 5 always return false positives using monotonic abstraction (by deleting all

edges that are not in Q we can always move to bad). For this type of property, it

is essential to attach a padding set to each node in the symbolic representation of

a set of configurations. In synthesis the new approach can be interpreted as a more

precise approximated verification algorithm for parameterized systems compared to

previous work based on counting and monotonic abstraction in [15, 3, 4].

Concerning verification algorithms for graph rewriting systems, we are only

aware of the works in [17, 21]. We use here different type of graph specifications

(e.g. we consider universal quantification on incoming edges) and a different notion

of graph-based symbolic representation (i.e. a different entailment relation) with

respect to those applied to leader election and routing protocols in [17, 21].

2. A Client/Server Abstract Model

In this section we introduce an abstract model for client/server protocols in which

configurations are bipartite graphs and transition rules are specified using condi-

tional graph rewriting. We first introduce configurations, called c/s-graphs, and

then show the class of conditional rewriting rules that we consider.

2.1. Configurations: c/s-graphs

Let Λs be a finite set of server node labels, Λc a finite set of client node labels, and

Λe a finite set of edge labels. Furthermore, for n ∈ N let n = {1, . . . , n}. A c/s-graph

is a tuple

G = (nc, ns, E, λc, λs, λe)

where

• ns is the set of server nodes,

• nc is the set of client nodes,

• E ⊆ ns × nc is a set of edges connecting a server with a set of clients, and

a client with at most one server (i.e. for each j ∈ nc we require that there

exists at most one edge incident in j in E),



5

• λc : nc → Λc, λs : ns → Λs, and λe : E → Λe are labelling functions.

Given a c/s-graph G = (nc, ns, E, λc, λs, λe), we define the following set of graph

operations:

• edges(G) = E;

• edgess(i, G) = {e | e = (i, j) ∈ E} for i ∈ ns;
• edgesc(j,G) = {e | e = (i, j) ∈ E} for j ∈ nc;
• labele(e,G) = λe(e) for e ∈ E;

• labele(i, G) = {λe(e) | e ∈ edgess(i, G)} for i ∈ ns;
• adde(e, σ,G) = (nc, ns, E ∪ {e}, λc, λs, λ′e) where λ′e(e) = σ, λ′e(o) = λe(o)

in all other cases;

• updatee(e ← σ,G) = (nc, ns, E, λc, λs, λ
′
e) where λ′e(e) = σ, and λ′e(o) =

λe(o) in all other cases;

• dele(e,G) = (nc, ns, E
′, λc, λs, λ

′
e), where E′ = E \ {e}, λ′e(o) = λe(o) for

o ∈ E′.
• nsizec(G) = nc, and labelc(i, G) = λc(i) for i ∈ nc,
• addc(P,G) = (nc + 1, ns, E, λ

′
c, λs, λe) where λ′c(nc + 1) = P and λ′c(o) =

λc(o) in all other cases;

• updatec(i1 ← P1, . . . , im ← Pm, G) = (nc, ns, E, λ
′
c, λs, λe) where λ′c(ik) =

Pk for k : 1, . . . ,m, and λ′c(o) = λc(o) in all other cases;

• delc(i, G) = (nc − 1, ns, E
′, λ′c, λs, λ

′
e) where, given the mapping hi : nc →

nc − 1 defined as hi(j) = j for j < i and hi(j) = j − 1 for j > i, E′ =

{(k, hi(l)) | (k, l) ∈ E}, λ′c(k) = λc(p) for each k ∈ nc − 1 such that k =

hi(p) and p ∈ nc, λ′e((k, l)) = λe((k, q)) for (k, l) ∈ E′ such that l = hi(q)

for q ∈ nc, λ′x(o) = λx(o) in all other cases for x ∈ {e, c};

The operations nsizes, labels, adds, updates, and dels are defined for server nodes in

a way similar to those of client nodes.

2.2. Transitions: c/s system.

A client/server system is a tuple S = (I,R) consisting of a (possibly infinite) set I

of c/s-graphs (initial configurations), and a finite set R of rules. We consider here

a restricted type of graph rewriting rules to model both the interaction between

clients and servers and the manipulation of directories viewed as the set of incident

edges in a given server node.

The rules have the general form l⇒ r: l is a pattern that has to match (the labels

and structure) of a subgraph in the current configuration in order for the rule to be

fireable; r describes how the subgraph is rewritten as the effect of the application of

the rule. For defining the enabling conditions, we consider the following patterns:

• the empty graph · (it matches with any graph);

• 〈〈`〉〉 that denotes an isolated client node with label `;

• ((`)) that denotes a server node with label `,



6

· V 〈〈`〉〉 (new client node)

· V ((`)) (new server node)

〈〈`〉〉 V [[`′]] σ←→ (start transaction)

((`)) σ←→ V ((`′)) σ′
←→ (server step)

[[`]] σ←→ V [[`′]] σ′
←→ (client step)

((`)) V ((`′)) : ∀Q (test)

[[`]] σ←→ V 〈〈`′〉〉 (stop transaction)

Fig. 1. Rewriting rules with conditions on egdes.

• [[`]] σ←→ that denotes a client node with label ` and incident edge with label

σ;

• ((`)) σ←→ that denotes a server node with label ` and an incident edge with

label σ.

The previous conditions are used to model asynchronous communication patterns.

Furthermore, we also admit a special type of rules in which the rewriting step can

be applied to a given server node if a universally quantified condition on the labels

of the corresponding incident edges is satisfied. Specifically, we consider the rule

schemes illustrated in Fig. 1, where ` and `′ are node labels of appropriate type, σ

and σ′ are edge labels, and ∀Q is a condition with Q ⊆ Λe.

With the first two types of rules, we can non-deterministically add a new node

to the current graph (e.g. to dynamically inject new servers and clients). With rule

start transaction, we non-deterministically select a server and a client (not con-

nected by an already existing edge) add a new edge between them in the current

graph (e.g. to dynamically establish a new communication). With rules of types

client/server steps, we update the labels of a node with label ` and one of its inci-

dent edges (non-deterministically chosen) with label σ (e.g. to define asynchronous

communication protocols). With rule test, we update the node label of a server

node i only if all edges incident to i have labels in the set Q ⊆ Λe. With rule

stop transaction, we non-deterministically select a client node with label ` and in-

cident edge with label σ, and delete such an edge from the current graph (e.g. to

terminate a conversation).

It is important to remark that a server has not direct access to the local state of

a client. Thus, it cannot check conditions on the global sets of its current clients in

an atomic way. A server can however check the set of its incident edges, i.e., a local

snapshot of the current condition of clients. A consistency protocol should guarantee

that the information on the edges (directory) is consistent with the current state of

clients.



7

2.3. Transition Relation

Let G be a c/s-graph. The formula ∀Q is satisfied in server node i if labele(i, G) ⊆ Q.

Given a rule r in R, the operational semantics is defined via a binary relation ⇒r

on c/s-graphs such that G0 ⇒r G1 if and only if one of the following conditions

hold:

• r is a new client node rule and G1 = addc(`,G0);

• r is a new server node rule and G1 = adds(`,G0);

• r is a server step rule and there exist nodes i and j in G0 with edge

e = (i, j) ∈ edges(G) such that labels(i, G0) = `, labele(e,G0) = σ, G1 =

updatee(e← σ′, updates(i← `′, G0));

• r is an client step rule and there exist nodes i and j in G0 with edge

e = (i, j) ∈ edges(G) such that labeln(j,G0) = `, labele(e,G0) = σ, G1 =

updatee(e← σ′, updatec(j ← `′, G0));

• r is a start transaction rule, there exists in G0 a client node j

with no incident edges in E such that labelc(j,G0) = `, and G1 =

adde((i, j), σ, updatec(j ← `′, G0)) for a server node i;

• r is a stop transaction rule, there exist nodes i and j in G0 such that

labelc(j,G0) = `, e = (i, j) ∈ edges(G0), labele(e,G0) = σ, and G1 =

dele(e, updatec(j ← `′, G0)).

• r is a test rule, there exist node i in G0 such that labels(i, G0) = `,

labele(i, G0) ⊆ Q, and G1 = updates(j ← `′, G0).

Finally, we define ⇒ as
⋃
r∈R ⇒r.

Example 1. As an example, consider a set of labels Λn partitioned in the two

sets Λc = {idle, wait, use} and Λs = {ready, check, ack}, and a set of edge labels

Λe = {req, pend, inv, lock}. The following set R of rules models a client-server

protocol (with any number of clients and servers) in which a server grants the use

of a resource after invalidating the client that is currently using it.

(r1) 〈〈idle〉〉 V [[wait]]
req←→

(r2) ((ready))
req←→ V ((check))

pend←→
(r3) ((check)) lock←→ V ((check)) inv←→
(r4) ((check)) V ((ack)) : ∀{pend, req}
(r5) ((ack))

pend←→ V ((ready)) lock←→
(r6) [[use]] inv←→ V 〈〈idle〉〉
(r7) [[wait]] lock←→ V [[use]] lock←→

With rule r1 a client non-deterministically creates a new edge connecting to a server.

With rule r2 a server processes a request by changing the edge to pending, and then

moves to state check. With rule r3 a server sends invalidation messages to the client

that is currently using the resource (marked with the special edge lock). With rule

r4 a server moves to the acknowledge step whenever all incident edges have state



8

idle idle

ready

wait

ready

idle

(a) (b)

req

check

wait idle idlewait

(c) (d)

ack

lock

ready

wait idle

(e)

pend pend

Fig. 2. Example of execution.

different from lock and inv. With rule r5 a server grants the pending request. With

rule r6 a clients releases the resource upon reception of an invalidation request. With

rule r7 a waiting client moves to state use.

Now, let us consider an initial graph G0 with one server node with label ready

and two client nodes with label idle. Then, the following sequence (of graphs) rep-

resents an evolution of the graph system (G0, R):

G0 = 〈〈idle〉〉, 〈〈idle〉〉, ((ready))⇒ 〈〈idle〉〉, [[wait]] req←→ ((ready))⇒
[[wait]]

req←→ ((ready))
req←→ [[wait]]⇒ [[wait]]

pend←→ ((check))
req←→ [[wait]]⇒

[[wait]]
pend←→ ((ack))

req←→ [[wait]]⇒ [[wait]] lock←→ ((ready))
req←→ [[wait]]⇒

[[use]] lock←→ ((ready))
req←→ [[wait]]⇒ [[use]] lock←→ ((check))

pend←→ [[wait]]⇒
[[use]] inv←→ ((check))

pend←→ [[wait]]⇒ 〈〈inv〉〉, ((check))
pend←→ [[wait]]⇒

〈〈inv〉〉, ((ack))
pend←→ [[wait]]⇒ 〈〈inv〉〉, ((ready)) lock←→ [[wait]]⇒

[[inv]], [[ready]] lock←→ [[use]]

The first five steps are also drawn in Fig. 2

3. Verification as Pattern Reachability

In this paper we are interested in verification problems that can be expressed as

reachability of graphs that contain specific patterns (subgraphs). Patterns can be

used to represent bad configurations of a protocol. For instance, in Example 1 any

graph containing the pattern [[use]] σ←→ ((ready)) σ′
←→ [[use]], for σ, σ′ ∈ Λe, represents

a violation to the exclusive use of a resource controlled by a server node.

To formally define the notion of pattern, we introduce an ordering � on c/s-graphs

such that G � G′ iff nc = nsizec(G) ≤ mc = nsizec(G
′), ns = nsizes(G) ≤ ms =

nsizes(G
′), and there exist injective mappings hc : nc → mc and hs : ns → ms such

that

• labelc(i, G) = labelc(hc(i), G
′) for i : 1, . . . , nc,

• labels(i, G) = labels(hs(i), G
′) for i : 1, . . . , ns,

• for each e = (i, j) ∈ edges(G), e′ = (hs(i), hc(j)) ∈ edges(G′) and

labele(e,G) = labele(e
′, G′).

A set of c/s-graphs U ⊆ C is upward closed with respect to � if c ∈ U and c � c′

implies c′ ∈ U . For a c/s-graph G, we use Ĝ to denote the upward closure of G, i.e.,



9

Instruction : `1 : inc(ci); goto `2

(i1) 〈〈`1〉〉 V [[wait`2 ]]
req inci←→

(i2) ((ci))
req inci←→ V ((inci))

pend←→
(i3) ((inci))

0←→ V ((granti))
1←→

(i4) ((granti))
pend←→ V ((ci))

ack←→
(i5) [[wait`2 ]] ack←→ V 〈〈`2〉〉

Instruction : `1 : dec(ci); goto `2

(d1) 〈〈`1〉〉 V [[wait`2 ]]
req deci←→

(d2) ((ci))
req deci←→ V ((deci))

pend←→
(d3) ((deci))

1←→ V ((granti))
0←→

(d4) ((granti))
pend←→ V ((ci))

ack←→
(d5) [[wait`2 ]] ack←→ V 〈〈`2〉〉

Instruction : `1 : test(ci); goto `2

(t1) 〈〈`1〉〉 V [[wait`2 ]]
req testi←→

(t2) ((ci))
req testi←→ V ((testi))

pend←→
(t3) ((testi)) V ((granti)) : ∀{pend, 0}
(t4) ((granti))

pend←→ V ((ci))
ack←→

(t5) [[wait`2 ]] ack←→ V 〈〈`2〉〉

Rules for “aux′′ processes

(a1) · V 〈〈aux0〉〉
(a2) 〈〈aux0〉〉 V [[aux1]] 0←→

Fig. 3. Encoding of Counter Machines.

the set {G′| G � G′}. For sets of c/s-graphs D,D′ ⊆ C we use D ⇒ D′ to denote

that there are G ∈ D and G′ ∈ D′ with G⇒ G′.

The Pattern Reachability Problem for graph systems is defined as follows:

Pattern Reachability Problem (PRP)

Instance

• A graph system P = (I,R).

• A finite set CF of c/s-graphs

Question G0 ⇒∗ ĈF for G0 ∈ I?

Typically, ĈF (which is an infinite set) is used to characterize sets of bad con-

figurations which we do not want to occur during the execution of the system. In

such a case, the system is safe iff ĈF is not reachable. Therefore, checking safety

properties amounts to solving PRP (i.e., to the reachability of upward closed sets).

Unfortunately, it is not possible to completely solve this problem.

Proposition 2. PRP is undecidable.

Proof. Control state reachability for counter machines can be reduced to PRP. We

use server node si to control the i-th counter. We use client processes with label

aux1 connected to a server with edges labelled 1 to represent the current value of

the corresponding counter. We use a special client process c to keep track of the

current control location and to fire the operations on counters. For instance, to

simulate the instruction L : inc(ci); goto L
′, we proceed as follows. In state L client

process c starts a transaction with server si. During the transaction, si, activated by



10

c1
c2

10

auxaux

11

aux aux

L

aux

aux

aux

Fig. 4. Encoding of a configuration of a two counter machine with location L and counters c1 = 2,

and c2 = 1.

c, accepts a new connection with an aux process, i.e., si changes the corresponding

edge label to 1. We assume here that we can produce an arbitrary number of aux

processes, and that they are always ready to connect to any server (they are created

with state aux0 and change state into aux1 when connected to a server with an

edge labelled 0). After the connection is established, si sends an acknowledge back

to c. c now stops the transaction and updates its label to L′. Notice that client c

migrates from one server to another during the simulation of instructions.

Decrement and zero- test are simulated in a similar way. In particular, decrement

can be simulated by requesting si to disable the connection with an aux process

(e.g. for brevity to update the edge label from 1 to 0 or with some more transition

to disconnect from si), and for the zero-test si checks that all of its incident edges

have state different from 1. For this purpose, si can use a test rule.

A counter ci with value k is represented by the graph in which the server for ci is

connected via edges labelled by 1 to k auxiliary processes (other auxiliary processes

can be connected to the same server but the corresponding edges must be labelled

0).

We give an example in Fig. 4. The rules used in the encoding are shown in Fig.

3.

4. Approximated Verification Algorithm

In this section we propose an approximated verification algorithm based on the

notion of graph constraints, a special symbolic representation of an infinite sets of

c/s-graphs.

4.1. Graph Constraints

A graph constraint (gc) is a graph Ψ = (nc, ns, E, ρc, ρs, ρe), with client nodes

{1, . . . , nc}, server nodes {1, . . . , ns}, edges in E ⊆ ns × nc, and labels defined by

maps ρc : nc → Λc, ρs : ns → (Λs × 2Λe), and ρe : E → Λe.

Notice that, in a graph constraint Ψ, the label of a server node is a pair (`,Q) where

` is a node label and Q ⊆ Λe is a subset of edge labels, called padding set. In this

section we adapt the operations on c/s-graphs to graph constraints. Specifically,

given Ψ = (nc, ns, E, ρc, ρs, ρe), i ∈ ns, j ∈ nc, ρs(i) = (`,Q), ρc(j) = `′, and e ∈ E,



11

{pend,req}

ready

wait wait

req
pend

req
req

wait wait use

ready ready

(a)

use

ex

(b)

Fig. 5. A graph constraint G (a), and a c/s-graph in [[G]] (b).

then labels(i,Ψ) = `, labelp(i,Ψ) = Q, labelc(j,Ψ) = `′, and labele(e,Ψ) = ρe(e).

The other operations are defined as for c/s-graphs.

For a graph constraint Ψ to be well-formed (wfgc), we require that labele(i,Ψ) ⊆
labelp(i,Ψ) for each i ∈ ns.
Let Ψ be a wfgc, and G be a c/s-graph. In order to define the denotation of a

wfgc Ψ we introduce the relation � such that, given a c/s-graph G, Ψ � G iff

nc = nsizec(Ψ) ≤ mc = nsizec(G), ns = nsizes(Ψ) ≤ ms = nsizes(G), and there

exist injective mappings hc : nc → mc and hs : ns → ms such that

• labelc(i,Ψ) = labelc(hc(i), G) for i : 1, . . . , nc,

• labels(i,Ψ) = labels(hs(i), G) and labele(hs(i), G
′) ⊆ labelp(i,Ψ) = Q for

i : 1, . . . , ns;

• for each e = (i, j) ∈ edges(Ψ), e′ = (hs(i), hc(j)) ∈ edges(G) and

labele(e,Ψ) = labele(e
′, G).

The denotation of a graph constraint Ψ is then defined as [[Ψ]] = {G | G is a c/s−
graph, Ψ � G}.

In Fig. 5 we give an example of wfgc (a), and of one of its instances (b).

4.2. Approximated Predecessor Relation

The set of predecessors of a set S of c/s-graphs computed with respect to a rule r

is defined as

prer(S) = {G | G⇒r S}
Given a wfgc Ψ we now define a relation ;r working on wfgc’s that we use to

overapproximate the set [[Ψ]] ∪ prer([[Ψ]]). We consider here the union of these two

sets in order to be able to discard graph constraints that denote graphs already

contained in [[Ψ]]. For brevity, we describe here the computation of predecessors for

rules of the form server-step, client-step, and test. The complete definition is given in

[25]. Specifically, for graph constraints Ψ, with ns = nsizes(Ψ) and nc = nsizec(Ψ),

and Ψ′, and a rule r ∈ R, the relation Ψ ;r Ψ′ is defined as follows:

server-step: r is the rule ((`)) σ←→ V ((`′)) σ′
←→ and one of the following conditions

hold



12

• i ∈ ns, j ∈ nc, e = (i, j) ∈ edges(Ψ), labels(i,Ψ) = `′, labele(e) = σ′, and

Ψ′ = updatee(e, σ, updates(i← (`,Q),Ψ))

where Q = labelp(i) ∪ {σ}.
In this case we update the label of an existing edge (i, j) and of the node

i with the labels σ and `, respectively. They represent the preconditions for

firing the rule. Furthermore, we augment the padding set of i with label σ.

Notice that here we apply an approximation, i.e., as soon as we add σ we

allow any number of occurrences of edges with label σ but we do not count

them. The label of client node j is not modified.

• i ∈ ns, j ∈ nc, edges(j,Ψ) = ∅ (j has no incident edges), labels(i,Ψ) = `′,

σ′ ∈ labelp(i,Ψ), and

Ψ′ = adde((i, j), σ, updates(i← (`,Q),Ψ))

where Q = labelp(i,Ψ) ∪ {σ}.
Although not explicitly present, we assume here that the edge (i, j)

with label σ′ is in the upward closure of Ψ (this can happen only if j is

not involved in other explicit edges). We add the edge (i, j) with label σ

since its presence is a precondition for the firing the rule. Furthermore, we

update the label of i as in the first case.

• i ∈ ns, labels(i,Ψ) = `′, σ′ ∈ labelp(i,Ψ), and

Ψ′ = adde((i, nc + 1), σ, addc(`
′′, updates(i← (`,Q),Ψ)))

where Q = labelp(i,Ψ) ∪ {σ}, and `′′ is non-deterministically chosen from

Λc. Although not explicitly present, we assume here that both the client

node nc + 1 (with some label taken from Λc) and the edge (i, nc + 1) with

label σ are in the upward closure of Ψ. We add them to Ψ since their

presence is a precondition for the firing of r. We update the label of i as in

the other two cases. Notice that the dimension of the graph constraint is

increased by one, since we insert the new node nc + 1.

For this kind of rules, there are two remaining cases to consider (the

edge and the server node, or the edge and both server and client nodes

are not explicitly present in Ψ). However these cases give rise to graph

constraints that are redundant with respect to Ψ. Thus, we can discard

them without loss of precision (we recall that our aim is to symbolically

represent [[Ψ]] ∪ prer([[Ψ]])).

client-step: r is the rule [[`]] σ←→ V [[`′]] σ′
←→ and one of the following conditions

hold

• i ∈ ns, j ∈ nc, e = (i, j) ∈ edges(Ψ), labelc(j,Ψ) = `′, labele(e) = σ′, and

Ψ′ = updatee(e, σ, updates(i← (labels(i,Ψ), Q), updatec(j ← `,Ψ)))

where Q = labelp(i,Ψ) ∪ {σ}.



13

In this case we update the label of an existing edge (i, j) and of the

node j with the labels σ and ` as a precondition for the firing of the rule r.

Furthermore, we add σ to the set of admitted edge labels of server node i.

• i ∈ ns, j ∈ nc, edges(j,Ψ) = ∅ (j has no incident edges), labelc(j,Ψ) = `′,

σ′ ∈ labelp(i,Ψ), and

Ψ′ = adde((i, j), σ, updates(i← (labels(i,Ψ), Q), updatec(j ← `,Ψ)))

where Q = p(i,Ψ) ∪ {σ}.
Although not explicitly present, we assume here that the edge (i, j) is

in the upward closure of Ψ. We add the edge (i, j) with label σ since its

presence is a precondition for the firing of the rule. Furthermore, we update

the label of i and j as in the first case.

• j ∈ nc, edges(j,Ψ) = ∅ (j has no incident edges), labelc(j,Ψ) = `′, and

Ψ′ = adde((ns + 1, j), σ, adds((`
′′,Λe), updatec(j ← `,Ψ)))

where `′′ ∈ Λs. Although not explicitly present, we assume here that the

edge (ns + 1, j), for a new server node ns + 1 with a label in Λs, is in the

upward closure of Ψ. We add the node and the edge with label σ since its

presence is a precondition for firing the rule. Furthermore, we update the

label of j as in the first case.

• i ∈ ns, σ′ ∈ labelp(i,Ψ), and

Ψ′ = adde((i, nc + 1), σ, addc(`, updates(i← (labels(i,Ψ), Q),Ψ)))

where Q = labelp(i,Ψ) ∪ {σ}.
Although not explicitly present, we assume here that both the node

nc + 1 and the edge (i, nc + 1) are in the upward closure of Ψ. We add it

with label σ to the set of edges and update the label of i including σ in

the set of admitted edges. Notice that there are remaining cases (client,

server, and edge are not explicitly present in Ψ). However these cases give

rise to a graph constraint that is redundant with respect to Ψ. Thus, we can

discard it without loss of precision (we recall that our aim is to symbolically

represent [[Ψ]] ∪ prer([[Ψ]])).

Test: r is the rule ((`)) V ((`′)) : ∀Q and one of the following conditions hold

• i ∈ ns, labels(i,Ψ) = `′, R = labelp(i,Ψ) ∩ Q, labele(e) ∈ R for each

e ∈ edges(i,Ψ), and

Ψ′ = updates(i← (`, R),Ψ)

In this rule the padding labelp(i,Ψ) associated to a node i with label `′

plays a crucial role. We first check that the current set of labels of edges

incident to i is contained into the intersection R of labelp(i,Ψ) and Q. If

this condition is satisfied, we restrict the padding of node i to be the set R



14

(precondition for firing the rule) and update the label of i to `. This rule

cannot be applied whenever there are edges in edges(i,Ψ) with labels not

in R. If R is the empty set, then the node i must be isolated.

Given a wfgc Ψ, we define Ψ ; as the set {Ψ′ |Ψ r
; Ψ′, r ∈ R}. From a case analysis

of the definition of the predecessor operatore, we obtain the following property.

Proposition 3. ([[Ψ]] ∪ pre([[Ψ]])) ⊆ ([[Ψ]] ∪ [[Ψ ;]]).

4.3. Entailment Test

We now define an entailment relation v used to compare denotations of graph

constraints. Let Ψ and Ψ′ be two wfgc such that nsizec(Ψ) = nc, nsizes(Ψ) = ns,

nsizec(Ψ
′) = mc, and nsizes(Ψ

′) = ms. The relation Ψ v Ψ′ holds iff nc ≤ mc,

ns ≤ ms, and there exist injective mappings hc : nc → mc hs : ns → ms such that

• labels(i,Ψ) = labels(hs(i),Ψ
′) for i ∈ ns,

• labelc(j,Ψ) = labelc(hc(j),Ψ
′) for j ∈ nc,

• labelp(hs(i),Ψ
′) ⊆ labelp(i,Ψ) for i ∈ ns,

• for each e = (i, j) ∈ E, e′ = (hs(i), hc(j)) ∈ E′ and labele(e,Ψ) =

labele(e
′,Ψ′).

The following property then holds.

Lemma 4. Given Ψ and Ψ′, Ψ v Ψ′ implies [[Ψ′]] ⊆ [[Ψ]].

Proof. Let G be a configuration in [[Ψ′]]. Now let GΨ′ be the configuration obtained

by removing the padding sets from the labels of server nodes. By definition, GΨ′

is a subgraph of G. Furthermore, all edges in G connected to server nodes in GΨ′

and such that they do not occur in GΨ′ must have labels contained in the padding

set specified in Ψ′. Now we observe that v corresponds to the subgraph relation

with the additional containment condition (third condition) on padding sets. Thus,

by definition of v, GΨ is a subgraph GΨ′ . This implies that GΨ is a subgraph

of G. Furthermore, by the containment conditions in v we have that the labels

of edges connected to server nodes in GΨ (thus in GΨ′) are still contained in the

corresponding padding sets in Ψ. It follows then that G is also in the denotation of

Ψ.

We naturally extend the entailment relation to finite sets of constraints as follows.

Given two sets of graph constraints Φ,Φ′, Φ v Φ′ iff for each Ψ′ ∈ Φ′ there exists

Ψ ∈ Φ such that Ψ v Ψ′.

4.4. Backward Reachability

We use the relation ; to define a symbolic backward reachability algorithm for

approximating solutions to PRP. We start with a finite set ΦF of graph con-



15

straints denoting an infinite set of bad graph configurations. We generate a se-

quence Φ0,Φ1,Φ2, · · · of finite sets of constraints such that Φ0 = ΦF , and Φj+1 =

Φj ∪ (Φj ;). Since [[Φ0]] ⊆ [[Φ1]] ⊆ [[Φ2]] ⊆ · · · , the procedure terminates when we

reach a point j where Φj v Φj+1. Notice that the termination condition implies

that [[Φj ]] = (
⋃

0≤i≤j [[Φi]]). From Prop 3, Φj denotes an over-approximation of the

set of all predecessors of [[ΦF ]]. This means that if (I
⋂

[[Φj ]]) = ∅, then there exists

no G ∈ [[ΦF ]] with G0 ⇒∗ G for G0 ∈ I. Thus, the procedure can be used as a

semi-test for checking PRP.

4.5. Termination

According to the general results in [2], the termination of our (approximated) sym-

bolic backward reachability procedure can be ensured by proving that the entail-

ment relation of graph constraints is a well-quasi ordering (wqo). The latter property

follows from the fact that a c/s-graph with ns server nodes and nc client nodes can

be given an alternative representation as a bag of tuples of a special form. A wfgc

can be represented as a bag (multiset) containing the (multiset) of isolated client

nodes in G together with tuples of the form (si, Qi,Mi) for i ∈ {1, . . . , ns}, where

• si ∈ Λs is the label of the server node i,

• Qi ∈ 2Λe is the padding associated to i,

• if i has client nodes j1, . . . , jki connected to it Mi is a bag {p1, . . . , pki}
such that pl = (σl, cl), where σl is the label of the edge incident to node jl
and cl is the label of node jl.

Given bags m1 and m2 associated resp. to wfgc’s G1 and G2, m1 ≤ m2 holds if:

each isolated client node in m1 can be injected into an isolated client node in m2;

each tuple (s,Q,M) in m1 can be injected into a tuple (s′, Q′,M ′) in m2 such that

s = s′, Q′ ⊆ Q and M is contained into M ′ (multiset containment). From closure

properties of wqo’s under bag and tuple composition operators, we have that ≤ is

a wqo. Furthermore, we have that m1 ≤ m2 implies G1 v G2. Thus, the entailment

relation of graph constraints is a well-quasi ordering (wqo).

5. Case Studies

5.1. Full-map cache coherence protocol

We consider here the full-map cache coherence protocol described in [19]. This pro-

tocol is defined for a multiprocessor with shared memory and local caches in which

the memory controller maintains a directory for each memory line with information

about its use, i.e., the line is shared between different caches or used in exclusive

mode by a given cache. The directory is used to optimize the invalidation and down-

grade phase required when a processor sends a new request for exclusive or shared

use. The protocol is informally defined by the following steps; we use M to denote

the controller of a memory line, and C to denote the controller of a cache line.



16

req ex: C sends a req ex message to M for requesting exclusive use of a memory

line and then moves to a waiting state.

rec inv: Upon reception of req ex and when not processing other requests M locks

the line, stores the identifier of the requesting cache controller, and starts an in-

validation phase. In this phase M sends an message req inv to all caches in the

directory marked as shared or exclusive.

ack inv: Upon receipt of msg req inv coming from M, cache C invalidates its line

and sends an acknowledgment ack inv to M.

grant ex: Memory controller terminates the invalidation phase after having re-

ceived acknowledgments from all cache controllers in the directory. Memory con-

troller sends a message grant ex to the cache controller who sent the req ex mes-

sage and adds its identifies in the directory (marked as exclusive). A waiting cache

receives the message grant ex and moves to state exclusive.

req sh: C sends a req sh message to M for requesting shared use of a memory

line and then moves to a waiting state.

rec dg: Upon reception of req sh and when not processing other requests M locks

the line, stores the identifier of the requesting cache controller, and starts a down-

grade phase. In this phase M sends an message req sh to all caches in the directory

marked as shared or exclusive.

ack dg: Upon receipt of msg req sh coming from M, cache C (in state shared or

exclusive) downgrade its state to shared and sends an acknowledgment ack sh to

M.

grant ex: Memory controller terminates the downgrade phase after having received

acknowledgments from all cache controllers in the directory. Memory controller

sends a message grant sh to the cache controller who sent the req sh message and

adds its identifier to the directory (marked as shared). A waiting cache receives the

message grant sh and moves to state shared.

replacement: As a result of a replacement strategy, the cache controller invalidates

a cache line in state exclusive/shared.

We model this protocol by means of a bi-partite graph system with a set of

labels Λ n partitioned in the two sets

ΛCn = {inv, wait, shared, exclusive} (cache nodes)

ΛSn = {idle, inv loop, dg loop, ack ex, ack sh} (memory nodes)

and a set of edge labels

Λ e = {req ex, req sh, req inv, req dg, pending, sh, ex}

We recall that in our model we assume to have an arbitrary number of memory line

each one controlled by a distinct memory node with label in λSn and an arbitrary

number of cache lines each one controlled by one controller with label in λCn .



17

(c1) 〈〈inv〉〉 V [[wait ex]]
req ex←→

(c2) 〈〈inv〉〉 V [[wait sh]]
req sh←→

(c3) [[shared]]
req inv←→ V 〈〈inv〉〉

(c4) [[exclusive]]
req inv←→ V 〈〈inv〉〉

(c5) 〈〈exclusive〉〉 V [[req dg]] shared←→ sh

(c6) [[wait ex]] ex←→ V [[exclusive]] ex←→
(c7) [[wait sh]] sh←→ V [[shared]] sh←→
(c8) [[shared]] sh←→ V 〈〈inv〉〉
(c9) [[exclusive]] ex←→ V 〈〈inv〉〉

Fig. 6. Rules for cache controllers.

The initial graph configurations consist then of any number of isolated nodes

with label inv or idle. Furthermore, we can use the rules

· V 〈〈inv〉〉 · V 〈〈idle〉〉
to add dynamic creation of new cache and memory line controllers. During its life

cycle the same cache line can be associated to different memory lines. However, at

any given instant a cache line is either invalid or contains a copy of a given memory

block. A memory line however can be copied in several cache lines. Thus, we are only

interested in graphs in which a cache node has at most one incident edges, while

there are no upper bounds on the number of edges incident to a memory node. To

avoid to generate unreachable configuration, we can embed this restriction in the

symbolic operations (e.g. in the construction of predecessors) for this kind of graph

systems.

The graph rules that model the interaction between the controller of a cache

line and that of a memory line are shown in Fig. 6. With rule c1 and c2, a cache

controller sends resp. a req ex and a req sh message to a memory controller chosen

non-deterministically, and then moves to a waiting state. A request is modeled here

as creation of a new edge. As mentioned before, we assume that a cache node has

at most one edge. The non-determinism in the choice of the server node models the

fact that the association between a cache line and a memory line depends from the

memory address contained in the operations issued on the local processor. Rule c3
and c4 model the reception of an invalidation request and the invalidation of the

cache node. Rule c5 models the reception of a downgrade request coming from a

server node and the consequent passage from state exclusive to state shared. The

label of the edge is changed to sh. Rule c6 and c7 model reception (in state wait)

of the grant for exclusive (edge with label ex) or shared use (edge with label sh)

for the requested memory line. Rule c8 and c9 model the invalidation of the cache

line requested by the local processor (e.g. for replacing the current cache line with

another memory line). After applying one of this rule, a cache node disconnected



18

(m1) [[idle]]
req ex←→ V [[inv loop]]

pend←→
(m2) [[inv loop]] ex←→ V [[inv loop]]

req inv←→
(m3) [[inv loop]] sh←→ V [[inv loop]]

req inv←→
(m4) ((inv loop)) V ((ack inv)) : ∀{pend, req sh, req ex}
(m5) [[ack inv]]

pend←→ V [[idle]] ex←→
(m6) [[idle]]

req sh←→ V [[inv dg]]
pend←→

(m7) [[inv dg]] ex←→ V [[inv dg]]
req dg←→

(m8) ((inv dg)) V ((ack dg)) : ∀{pend, sh, req sh, req ex}
(m9) [[ack dg]]

pend←→ V [[idle]] sh←→

Fig. 7. Rules for memory controllers.

from memory node m can be connected to another memory node m′ using rules c1
and c2, and so on. The graph rules that model the interaction between the controller

of a memory line and the cache controllers are shown in Fig. 7. Rules m1−m5 model

the steps needed to grant a req ex request for a memory line M . In rule m1 a

memory node locks the memory line M by moving to state inv loop (starting point

of invalidation phase) and remembers the identity of the corresponding requesting

node by marking the edge with label pending. Rulem2−m−4 model the invalidation

phase. We use again edges to simulate the inspection of the full-map. For each edge

with label ex/sh we send a req inv message to the corresponding node. Notice

that we do not inspect the current state of the nodes. Invalidation is only based

on edge labels. Rule m4 corresponds to the termination of the invalidation step.

We require here that all ex and req inv messages have adequately been processes

during the invalidation phase. In rule m5 we grant exclusive use to the requesting

cache controller.

Similarly, rules m6 −m9 model the step needed to gran a req sh request. The

difference here is that instead of invalidation request we only send downgrade re-

quest to a cache node marked as exclusive (with edge ex). Rule m8 terminates this

phase by checking that there are no pending req dg request and that the fullmap

has been completely inspected. Finally, rule m9 is used to grant shared access to

the requesting cache (that connected with the server node with a pending edge).

5.2. Optimized full-map cache coherence protocol

We now consider an optimized version [19] of the full-map coherence protocol in

which memory controllers associate a special flag mode ex to each line to remember

when the line is in exclusive use (i.e. without need to inspect the full-map). We

describe below how the protocol changes.

rec ex The optimization in the processing of message reqex is the following. When



19

(c8) 〈〈shared〉〉 V [[sh]] shared←→ req rep

(c9) 〈〈exclusive〉〉 V [[ex]] exclusive←→ req rep

Fig. 8. Additional rules for cache controller.

mode ex = 1 M sends a message req inv only to the cache marked as

exclusive.

rec sh The optimization in the processing of message reqsh is the following. When

mode ex = 1 M sends a message req dg only to the cache marked as

exclusive.

replacement In the optimized version we need a more detailed description of

this phase. The cache controller sends a replacement message to the mem-

ory controller. The memory controller resets the corresponding bit in the

fullmap and sends back an invalidation request to the cache controller. If

mode ex = 1 then the flag is set to 0.

We model the optimized protocol in the following way. Consider a set of labels

Λ n partitioned in the two sets. First, we add the label req rep to Λe and the new

labels idleex, ex inv1, ex inv2, ex inv3, ex inv4 for server nodes. A cache controller

is modelled via rules c1, . . . , c7 of Fig. 6 plus the two new rules of Fig. 8 that

describe a replacement message sent to the memory controller: A memory controller

is modelled via rules (m1) − (m4), (m6) − (m10) in addition to the following new

rules: The new rule m5 is used to set the mode ex flag to 1 (represented by state

idle). Rules m10 −m11 are used to handle pending req rep during an invalidation

loop with mode ex = 0. Rules m12 −m14 (for req ex) and m15 −m19 (for req sh)

model the fast invalidation phases required when mode ex = 1 (we just have to

invalidate one cache controller). Rules m20 − m21 model the acknowledgment to

req rep messages resp. when mode ex = 0 and mode ex = 1. In the latter case the

flag is set to zero (i.e. idleex is updated to idle).

5.2.1. Verification Problems

For this case study we consider the following pattern reachability problems (PRP)

that represent violation to mutual exclusion and consistency properties. For proving

mutual exclusion, we consider a number of PRPs defined by taking as target set of

configurations the denotations of a graph with a memory node m and two cache

nodes c, c′ both linked to m (to model the fact that the cache lines stored in c, c′

correspond to that controlled by m) and such that c, c′ and the corresponding

incident edges have a conflicting state.

Formally, we consider graph constraints defined as follows G = {1, 2, {e =

(1, 1), e′ = (1, 2)}, ρc, ρs, ρe} where ρs(1) = (`,Λe), ` ∈ {idle, idleex}, ρc(1) = ex,

ρe(e) = ex, and either (ρc(2) = ex and ρe(e
′) = ex) or (ρc(2) = sh and ρe(e

′) = sh).



20

(m5) [[ack inv]]
pend←→ V [[idleex]] ex←→

(m10) [[inv loop]]
req rep←→ V [[inv loop]]

req inv←→
(m11) [[inv dg]]

req rep←→ V [[inv dg]]
req inv←→

(m12) [[idleex]]
req ex←→ V [[ex inv1]]

pend←→
(m13) [[ex inv1]] ex←→ V [[ex inv2]]

req inv←→
(m14) [[ex inv1]]

req rep←→ V [[ex inv2]]
req inv←→

(m15) [[idleex]]
req sh←→ V [[ex inv3]]

pend←→
(m16) [[ex inv3]] ex←→ V [[ex inv4]]

req inv←→
(m17) [[ex inv3]]

req rep←→ V [[ex inv4]]
req inv←→

(m18) ((ex inv2)) V ((ack inv)) : ∀{pend, req sh, req ex}
(m19) ((ex inv4)) V ((ack dg)) : ∀{pend, req sh, req ex}
(m20) 〈〈idle〉〉 V [[req rep]] idle←→ req inv

(m21) 〈〈idleex〉〉 V [[req rep]] idle←→ req inv

Fig. 9. Additional rules for a memory controller.

We can also formulate other type of consistency properties as PRP. For instance,

to check that idleex corresponds to a memory (line) state in which one cache con-

troller has exclusive access (before or after sending a req rep message) we can first

add the following rule (here bad is a new memory label):

((idleex)) V ((bad)) : ∀Q

where bad is a new memory label and Q = Λe \ {req rep, ex}.
The graph G = {1, 0, ∅, ρs, ∅, ∅} with ρs(1) = (bad,Λe) represents the set of

violations to the consistency of the mode ex flag with respect to the current state

of the fullmap.

Our prototype implementation of the symbolic backward procedure with graph

constraints verifies the above mentioned properties automatically [25].

6. Conclusions and Related Work

We have presented a new algorithm for parameterized verification of directory-

based consistency protocols based on a graph representation (graph constraints) of

infinite collections of configurations. The algorithm computes an overapproximation

of the set of backward reachable configurations denoted by an initial set of graph

constraints. We apply the new algorithm to different versions of a non-trivial case-

study discussed in [19]. We plan to investigate how to extend this approach to deal



21

with parameterized systems in which some of the nodes play both the role of server

and client in different instances of a given communication protocol.

References

[1] P. A. Abdulla, A. Bouajjani, J. Cederberg, F. Haziz, and A. Rezine. Monotonic
abstraction for programs with dynamic memory heaps. In Proc. CAV 2008: 341-354.

[2] P. A. Abdulla, K. Čerāns, B. Jonsson, and Y.-K. Tsay. General decidability theorems
for infinite-state systems. In Proc. LICS 1996: 313–321.

[3] P. A. Abdulla, N. Ben Henda, G. Delzanno, and A. Rezine. Regular model checking
without transducers. In Proc. TACAS 2007: 721–736.

[4] P. A. Abdulla, N. Ben Henda, G. Delzanno, and A. Rezine. Handling parameterized
systems with non-atomic global conditions. In Proc. VMCAI 2008: 22-36.

[5] P. A. Abdulla, G. Delzanno, and A. Rezine. Parameterized verification of infinite-
state processes with global conditions. In Proc. CAV 2007: 145–157.

[6] P. A. Abdulla, G. Delzanno, and A. Rezine. Approximated Context-sensitive Analysis
for Parameterized Verification In Proc. FORTE 2009: 36–50.

[7] P. A. Abdulla, B. Jonsson, M. Nilsson, and J. d’Orso. Regular model checking made
simple and efficient. In Proc. CONCUR 2002: 116–130.

[8] T. Arons, A. Pnueli, S. Ruah, J. Xu, and L. Zuck. Parameterized verification with
automatically computed inductive assertions. In Proc. CAV 2001: 221–234.

[9] B. Boigelot, A. Legay, and P. Wolper. Iterating transducers in the large. In Proc.
CAV 2003: 223–235.

[10] A. Bouajjani, P. Habermehl, and T. Vojnar. Abstract regular model checking. In
Proc. CAV 2004: 372–386.

[11] A. Bouajjani, A. Muscholl, and T. Touili. Permutation Rewriting and Algorithmic
Verification. Inf. and Comp., 205(2): 199-224, 2007.

[12] E. Clarke, M. Talupur, and H. Veith. Environment abstraction for parameterized
verification. In Proc. VMCAI 2006: 126-141.

[13] G. Delzanno. Constraint-Based Verification of Parameterized Cache Coherence Pro-
tocols. FMSD 23(3): 257-301 (2003)

[14] M. Emmi, R. Jhala, E. Kohler, and R. Majumdar. Verifying reference counted objects.
In Proc. TACAS 2009: 262-276.

[15] J. Esparza, A. Finkel, and R. Mayr. On the Verification of Broadcast Protocols. In
Proc. LICS 1999: 352-359.

[16] A. Finkel and P. Schnoebelen. Well-structured transition systems everywhere! TCS
256(1-2):63–92, 2001.

[17] S. Joshi and B. König. Applying the graph minor theorem to the verification of graph
transformation systems. In Proc. CAV 2008: 214–226.

[18] Y. Kesten, O. Maler, M. Marcus, A. Pnueli, and E. Shahar. Symbolic model checking
with rich assertional languages. TCS 256: 93–112, 2001.

[19] F. Pong, M. Dubois. Correctness of a Directory-Based Cache Coherence Protocol:
Early Experience. In Proc. SPDP 1993: 37-44

[20] A. Pnueli, S. Ruah, and L. Zuck. Automatic deductive verification with invisible
invariants. In Proc. TACAS 2001: 82–97.

[21] M. Saksena and O. Wibling and B. Jonsson. Graph Grammar Modeling and Verifi-
cation of Ad Hoc Routing Protocols. In Proc. TACAS 2008: 18–32.

[22] M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification. In Proc. LICS 1986: 332–344.

[23] T. Yavuz-Kahveci, T. Bultan. A symbolic manipulator for automated verification of



22

reactive systems with heterogeneous data types. STTT 5(1): 15-33, 2003.
[24] T. Yavuz-Kahveci, T. Bultan. Verification of parameterized hierarchical state ma-

chines using action language verifier. In Proc. MEMOCODE 2005: 79-88.
[25] Symgraph: http:\\www.disi.unige.it\person\DelzannoG\Symgraph\.


