
International Journal of Foundations of Computer Science
c© World Scientific Publishing Company

Bisimulation Minimization of Tree Automata

PAROSH AZIZ ABDULLA

Dept. of Information Technology, Uppsala University, P.O. Box 337
S–751 05 Uppsala, Sweden.

parosh@it.uu.se

and

JOHANNA HÖGBERG

Department of Computing Science, Ume̊a University
S–901 87 Ume̊a, Sweden

johanna@cs.umu.se

and

LISA KAATI

Dept. of Information Technology, Uppsala University, P.O. Box 337
S–751 05 Uppsala, Sweden.

lisa.kaati@it.uu.se

Received (received date)

Revised (revised date)
Communicated by Editor’s name

ABSTRACT

We extend an algorithm by Paige and Tarjan that solves the coarsest stable re-
finement problem to the domain of trees. The algorithm is used to minimize non-

deterministic tree automata (NTA) with respect to bisimulation. We show that our

algorithm has an overall complexity of O(r̂ m log n), where r̂ is the maximum rank of
the input alphabet, m is the total size of the transition table, and n is the number of

states.

Keywords: bisimulation, tree automata, minimization

1. Introduction

We present an algorithm that minimizes non-deterministic tree automata with
respect to bisimulation equivalence in time O(r̂ m log n), where r̂ is the maximum
rank of the input alphabet, m is the total size of the transition table, and n is
the number of states. In the construction of this algorithm, we extend the algo-
rithm proposed in [?] to the domain of trees. Since the time complexity reduces
to O(m log n) if r̂ is constant, this retains the complexity of [?] in all cases where
the maximum rank of the input alphabet is bounded. This holds in particular for

1

monadic trees, i.e. the string case.
The minimization of finite string automata (FA) is a well-studied problem, where

the objective is to find the unique minimal FA that recognizes the same language
as a given FA. In the deterministic case, efficient algorithms are available, e.g. the
algorithm proposed by Hopcroft in [?], where he uses a “process the smaller half”
strategy to obtain a bound of O(n log n). However, it has been proven that min-
imization of non-deterministic finite automata (FA) is PSPACE complete [?], and
what is worse, that the minimization problem for an NFA with n states cannot
be efficiently approximated within the factor o(n), unless P = PSPACE [?]. To
avoid exponential time, the problem must either be restricted (e.g. by considering
a special class of devices or requiring additional information), or no approximation
guarantees can be given. Of course, this holds also for non-deterministic tree au-
tomata (NTA) because they generalize NFAs (as a string may be seen as a monadic
tree). Hence, we cannot hope to find an efficient algorithm that performs well on
all input NTAs.

The algorithm presented in this paper takes advantage of the fact that bisimula-
tion equivalence is computationally easier to decide than language equivalence, and
that bisimulation equivalence implies language equivalence (although the converse
does not hold in the general case) [?]. When minimizing an NTA, we group states
that are observationally equivalent and use the blocks of the resulting partition
as states in the output NTA. As mentioned above, the time complexity becomes
O(r̂ m log n), as computed to O(m log n) by [?]. Interestingly, the maximum rank r̂
(which is the constant 1 in [?]) does not become an exponent. Instead, it influences
the complexity rather modestly.

Bisimulation minimization of tree automata is of particular interest in tree reg-

ular model checking (an extension of regular model checking [?]). In this field, the
verification of infinite state systems with tree-like architecture is considered, and
many of the associated algorithms would benefit from an efficient method to reduce
the size of tree automata [?].

Related Work To the best of our knowledge, there is no documented algo-
rithm that uses bisimulation to minimize NTA, but we do know of a number of
minimization algorithms that operate on various kinds of tree automata. For in-
stance, algorithms for guided tree automata (GTA) are considered in [?]. A GTA is a
bottom-up tree automaton equipped with separate state spaces that are assigned by
a top-down automaton. According to the authors, minimization of GTA is possible
in time O(nm), (here, n is the total number of states and m the total representa-
tion size) but it still remains an open question whether or not tree automata can
be minimized in time O(m log m). In [?], Cristau et al. claim that a deterministic
bottom-up tree automaton for unranked trees can be minimized in quadratic time
using the algorithm proposed in [?]. In [?], the minimal tree automaton is com-
puted using an algorithm that construct congruences of the input automaton until
a fixed point is reached, but no results regarding the computational complexity are
presented.

In [?], Nivat and Podelski propose a generalization of deterministic top-down tree

2

automata to r-l-deterministic top-down tree automata (l-r DTA). The recognizing
power of this device lies strictly between that of “traditional” deterministic and
non-deterministic top-down tree automata. Nivat and Podelski shows every l-r
DTA A can be minimized to obtain the unique minimal l-r DTA recognizing L(A),
although they do not formulate an explicit minimization algorithm. There have
also been attempts to impose restrictions on NTAs to obtain devices with nicer
mathematical properties. In [?], a new class of non-deterministic tree automata
called residual finite tree automata (RFTA) is defined, where the bottom-up case
gives a new characterization of regular tree languages. The authors state that for a
given RFTA, there always exists a canonical NTA (the problem of finding it is still
in PSPACE).

Outline Section ?? covers the preliminaries, while Section ?? generalizes a
partitioning algorithm from [?] to trees. Section ?? describes the necessary calcula-
tion steps. In Section ??, the extended algorithm is applied to the minimization of
NTA, and in Section ??, we show experimental results obtained from a prototype.
We conclude with some directions for future work.

2. Preliminaries

Tree Automata A ranked alphabet is a finite set of symbols Σ =
⋃
k∈N Σ(k)

which is partitioned into pairwise disjoint subsets Σ(k). The symbols in Σ(k) are
said to have rank k. The set TΣ of all trees over Σ is the smallest superset of Σ(0)

that contains every f [t1, . . . , tk], where f ∈ Σ(k), k ≥ 1, and t1, . . . , tk ∈ TΣ. A
subset of TΣ is called a tree language.

A bottom-up tree automaton is a quadruple A = (Σ,Q , δ,F) where

- Σ is a ranked input alphabet,

- Q is a finite set of states,

- δ is a finite set of transition rules of the form

f (q1, . . . , qn)→ qn+1 ,

where f ∈ Σ(n), and q1, . . . , qn+1 ∈ Q , for some n ∈ N. In the special case
when δ is a function, we say that the automaton is deterministic.

- F ⊆ Q is a set of accepting states.

The relation δ easily extends to trees, yielding a function δ : TΣ → P (Q), where
P (Q) denotes the powerset of Q: for t = f [t1, . . . , tk] ∈ TΣ, we let

δ(t) = {q | f (q1, . . . , qk)→ q ∈ δ and qi ∈ δ(ti) for all i : 1 ≤ i ≤ k} .

The tree language recognized by an automaton A is L(A) = {t ∈ TΣ | δ(t) ∩ F 6= ∅}.
Note that a deterministic bottom-up tree automaton A with a set of transition

rules δ maps every tree in TΣ to a singleton set. In other words, in the deterministic
case δ is a function from TΣ to the states of A.

3

When we present our algorithm in Section ??, it will be useful to be able to
address subsets of the set δ and positions in its constituent transition rules. For
this purpose, let r = f (q1, . . . , qn)→ qn+1 be a transition rule, then |r| denotes its
length (i.e., |r| = n+ 1), r(i) denotes the state qi, and q ∈ r indicates that r(i) = q

for some i : 1 ≤ i ≤ |r|. For B ⊆ Q, take δB as the set

{r ∈ δ | ∃q ∈ B such that q ∈ r} .

For technical convenience, we shall henceforth restrict ourselves to ranked al-
phabets containing at most one symbol of rank k for each k ∈ N. We can thus
leave out the input symbol when writing a transition rule, without risk of confu-
sion. Extending the algorithm presented in Section ?? to unrestricted alphabets is
straight-forward and does not effect the results in any way.

Equivalences Let A = (Σ,Q , δ,F) be an arbitrary tree automaton, and let
'′ and ', where '′ ⊆ ', be two equivalence relations of Q . We write (Q/') to
denote the set of equivalence classes (which we henceforth refer to as blocks) of ',
and [q]' to denote unique the block of ' that contains q.

For a block B ∈ (Q/'), we write [[B]]'′ to denote the set

{B′ ∈ (Q/'′) | B′ ⊆ B} .

While, for a block B′ ∈ (Q/'′), we let [B′]' represent the (unique) block B ∈ (Q/')
such that B′ ∈ [[B]]'′ .

Symbolic rules Let A = (Q,Σ, δ, F) be an NTA, and let '′ and ' be
equivalence relations on Q such that '′ is a refinement of '. To represent the set

{([q1]', . . . , [qk]')→ [q]' | (q1, . . . , qk)→ q ∈ δ}

of symbolic rules with respect to ', we use the notation (δ/'). Conversely, if
ρ = (D1, . . . , Dk)→ Dk+1 is a symbolic rule, then the set of instances of ρ, denoted
[[ρ]], is the set

{(q1, . . . , qk)→ qk+1 | qi ∈ Di, i : 1 ≤ i ≤ k + 1} ∩ δ .

We write ρ(i) to refer to block Di of ρ, and B ∈ ρ to indicate that ρ(i) = B, for
some i : 1 ≤ i ≤ |ρ|. The length of ρ is written |ρ|. For a transition rule r ∈ δ, we
use [r]' to represent the unique symbolic rule ρ ∈ (δ/') such that r ∈ [[ρ]].

Given a rule ρ = (D1, ..., Dn)→ Dn+1 in (δ/'), we let [[ρ]]'′ represent the set

{(D′1, ..., D′n)→ D′n+1 ∈ (δ/'′) | D′i ∈ [[Di]]'′ , for all i : 1 ≤ i ≤ n+ 1} .

To denote the subset

{(D′1, ..., D′n)→ D′n+1 | ∃i ∈ {1, . . . , n+ 1} s.t. D′i = B}

of [[ρ]]'′ we write [[ρ]]B'′ . Conversely, for the symbolic rule ρ′ ∈ (δ/'′), we define
[ρ′]' to be the (unique) symbolic rule ρ ∈ (δ/') such that ρ′ ∈ [[ρ]]'′ .

4

Occurrences and Counts Let ' be an equivalence relation and q a state,
then the set of occurrences of q in ', denoted Occ(')(q), is the set of pairs (ρ, i)
where ρ ∈ (δ/') and q ∈ ρ(i) for some i : 1 ≤ i ≤ |ρ|. Intuitively, Occ(')(q)
identifies the symbolic rules in which [q] occurs in the rule, together with the position
of such an occurrence. Given a block B in ', we define Occ(')(B)(q), to be

{(ρ, i) | (ρ, i) ∈ Occ(')(q) and B ∈ ρ} .

For a symbolic rule ρ, and a state q, we define count(ρ)(q) to be the size of the
set {r ∈ [[ρ]] | ∃i ∈ {1 . . . |r|} s.t. r(i) = q}. We extend the definition to a set % of
symbolic rules such that count(%)(q) =

∑
ρ∈% count(ρ)(q).

Stability Let ' and ∼=, where ' ⊆ ∼=, be equivalence relations on Q. The
relation ' is stable with respect to ∼= if whenever q ' p then Occ(∼=)(q) = Occ(∼=)(p),
and stable if it is stable with respect to itself.

3. The algorithm

In this section, we introduce an algorithm for solving the coarsest stable refine-
ment problem for NTAs. An instance of the problem consists of an NTA A and
an equivalence relation 'init on the states of A. The task is to find the stable (as
defined in the previous section) refinement ' of 'init that is coarsest in the sense
that every other stable refinement of 'init is also a refinement of '.

The algorithm iterates over a sequence of steps (described in detail in Sec-
tion ??), and given an inital equivalence 'init, the iteratons generates two sequences
of equivalence relations on Q, denoted by '0,'1, . . . ,'t and ∼=0,∼=1, . . . ,∼=t respec-
tively. We define '0 to be 'init and ∼=0 to be Q×Q.

The inital equivalence 'init is a stable proper refinement of ∼=0 with the addi-
tional condition that q 'init q′ ⇔ q, q′ ∈ F . In the (i+ 1)-th iteration, the equiva-
lences 'i+1 and ∼=i+1 are derived from 'i and ∼=i as follows. Let Bi ∈ (Q/'i) and
Si ∈ (Q/∼=i) be such that Bi ⊂ Si and |Bi| ≤ |Si|

2 (as implied by Lemma ??, 'i is
a proper refinement of ∼=i so Bi and Si exist). We have that q ∼=i+1 q

′ if and only
if two conditions are met. First, q ∼=i q

′, and second, q ∈ Bi if and only if q′ ∈ Bi.
Furthermore, for all q, q′ ∈ Q , it holds that q 'i+1 q

′ if and only if the following
conditions are satisfied:

(1) q 'i q′

(2) Occ(∼=i+1)(Bi)(q) = Occ(∼=i+1)(Bi)(q′)

(3) For every ρ ∈ (δ/∼=i), we have that

count(ρ)(q) = count
(

[[ρ]]Bi
∼=i+1

)
(q) iff count(ρ)(q′) = count

(
[[ρ]]Bi
∼=i+1

)
(q′) .

Intuitively, the second and third conditions refine 'i with respect to Bi and
Si −Bi respectively. The iteration continues until we reach the termination point
t, at which we have 't = ∼=t.

Correctness and time complexity We now argue that the algorithm is
correct and runs in time O(r̂ m log n), beginning with a simple lemma.

5

Lemma 1 The relation 'i is a refinement of ∼=i, for all i : 0 ≤ i ≤ t.
Proof. By induction on i. The base case is trivial since ∼=0= Q×Q. Suppose

that q 'i+1 q′. By definition of 'i+1 it follows that q 'i q′. By the induction
hypothesis it follows that q ∼=i q

′. Since q 'i q and Bi ∈ (Q/'i) it follows that
q ∈ Bi iff q′ ∈ Bi. By definition of ∼=i+1 it follows that q ∼=i+1 q

′. 2

This implies that 'i is a proper refinement for all i : 0 ≤ i < t, and that, up to
the termination point, we will be able to pick Bi ∈ (Q/'i) and Si ∈ (Q/∼=i) such
that Bi ⊂ Si and |Bi| ≤ |Si|

2 . Next, we consider partial correctness of the algorithm
which will follow from Lemma ?? and Lemma ??.
Lemma 2 The relation 'i is stable with respect to ∼=i, for all i : 1 ≤ i ≤ t.

Proof. By induction on i. The base case (when i = 0) follows from the
definitions of '0 and ∼=0. Suppose then that q 'i+1 q

′, and that (ρ, j) ∈ Occ(∼=i+1

)(q) for some ρ ∈ (δ/∼=i+1); we show that (ρ, j) ∈ Occ(∼=i+1)(q′). Depending on ρ,
we have three cases:

First, Si − Bi /∈ ρ and Bi /∈ ρ. This means that ρ ∈ (δ/∼=i), and therefore
(ρ, j) ∈ Occ(∼=i)(q). Since q 'i+1 q′, we know by definition that q 'i q′. By
the induction hypothesis it follows that 'i is stable with respect to ∼=i, and hence
(ρ, j) ∈ Occ(∼=i)(q′). Since ρ ∈ (δ/∼=i+1) it follows that (ρ, j) ∈ Occ(∼=i+1)(q′).

Second, Si − Bi ∈ ρ and Bi /∈ ρ. Let ρ be of the form (D1, . . . , Dn) → Dn+1.
Define ρ1 ∈ (δ/∼=i) to be the symbolic rule

(
D1

1, . . . , D
1
n

)
→ D1

n+1 where, for each
k : 1 ≤ k ≤ n+ 1, we have that D1

k = Si if D1
k = Si − Bi and D1

k = Dk otherwise.
We observe that ρ1 = [ρ]∼=i , and therefore

(
ρ1, j

)
∈ Occ(∼=i)(q). Since q 'i+1 q

′,
we know by definition that q 'i q′. By the induction hypothesis it follows that
'i is stable with respect to ∼=i, and hence

(
ρ1, j

)
∈ Occ(∼=i)(q′). From Bi /∈ ρ

we know that count(ρ)(q) > count
(

[[ρ]]Bi
∼=i+1

)
(q). Since q 'i+1 q′ it follows that

count(ρ)(q′) > count
(

[[ρ]]Bi
∼=i+1

)
(q′). Hence, (ρ, j) ∈ Occ(∼=i)(q′).

Third, Bi ∈ ρ. This means that (ρ, j) ∈ Occ(∼=i+1)(Bi)(q). Since q 'i+1 q
′ it

follows that (ρ, j) ∈ Occ(∼=i+1)(Bi)(q′) and hence (ρ, j) ∈ Occ(∼=i+1)(q).
2

In the proof of Lemma ??, we use two auxiliary lemmas (Lemma ?? and
Lemma ??). The proofs of these two lemmas have been omitted, but the inter-
ested reader will find these in [?].
Lemma 3 Any stable refinement ' of 'i, is also a stable refinement of ∼=i+1.
Lemma 4 Consider equivalence relations '′⊆', a symbolic rule ρ ∈ (δ/'), a
state q, and j : 1 ≤ j ≤ |ρ|. Then, we have (ρ, j) ∈ Occ(')(q) if and only if
(ρ′, j) ∈ Occ('′)(q) for some ρ′ ∈ [[ρ]]'′ .
Lemma 5 If ' is a stable refinement of '0, then ' is also a refinement of 'i, for
each i : 1 ≤ i ≤ t.

Proof. By induction on i. The base case is trivial. For the induction step,
suppose that q ' q′. We show that q 'i+1 q′ using the three conditions in the
definition of 'i+1. Condition (1) is satisfied by the induction hypothesis.

For Condition (2), suppose that (ρ, j) ∈ Occ(∼=i+1)(Bi)(q). Since (ρ, j) is in
Occ(∼=i+1)(Bi)(q) we know that Bi ∈ ρ and that (ρ, j) ∈ Occ(∼=i+1)(q). From the

6

induction hypothesis we know that '⊆'i, and by Lemma ?? that '⊆∼=i+1. By
Lemma ?? there is a ρ′ ∈ [[ρ]]' such that (ρ′, j) ∈ Occ(')(q). Since q ' q′ and
' is stable, we have that (ρ′, j) ∈ Occ(')(q′). From '⊆∼=i+1 and ρ′ ∈ [[ρ]]', it
follows by Lemma ?? that (ρ, j) ∈ Occ(∼=i+1)(q′). Since Bi ∈ ρ, we conclude that
(ρ, j) ∈ Occ(∼=i+1)(Bi)(q′).

Regarding Condition (3), assume that count(ρ)(q) 6= count([[ρ]]Bi
∼=i+1

)(q). We

show that count(ρ)(q′) 6= count([[ρ]]Bi
∼=i+1

)(q′). From the above assumption, we know
that there are ρ1 ∈ (ρ/∼=i) and j such that Bi 6∈ ρ1 and (ρ1, j) is an element of
Occ(∼=i+1)(q). Form the induction hypothesis we know that '⊆'i, and hence by
Lemma ?? it follows that '⊆∼=i+1. By Lemma ?? there is a ρ2 ∈ [[ρ1]]', such that
(ρ2, j) ∈ Occ(')(q). Since q ' q′ and ' is stable it follows that (ρ2, j) ∈ Occ(')(q′).
From '⊆∼=i+1 and ρ2 ∈ [[ρ1]]', it follows by Lemma ?? that (ρ1, j) is an element of
Occ(∼=i+1)(q′), and hence the result. 2

Lemma 6 There is a t ≤ n− 1 such that 't = ∼=t.
Proof. As long as the algorithm has not terminated, we have Bi ⊂ Si and

consequently ∼=i+1 ⊂ ∼=i. By finiteness of Q it follows that after at most t = |Q|− 1
steps we reach a point where there are no Bt ∈ (Q/'t) and St ∈ (Q/∼=t) such that
Bt ⊂ St and |Bt| ≤ |St|

2 . This implies 't = ∼=t. 2

Now, we are ready to prove correctness. Lemma ?? guarantees that the algo-
rithm terminates, producing 't. According to Lemma ??, 't is stable with respect
to ∼=t, and since 't = ∼=t, the equivalence 't is stable. The implication of this, in
combination with Lemma ??, is stated as the following theorem.
Theorem 1 The algorithm terminates with output 't, where 't is the coarsest
stable refinement of '0.

To simplify the discussion regarding time complexity, we formulate Lemma ??.
Lemma 7 For each q ∈ Q and i < j if q ∈ Bi ∩Bj then |Bj | ≤ |Bi|

2 .
Proof. By definition we know that Bi is a block of ∼=i+1. Since i < j it follows

by definition that ∼=j is a refinement of ∼=i and hence Bi is a union of blocks in
∼=j . From the fact that q ∈ Bj we know that q ∈ Sj . Since q ∈ Bi it follows that
Sj ⊆ Bi. From |Bj | ≤ |Sj |

2 , it follows that |Bj | ≤ |Bi|
2 . 2

As demonstrated in Section ??, calculation steps 1 to 8 can each be performed
in time O

(∑
r∈δB |r |

)
. This is also the time required by an entire iteration. The

time complexity of the algorithm can then be written as∑
r∈δB0

|r|+
∑
r∈δB1

|r|+ . . .
∑
r∈δBt

|r| ,

where Bi is the B-block chosen during the ith iteration. Now, a transition rule
r = (q1, . . . , qk)→ qk+1 ∈ δ will only be contained in the set δBi

, 0 ≤ i ≤ t, if state
qj is contained in Bi for some j : 1 ≤ j ≤ k + 1. No state occur in more than log n
B-blocks (Lemma ??), and since r contains at most |r| distinct states, r cannot
contribute by more than |r|2 log n to the total sum. This implies that the algorithm
runs in time O

(
(
∑

r∈δ |r |
2) log n

)
, which is bounded by O(r̂ m log n).

7

4. Iterations

In this section we describe the data structures used in the representation of the
equivalences 'i and ∼=i (see Section ??). Also, we use a number of auxiliary data
structures which allow efficient implementation of each iteration in the algorithm.
Finally, we describe how to implement each iteration.

Each state is represented by a record which we identify with the state itself. We
maintain three lists of blocks:

- P corresponds to blocks in 'i. Each block is represented by a record which
we will identify with the block itself. Each block S in P contains a pointer to
a doubly linked list of its elements; and each state points to the block in P

containing it. Each block in P is also equipped with a natural number which
indicates its size.

- X corresponds to the blocks in ∼=i. Each block is represented by a record
which we will henceforth identify with the block itself. A block in the list X
is said to be simple if it contains a single block of P , and compound otherwise.
Each block in X contains a pointer to a doubly linked list of the blocks of P
contained in it; and each block S in P contains a pointer to the block of X
containing it.

- C is a sublist of X containing only the compound blocks in X.

The elements of the lists described above are doubly linked. This allows for deletion
of elements in constant time. A transition rule r is represented by a doubly linked
list of elements. The ith element of this list (which corresponds to state q) is a
record with:

- pointers to the next and previous elements of r (if any).

- pointers to the ith element in the previous and the next rule in [r]∼=i
.

- a pointer to the symbolic rule ρ = [r]∼=i .

- pointers c, c1, and c2 to three counters containing natural numbers.

Intuitively, given a rule r, the pointer c points to count(ρ)(q) where ρ = [r]∼=i . The
counters c1 and c2 are temporary variables, used during the iterations, to point to
count(ρ′)(q) and

count
(

[[ρ]]B∼=i+1

)
(q) ,

respectively, where ρ′ = [r]∼=i+1 . A state has a pointer to the list of rules in which
it occurs. A symbolic rule ρ is represented by a record which is pointed to by all
instances of ρ.

Initialization In the initial configuration, all transition rules r ∈ δ points to
(the only) symbolic rule ρ0 ∈ (δ/∼=0). Each position of a transition rule r (which
corresponds to a state q) points to a counter count(ρ0)(q). The list X contains only
one block. This block is compound and it is also the only block contained in C.

8

Step 1: Select compound block S. Remove a compound block S from C.
Examine the first two blocks in S. Let B be the smaller one. If they are equal in size
then B can be arbitrarily chosen to be anyone of them. These blocks correspond to
Bi and Si chosen during the ith iteration (Section ??). This step can be performed
in constant time.

Step 2: Remove B from S. This step is to maintain the invariant that
q ∼=i+1 q

′ implies that q ∈ B iff q′ ∈ B. Remove B from S and create a new block
S′ in X. The block S′ is simple and contains B as its only block. If S is still
compound, put it back into C. Observe that the elements of X will now correspond
to the blocks of ∼=i+1. This step can be performed in constant time.

Step 3: Calculate new symbolic rules. Note that each symbolic rule ρ ∈
(δ/∼=i) will potentially give raise to a set of rules in (δ/∼=i+1), namely those in [[ρ]]B∼=i+1

and [[ρ]]¬B∼=i+1
, and that these rules are obtained from ρ by replacing occurrences of S

in ρ either by Bi or S −B. The purpose of Step 3 is to derive the rules in [[ρ]]B∼=i+1
,

i.e., to generate those members of (δ/∼=i+1) in which B occurs at least once. For
this purpose, we build, for each ρ with [[ρ]]B∼=i+1

6= ∅, a tree Tρ which encodes the

symbolic rules in [[ρ]]B∼=i+1
. A list of existing trees is maintained throughout the

current iteration. The rule ρ will maintain a pointera to Tρ, while each tree will
maintain a pointer to the list of its leafs.

The edges of the tree are labeled with blocks in X (i.e., blocks in ∼=i+1). Each
path π from the root to a leaf is of length |ρ|, and corresponds to one symbolic rule
ρ′ = [ρ]∼=i+1 . More precisely, the root-to-leaf concatenation of the labels of edges
along π defines the blocks which appear in ρ′ from left to right. Thus, the ith edge in
π is labeled by ρ′(i), for i : 1 ≤ i ≤ |ρ′|. Furthermore, the leaf at the end of π points
to a list Lρ′ of rules which are instances of ρ′. The elements of different rules in Lρ′

are also linked together: position j in each rule has a pointer to position j of the
next rule in Lρ′ . This gives the list Lρ′ a “matrix” form where the rows correspond
to rules and the columns correspond to given positions in the rules. When Tρ is
completely constructed, each symbolic rule ρ′ ∈ [[ρ]]B∼=i+1

will be represented by a
path in Tρ; and each instance of ρ′ will be present in the list associated with the
corresponding leaf.

To construct Tρ, we go through the elements of B. For each element q ∈ B,
we go through the list of rules r with q ∈ r. Recall that q has a pointer to this
list. To prevent that a certain rule is considered twice, we mark encountered rules
(and unmark them at the end of the step). For a rule r, we find the symbolic
rule ρ = [r]∼=i

. This can be done since each r has a pointer to ρ, and since the
existing symbolic rules still correspond to those in (δ/∼=i) (they have yet not been
modified to reflect ∼=i+1). We also find the tree Tρ by following pointer from each
symbolic rule ρ to Tρ. If Tρ does not exist yet, we create it, add it to the list of
currently existing trees, and add a pointer to it from ρ. Now we modify Tρ by
“adding” r to it. The addition process is carried out as follows. Let r be of the
form (q1, . . . , qn)→ qn+1.

aPointer from each symbolic rule ρ to Tρ.

9

We simultaneously traverse r (from left to right) and Tρ (in a top-down manner).
We start from q1 and the root of the tree. At step j of the traversal, we consider the
state qj together with a node nj in Tρ. We check whether there is an edge leaving
nj which is labeled by [qj]∼=i+1 (we can find [qj]∼=i+1 by following the pointer to the
block in P containing qj and from there following the pointer to the corresponding
block in X). If such an edge exists, we follow the edge one step down the tree to
the next node nj+1. We also move one step to the right in r to the state qj+1.
If no such an edge exists, we create a new edge nj+1 connected to nj and labeled
with [qi]∼=i+1 (again moving one step to the right in r). Checking existence of the
right edge takes constant time. This is due to the fact that each node may have at
most two outgoing edges (in fact a node has only outgoing edge unless the edges
are labeled by B or S). Once we reach a leaf (after |ρ| steps), we insert r in the
list pointed to by the leaf. More precisely, we go through r from left to right. For
element j in r, we remove any existing (old) links to and from elements of other
lists, and add a double link to element j of the rule which was previously first in
the list of rules (before the insertion of r). This is to maintain the matrix form, i.e.,
the invariant that corresponding elements in rules in the same list are linked. If the
leaf had just been created, we add it to the list of leafs of the tree. Notice that the
time complexity of the current step is

O

(∑
r∈δB

|r |

)
.

In fact, as we shall see all subsequent steps have the same complexity.

Step 4: Create counters. In this step, we create new counters to reflect
the introduction of the new symbolic rules, and update the values of the temporary
pointers c1 and c2 in the relevant rules. We go through the list of existing trees and
through the list of leafs of each tree. For a given leaf representing a symbolic rule
ρ′, we consider the associated list Lρ′ , and consider each rule r in the corresponding
list. We scan the rule r, and each position (corresponding to a state q). If it is
the first time we encounter q during the scanning of the current leaf, we create the
counter count(ρ′)(q), and make both q and pointer c1 of the current position point
to it. If it is not the first time, we find count(ρ′)(q) by following the pointer from
the current position to q, and from q to the counter. We increase its value and
create a pointer to it from c1 of the current position. We create and modify

count
(

[[ρ]]B∼=i+1

)
(q)

in a similar manner, with two differences, namely (i) we use c2 instead of c1; and
(ii) we check whether it is the first time we encounter q during the scanning of the
current tree (rather than the current leaf). To prevent that the same is considered
twice during the scanning of r, we mark encountered states. When the scanning of
r has been completed, we scan r one more time and unmark all states. When we
have scanned all rules in the current leaf, we go through all rules and positions one
more time and delete the pointers we have created from states q to the counters

10

count(ρ′)(q) (preserving the ones from c2). When we have scanned all leafs in the
current tree, we delete the corresponding pointers to

count
(

[[ρ]]B∼=i+1

)
(q) .

Step 5: Refine P with respect to B. Each position j : 1 ≤ j ≤ |ρ′| may
potentially give raise to a split of the blocks in P . A state q1 which occurs in position
j in the left hand side of a rule r ∈ [[ρ′]] (i.e., r(j) = q1 for some j : 1 ≤ j ≤ |ρ′| − 1)
should not be in the same block as a state q2 which does not occur in position j of
any rule in [[ρ′]]. The reason is that this would imply

Occ(∼=i+1)(B)(q) 6= Occ(∼=i+1)(B)(q′) .

To reflect this in our blocks, we go through all trees and all leafs in a tree. For a leaf
corresponding to a rule ρ′, we iterate over all positions j : 1 ≤ j ≤ |ρ′|−1, and scan
position j of all the rules in Lρ′ one by one. This can be done due to the matrix
form, where position j in each rule has a pointer to position j of the next rule in
Lρ′ . Let q be the state in the position and rule currently under consideration. We
find the block D of P containing q. We create an associated block D′ if one does
not already exist. We move q to D′ decreasing the size of D and increasing the size
of D′.

During the scanning, we construct a list which contains all blocks which have
been split. After we have scanned position j of all rules in Lρ′ , we go through the
new list of blocks. For each block D (and associated block D′), we remove the record
for D if it has become empty (all its elements have been moved to D′); otherwise if
the block of X containing D has become compound by the split, we add this block
to C.

Step 6: Refine P with respect to S −B. For each tree Tρ, and all of its
leaves, we go through the list Lρ′ , and scan every rule r in Lρ′ . Let q be the state
of r currently scanned. We determine whether the counters pointed to by c and c1
have the same values. This corresponds to checking whether

count(ρ)(q) = count
(

[[ρ]]B∼=i+1

)
(q) .

If the equality holds, we find the block D of P containing q, and create an associated
block D′ if one does not already exist. Afterward, the new list of blocks is processed
in the same way as in Step 4.

Step 7: Update the counters. This step updates the counters for every
state in every rule in [[ρ]]¬B∼=i+1

. For each tree Tρ in the list of trees created in Step
3, we go through all the leaves of Tρ. For a given leaf and an associated list Lρ′ ,
we scan each rule r in Lρ′ from left to right. Let q be the state that is currently
scanned. We subtract the value of the counter pointed to by c2 from that pointed
to by c and put the value back in the latter. This corresponds to the assignment

count(ρ)(q) := count(ρ)(q)− count([[ρ]]B∼=i+1
)(q) .

11

To prevent that the same state is processed more than once, we mark encountered
states. When the scanning of all leafs of Tρ has been completed, we scan all leaves
one more time and unmark all states. During the same scan we change the pointer
c of a cell and make it point to the same counter as c2. Now, we destroy, for each
state q, the pointers c1 and c2 and the corresponding counters.

Step 8: Update symbolic rules. We go through each tree Tρ. For each
leaf we create a new symbolic rule ρ′. We go through the associated list of rules,
and make the rules point to ρ′. After Tρ has been processed, it is destroyed.

5. NTA minimization with respect to bisimulation

We now discuss how the algorithm presented in Section ?? can be applied to
the minimization of non-deterministic tree automata, with respect to bisimulation.
We begin with a formal definition of bisimulation equivalence.
Definition 1 Let A = (Q,Σ, δ, F) and A′ = (Q′,Σ, δ′, F ′) be two NTA. A relation
'⊆ Q × Q′ is a bisimulation relation if the following two conditions hold for all
states q ∈ Q and q′ ∈ Q′ such that q ' q′. First, q ∈ F if and only if q′ ∈ F ′.
Second, the fact that (q1, . . . , qi−1, q, qi, . . . , qk−1) → qk ∈ δ, where i ≤ k, implies
that there exists a rule

(
q′1, . . . , q

′
i−1, q

′, q′i, . . . , q
′
k−1

)
→ q′k ∈ δ′, such that qj ' q′j for

all j ∈ {1, . . . , k}, and vice versa. States q and q′ as above are said to be bisimilar
(with respect to '). We consider A and A′ to be bisimulation equivalent (and write
A ∼ A′) if there is a bisimulation relation such that every state in Q is bisimilar to
a state in Q′, and every state in Q′ to a state in Q.

Here, a brief remark is in place: When the notion of bisimulation equivalence is
extended to allow alphabets containing more than one symbol of a given rank, one
must require that it is the same symbol that occurs on both sides of the implication.
Note also that if A and A′ are bisimulation equivalent NTAs, and the relation
between their states is one-to-one, then A and A′ are isomorphic.

Now, to produce the unique minimal tree automaton that is bisimilar to a given
tree automaton A = (Q,Σ, δ, F), we first apply the algorithm of Section ?? with
'0='init to find an equivalence relation ' on Q, such that Q/' is the coarsest
stable partition of Q, and then output A' = (Q/',Σ, δ/', F/').

In the derivation of Theorem ??, which is a non-deterministic version of a result
in [?], we make use of two lemmas. To save space, the proofs have been omitted,
but the interested reader will find these in [?].
Lemma 8 Bisimulation equivalence is an equivalence relation.
Lemma 9 The input automaton and the output automaton returned by the mini-
mization algorithm are bisimulation equivalent.
Theorem 2 Given an automaton A, the minimization algorithm returns the unique
minimal bisimulation-equivalent automaton recognizing L(A).

Proof. Let A = (Q,Σ, δ, F) be an NTA, and A' = (Q/',Σ, δ/', F/') the
NTA returned by the minimization algorithm. According to Theorem ??, Q/' is
the coarsest stable refinement of 'init. By Lemma ??, automata A' and A are
bisimulation equivalent.

12

Let A′ = (Q′,Σ, δ′, F ′) be a minimal NTA bisimulation equivalent with A. Since
A and A′ are bisimulation equivalent, there is an equivalence relation '′ on Q, such
that q '′ q′ if q and q′ are both bisimilar to the same state in Q′. The partition
Q/'′ is stable, and a refinement of 'init. In combination with the assumption that
A′ is minimal, we have that Q/'′ is the unique coarsest stable refinement of 'init,
and hence that '='′.

Since bothA' andA′ are bisimulation equivalent toA, they are also bisimulation
equivalent to each other (Lemma ??), and since they each have |Q/'| states, this
relation is one-to-one. Hence, A' and A′ are isomorphic. 2

Minimization of deterministic tree automata In the context of deter-
ministic tree automata, our definition of bisimulation equivalence (i.e. Definition ??)
is unnecessarily restrictive. As Andreas Maletti observed, the minimization algo-
rithm described in Section ?? will not find any pair of bisimilar states to merge; a
DTA A maps every input tree to a unique state, so there can be no two states q and
q′ such that Lq(A) = Lq′(A). However, when the domain can be limited to deter-
ministic automata that are free from unreachable states, we may soften the second
of the two conditions in Definition ?? by substituting i ≤ k for i ≤ k+1. Using this
alternative definition of bisimulation equivalence, (refered to as Definition ??b) we
have the following theorem.
Theorem 3 Two deterministic tree automata are bisimilar if and only if they rec-
ognize the same language.

To efficiently minimize a deterministic tree automaton with respect to this
weaker bisimulation constraint, one can modify the partition algorithm of Sec-
tion ?? as follows. The definition of the set Occ(')(q) that appears in Condition 2
is changed to {(ρ, i) | ρ ∈ (δ/') and q ∈ ρ(i) for some i : 1 ≤ i ≤ |ρ−1|}, reflecting
Definition ??b, while Condition 3 is simply removed, as it does not contribute in
the deterministic case. This results is a generalization of Hopcrofts partitioning
algorithm extended to the domain of deterministic tree automata.
Theorem 4 Given a DTA A, the minimization algorithm returns the unique min-
imal DTA recognizing L(A).

The proofs of these two theorems have been omitted, but the interested reader
will find these in [?].

6. Experiments

As mentioned in the introduction, we have implemented our algorithm in Java.
To test the algorithm on real life examples we used tree automata that arose during
computations in the framework of tree regular model checking. Tree regular model
checking is the name of a family of techniques for analyzing infinite state systems in
which states are represented by trees, set of states by tree automata, and transitions
by tree transducers. Most tree regular model checking algorithms rely heavily on
efficient methods for checking bisimulation since the automata often increase in
size during the verification process and some computations are simply not feasible
without minimization.

13

The NTAs that we have minimized arose during verification of the Percolate
protocol and the Leader Election protocol. The Percolate protocol operates on a tree
of processes. The protocol simulates the way results propagate in a set of logical-or
gates organized in a tree. A more detailed description on the protocol can be found
in [?]. The Leader Election protocol consists of a set of processes (represented by
the leaves of a tree) that wants to elect a leader. Each process first decides whether
to be a candidate or not. The election process then proceeds in two phases. First,
the internal nodes checks their children to see if at least one of them has decided to
be a candidate. If that is the case, the internal node becomes a candidate as well.
Secondly, the root elects one candidate non-deterministically among its children.
After this, every internal node that has been elected, elects one of its children
(that has declared that it is a candidate). The protocol is further described in [?].
Table ?? shows the execution time, and the size of the tree automata before and
after running our minimization algorithm.

Protocol
Input Output

Time (s)
States Trans. States Trans.

Percolate
18 333 5 38 0.2
21 594 5 45 1.3

Leader
25 384 9 43 0.3
49 3081 14 167 30.6

Table 1: The results from applying the bisimulation minimization algorithm to tree
automata that arose in the verification of protocols Perculate and Leader.

7. Conclusion and Future Work

We have extended an algorithm by Paige and Tarjan for solving the coarsest
stable partition problem to the domain of trees, and obtained a running time of
O(r̂ m log n), where r̂ is the maximum rank of the input alphabet, m is the total
size of the transition table, and n is the number of states. As demonstrated, the
extended algorithm can be used to minimize non-deterministic tree automata with
respect to bisimulation equivalence.

One direction for future work is to integrate the minimization algorithm in the
framework of tree regular model checking, where tree automata are encoded symbol-
ically. Since many of the algorithms in this framework rely heavily on minimization,
we believe that the performance would be improved if our algorithm could be inte-
grated in this setting. We plan to implement a symbolic version of our algorithm
where we consider both binary decision diagrams and SAT solvers to perform the
necessary operations on the symbolic encoding.

Another direction for future work is to extend our algorithm to work on non-
deterministic automata on unranked trees. Unranked tree automata are used in
numerous areas of XML-related research [?]. For example, in the context of XML
schema languages a minimized schema would improve the running time or memory
consumption for document validation.

14

Unranked tree automata can be modeled in different ways. In [?], a minimization
algorithm for deterministic unranked tree automata is described, while complexity
results for a different model of deterministic unranked tree automata can be found
in [?].

8. References

1. P.A. Abdulla and J. Hgberg and L.Kaati “Bisimulation Minimization Of Tree Au-
tomata” Technical report, Uppsala University, 2006.

2. P.A. Abdulla and B. Jonsson and P.Mahata and J. d’Orso, “Regular Tree Model
Checking”, in CAV, LNCS 2404, 2002.

3. P. A.Abdulla and B.Jonsson and M.Nilsson and M.Saksena, “A Survey of Regular
Model Checking”, in CONCUR, LNCS 3170, 2004.

4. P.A. Abdulla and A.Legay and J.d’Orso and A.Rezine, “Tree Regular Model Check-
ing: A Simulation-Based Approach”, To appear in Jour. of Logic and Alg. Pro-
gramming, 2006.

5. M.Biehl and N.Klarlund and T.Rauhe, “Algorithms for guided tree automata”, in
Proceedings of the First Workshop on Implementing Automata, LNCS 1260, 1997.

6. W. S. Brainerd, “The Minimalization of Tree Automata”, in Information and Com-
putation, 1968.

7. H. Comon and M. Dauchet and R. Gilleron and F. Jacquemard and D. Lugiez and S.
Tison and M. Tommasi, “Tree Automata Techniques and Applications”, Available
on: http://www.grappa.univ-lille3.fr/tata, 1997.

8. J. Carme and R. Gilleron and A. Lemay and A. Terlutte and M. Tommasi, “Residual
finite tree automata”, Technical report, GRAPPA, 2003.

9. J.Cristau and C. Löding and W.Thomas, “Deterministic automata on unranked
trees”, in FCT, LNCS 3623, 2005.

10. G.Gramlich and G.Schnitger, “Minimizing NFA’s and Regular Expressions”, in
STACS, LNCS 3404, 2005.

11. J. E. Hopcroft, “An n log n algorithm for minimizing states in a finite automaton”,
in Theory of Machines and Computations, 1971.

12. Y. Kesten and O. Maler and M. Marcus and A. Pnueli and E. Shahar, “Symbolic
Model Checking with Rich Assertional Languages”, in Theoretical Computer Sci-
ence, volume 256, 2001.

13. R. Milner, “A Calculus of Communicating Systems”, in LNCS 92, 1980.

14. W. Martens and J. Niehren, “On the Minimization of XML Schemas and Tree
Automata for Unranked Trees”, in JCSS, 2006.

15. A. R. Meyer and L. J. Stockmeyer, “The Equivalence Problem for Regular Expres-
sions with Squaring Requires Exponential Space”, in Proc. 13th Ann. IEEE Symp.
on Switching and Automata Theory, 1972.

16. F. Neven, “Automata, Logic, and XML”, in CSL ’02: Proceedings of the 16th
International Workshop and 11th Annual Conference of the EACSL on Computer
Science Logic, 2002.

17. M. Nivat and A. Podelski, “Minimal Ascending and Descending Tree Automata”,
in SIAM Journal on Computing (26), 1997.

18. R. Paige and R. Tarjan, “Three partition refinement algorithms”, in SIAM Journal
on Computing (16), 1987.

15

