
Monotonic Abstraction in Action
(Automatic Verification of Distributed Mutex Algorithms)

Parosh Aziz Abdulla1 parosh@it.uu.se,
Giorgio Delzanno2 giorgio@disi.unige.it, and

Ahmed Rezine1 Rezine.Ahmed@it.uu.se

1 Uppsala University, Sweden
2 Università di Genova, Italy.

Abstract. We consider verification of safety properties for parameter-
ized distributed protocols. Such a protocol consists of an arbitrary number
of (infinite-state) processes that communicate asynchronously over FIFO
channels. The aim is to perform parameterized verification, i.e., show-
ing correctness regardless of the number of processes inside the system.
We consider two non-trivial case studies: the distributed Lamport and
Ricart-Agrawala mutual exclusion protocols. We adapt the method of
monotonic abstraction that considers an over-approximation of the sys-
tem, in which the behavior is monotonic with respect to a given pre-order
on the set of configurations. We report on an implementation which is
able to fully automatically verify mutual exclusion for both protocols.

1 Introduction

In this paper, we consider automatic verification of safety properties for param-
eterized distributed protocols. Such a protocol consists of an arbitrary number of
concurrent processes communicating asynchronously. The aim is to prove cor-
rectness of the protocol regardless of the number of processes.

Several aspects of the behavior of distributed protocols make them extremely
difficult to analyze. First, the processes communicate asynchronously through
channels and shared variables. Each process may operate on heterogeneous data
types such as Boolean, integers, counters, logical clocks, time stamps, tickets, etc.
Furthermore, such protocols often involve quantified conditions. For instance, a
process may need to receive acknowledgments from all the other processes inside
the system, before it is allowed to perform a transition. Finally, these protocols
are often parameterized meaning we have to verify correctness of an infinite
family of systems each of which is an infinite-state system. Here, we refine the
method of [3, 2] based on monotonic abstractions to perform fully automatic
verification of two difficult examples; namely the distributed mutual exclusion
algorithm by Lamport [17]; and its modification by Ricart and Agrawala [21].

We model a parametrized distributed system (or a distributed system for
short) as consisting of an arbitrary number of processes. Each process is an ex-
tended finite-state automaton which operates on a number of Boolean and nu-
merical (natural number) variables. Each pair of processes is connected through

a number of bounded FIFO-channels which the processes use to interchange mes-
sages. A transition inside a process may be conditioned by the local variables and
the messages fetched from the heads of the channels accessible to the process.
The conditions on the numerical variables are stated as gap-order constraints.
Gap-order constraints [19] are a logical formalism in which we can express simple
relations on variables such as lower and upper bounds on the values of individual
variables; and equality, and gaps (minimal differences) between values of pairs
of variables. Also, as mentioned above, one important aspect in the behavior
of distributed protocols is the existence of quantified conditions. This feature is
present for instance in the Lamport and Ricart-Agrawala protocols. Here, the
process which is about to perform a transition needs to know (or receive) in-
formation (e.g., acknowledgments) from the other processes inside the system.
Since a process cannot communicate directly with the other processes, it keeps
instead information locally about them. This local information is stored through
a number of variables which we call record variables. A process has a copy of
each record variable corresponding to each other process inside the system. As
an example, consider a system with n processes. Suppose that, in the proto-
col, a process needs to receive acknowledgments from all the other processes.
The protocol then uses a Boolean variable ack to record information about re-
ceived acknowledgments. Then, a process (say process i) will have n− 1 copies
of the variable ack, where each copy corresponds to another process (the copy
corresponding to process j records whether process i has received an acknowledg-
ment from process j). When process i receives an acknowledgment from process
j through the relevant channel, it assigns true to its copy of ack corresponding
to process j. Process i performs the transition by universally quantifying over
all its copies of ack, i.e., checking that all of them are set to true. We can also
have existential quantification in which case the process checks that some local
copy has a certain value (rather than all local copies).

In this paper, we report on two case studies where we use our model of dis-
tributed systems to describe parameterized versions of the distributed Lamport
and Ricart-Agrawala protocols. We have verified fully automatically the proto-
cols, using a tool which adapts the method of monotonic abstractions reported
in [3, 2]. The idea of monotonic abstraction is to make use of the theory of mono-
tonic programs. In fact, one of the widely adopted frameworks for infinite-state
verification is based on the concept of transition systems which are monotonic
with respect to a given pre-order on the set of configurations. This framework
provides a scheme for symbolic backward reachability analysis, and it has been
used for the design of verification algorithms for various models including Petri
nets, lossy channel systems, timed Petri nets, broadcast protocols, etc. (see, e.g.,
[5, 12, 13, 1]). The main advantage of the method is that it allows to work on
(infinite) sets of configurations which are upward closed with respect to the pre-
order. These sets have often very efficient symbolic representations (each upward
closed set can be uniquely characterized by its minimal elements) which makes
them attractive to use in reachability analysis. Unfortunately, many systems do
not fit into this framework, in the sense that there is no nontrivial (useful) order-

ing for which these systems are monotonic. The idea of monotonic abstractions
[3, 2] is to compute an over-approximation of the transition relation. Given a
preorder �, we define an abstract semantics of the considered systems which
ensures their monotonicity. Basically, the idea is to consider that a transition is
possible from a configuration c1 to c2 if it is possible from c1 to a larger con-
figuration c3 � c2. The whole verification process is fully automatic since both
the approximation and the reachability analysis are carried out without user
intervention. Observe that if the approximate transition system satisfies a safety
property then we can safely conclude that the original system satisfies the prop-
erty, too. Based on the method, we have implemented a prototype and applied it
for fully automatic verification of the distributed Lamport and Ricart-Agrawala
protocols. Termination of the approximated backward reachability analysis is
not guaranteed in general.

Related Work This paper gives detailed descriptions of two non-trivial case
studies, where we adapt monotonic abstraction [2–4] to the case of distributed
protocols. Compared to the methods of [3] and [2, 4] which operate on simple
Boolean and integer variables respectively, our formalism allows the modeling
of heterogeneous data types such as FIFO queues, logical clocks, etc, which are
very common in the deigns of distributed protocols.

In [24], the authors consider distributed protocols with a bounded number
of processes, and also build for heterogeneous systems (e.g., with Booleans and
integers) on top of the Omega-based solver. Here, we have a tool for heteroge-
neous data types built on top of our verification method [2–4] which allows to
deal with unbounded numbers of components. There have been several works on
verification of parameterized systems of finite-state processes, e.g., regular model
checking [15, 6, 8] and counter abstraction methods [11, 14, 12, 13]. In our case,
the processes are infinite-state, and therefore our examples cannot be analyzed
with these methods unless they are combined with additional abstractions. Fur-
thermore all existing automatic parameterized verification methods (e.g., [15,
6, 8, ?,11, 3, 2]) are defined for systems under the (practically unreasonable) as-
sumption that quantified conditions are performed atomically (globally). In other
words, the process is assumed to be able to check the states of all the other pro-
cesses in one atomic step. On the other hand, in our quantified conditions, the
process can only check variables which are local to the process. Non-atomic ver-
sions of parameterized mutual exclusion protocols such as the Bakery algorithm
have been studied with heuristics to discover invariants, ad-hoc abstractions, or
semi-automated methods in [7, 16, 18, 9, 10]. In contrast to these methods, our
verification procedure is fully automated and is based on a more realistic model.

A parameterized formulation of the Ricart-Agrawala algorithm has been ver-
ified semi-automatically in [22], where the STeP prover is used to discharge
some of the verification conditions needed in the proof. We are not aware of
other attempts of fully automatic verification of parameterized versions of the
Ricart-Agrawala algorithm or of the distributed version of Lamport’s distributed
algorithm.

Outline In the next section, we give preliminaries, and in Section 3 we describe
our model for distributed systems (protocols). In Section 4, we give the opera-
tional semantics by describing the (infinite-state) transition system induced by
a distributed system. In Section 5, we introduce an ordering on the set of con-
figurations of the system, and explain how to specify safety properties (such as
mutual exclusion) as reachability of a set which is upward closed with respect to
the ordering. In Section 6 and 7 we give the modeling of the distributed Lam-
port and the Ricart-Agrawala protocols respectively. In Section 8, we give an
overview of the method of monotonic abstractions used to perform reachability
analysis. Section 9 reports the result of applying our prototype on the two case
studies. Finally, we give some conclusions and directions for future research.

2 Preliminaries

We use B to denote the set {true, false} of Boolean values; and use N to denote
the set of natural numbers. We assume an element ⊥ 6∈ B ∪ N and use B⊥ and
N⊥ to denote B ∪ {⊥} and N ∪ {⊥} respectively. For a natural number n, let
n denote the set {1, . . . , n}. We will work with sets of variables. Such a set A
is often partitioned into two subsets: Boolean variables AB which range over B,
and numerical variables AN which range over N . We denote by B(AB) the set of
Boolean formulas over AB. We will also use a simple set of formulas, called gap
formulas, to constrain the numerical variables. More precisely, we let G(AN) be
the set of formulas which are either of the form x = y or of the form x ∼k y where
∼∈ {<,≤}, x, y ∈ AN , and k ∈ N . Here x <k y stands for x + k < y. We use
F(A) to denote the set of formulas which has members of B(AB) and of G(AN)
as atomic formulas, and which is closed under the Boolean connectives ∧,∨. For
instance, if AB = {a, b} and AN = {x, y} then θ = (a ⊃ b) ∧ (x + 3 < y) is in
F(A). Sometimes, we write a formula as θ(y1, . . . , yk) where y1, . . . , yk are the
variables which may occur in θ; so we can write the above formula as θ(x, y, a, b).

A substitution is a set {x1 ← e1, . . . , xn ← en} of pairs where xi are variables,
and ei are all constants or all variables. For each i : 1 ≤ i ≤ n, ei is of the
same type as xi. Here, we assume that all the variables are distinct, i.e., xi 6=
xj if i 6= j. For a formula θ and a substitution S, we use θ[S] to denote the
formula we get from θ by simultaneously replacing all occurrences of the variables
x1, . . . , xn by e1, . . . , en respectively. Observe that, if e1, . . . , en are constants,
then all variables appearing in θ will be replaced. In such a case, the formula θ[S]
evaluates either to true or to false. Sometimes, we may write θ[S1][S2] · · · [Sm]
instead of θ[S1 ∪ S2 ∪ · · · ∪ Sm]. As an example, if θ = (x1 < x2) ∧ (x3 <2 x4)
then θ[x1 ← y2, x4 ← x3][x2 ← x3] = (y2 < x3) ∧ (x3 <2 x3).

3 Parameterized Distributed Systems

In this section, we introduce a basic model for parameterized distributed systems
with heterogeneous data types.

A parameterized distributed system (or distributed system for short) consists
of an arbitrary (but finite) number n of identical processes. Each process has
a number of local variables and communicates asynchronously with the other
processes through a set of bounded FIFO channels. To simplify, we assume, in
this and in the next section, that each channel is of size one. It is straightforward
to extend the results to the case of channels of any (finite) size. Furthermore, a
process maintains a number of record variables which are used to store informa-
tion about the local states and values of local variables of the other processes.
All the variables and channels are assigned either Boolean or integer variables.
A process is modeled as an extended finite-state automaton where the transi-
tions check and update the values of the variables and channels accessible to the
process. A transition is of one of three types. A local transition involves only
the local variables of the process. In a quantified transition, the process may
also check and update the values of the record variables. Such a transition is
called quantified since (as we shall see below) it may involve an arbitrary num-
ber of variables. Finally, in a communication transition, also the contents of the
channels can be checked and updated. A distributed system, described in this
manner, induces an infinite family of (infinite-state) systems, namely one for
each size n. The aim is to verify correctness of the systems for the whole family.

To simplify, we assume that each process is indexed by a natural number
i : 1 ≤ i ≤ n. The index of the process does not appear in the transition rules,
and hence has no relevance for the behavior of the process. Sometimes, we simply
write “process i” to refer to the process with index i. In the sequel, we assume
the sets L, R, and Ch of local, record, and channel variables, respectively. The
set L is partitioned into LB (which range over B) and LN (which range over N).
A variable in L assumes values in B or N depending on its type. Also, the other
sets R and Ch are partitioned in a similar manner. In case of a channel variable,
the variable will take values from B⊥ and N⊥ where the value ⊥ indicates that
the channel is empty. Each process i has one copy of the set L. Also, for each
record variable x ∈ R and pairs of processes i and j, process i has a local
copy of x corresponding to j. Process i then uses that particular copy of x to
record information about the state of process j. Finally, for each channel variable
x ∈ Ch and pairs of processes i and j, there is one copy of x which i can write
to and j can read from; and (symmetrically) another copy which j can write to
and i can read from. Notice that, for an instance of n processes, there will be n
copies of L and n(n− 1) copies of R and Ch.

To describe the transitions of the system, we introduce the set Lnext =
{xnext | x ∈ L} which contains the next-value versions of the variables in L. A
variable xnext ∈ Lnext represents the next value of x when performing a tran-
sition. The sets Rnext and Chnext are defined in a similar manner. Formally, a
distributed system D is a pair (Q,T), where Q is a finite set of local states, and
T is a finite set of transition rules. A transition is of the form

t :
[
q → q′ B θ

]
(1)

where q, q′ ∈ Q and θ is either a local, a quantified, or a communication condition.
Intuitively, the process which makes the transition changes its local state from

q to q′. In the meantime, the values of the variables and channels accessible to
the process are checked and updated according to θ. Below, we describe how we
define local, quantified, and communication conditions.

A local condition is a formula in F(L∪Lnext). The formula specifies how the
local variables of the process are updated with respect to their current values.
A quantified condition θ is either of the form ∀ · θ1 (i.e., it is universal), or of
the form ∃ · θ1 (i.e., it is existential), where θ1 ∈ F (L ∪ Lnext ∪R ∪Rnext). The
universal condition checks the local variables of the process (say with index i)
which is about to make the transition (through L), and the copies of the record
variables inside i corresponding to all the other processes (through R). It also
specifies how these variables are updated (through Lnext and Rnext). The ex-
istential case can be explained analogously, with the difference that the record
variables corresponding so some other (unspecified) process (rather than all other
processes) will be checked and updated. A communication condition θ is of the
form Com ·θ1 where θ1 belongs to F

(
L ∪ Lnext ∪R ∪Rnext ∪ Ch ∪ Chnext

)
. Intu-

itively, the process (say with index i) chooses some other process (say with index
j). Process i performs the transition checking and updating its local variables
and its copies of the record variables corresponding to process j (in a similar
manner to above). Furthermore, process i can read the values of the channels
to which j can write and i can read (through Ch); and update the channels to
which i can write and j can read (through Chnext). Here, we assume that the
transition is enabled only if it does not try to read the value of an empty channel,
or to write to a channel which is full (occupied). Notice that the transition is
implicitly existentially quantified, in the sense that process i checks and updates
record variables and channel contents corresponding only to one other process.

Remark 1 (Finite Variables). The case where the variables range over finite do-
mains can be handled in a straightforward manner.

Example Assume local states q1, q2 and q3, a local numerical variable clock,
a Boolean record variable checked and a numerical channel variable c. In the
rest of the paper, we introduce some syntactic sugar to improve readability.
We assume that non-mentioned next-value forms of local and record variables
equal their current value. Follow examples of local, universally quantified and
communication transitions.
Local. The process changes local state from q1 to q2. It assigns a new value to
the local (numerical) variable clock which is larger than its current value.

q1 → q2 . (clock < clock next)

Universally quantified. The process changes local state from q2 to q3. It also
changes the value of clock as above, and checks whether the values of all copies
of the record variable checked are equal to true. Furthermore, the process resets
all these values to false.

q2 → q3 . ∀ (clock < clock next ∧ checked ∧ ¬(checkednext))

Communication. A process (say with index i) at local state q2 changes the value
of clock as above, and chooses some other process (say with index j). Process i
checks whether its copy of checked corresponding to process j is false. In such
a case, it sets checked to true, and sends the value of its updated logical clock
to process j along the relevant copy of channel c (the copy to which process i
writes to and process j reads from).

q2 → q2 . Com ·
(

clock < clock next

∧ ¬checked ∧ checkednext ∧ cnext = clock next

)

4 Operational Semantics

In this section, we define the transition system associated with a distributed
system. In general, a transition system T is a pair (D,=⇒), where D is an
(infinite) set of configurations and =⇒ is a binary relation on D. A distributed
system D = (Q,T) induces a transition system T (D) = (C,−→) as follows. A
configuration is defined by the local states and the values of the local variables in
the processes, the values of the record variables, and the contents of the channels.
Formally, a configuration c (of size n) is a tuple (n, s, u, v, w) where

– s is a mapping n → Q. For each process (with index i) the value of s(i)
defines the local state of the process.

– u is a mapping n→ L→ (B ∪N). For each process (with index i) and local
variable x, the value of u(i)(x) defines the value of the copy of x in process
i. The value may be in B or N depending on the type of x.

– v is a mapping n→ n→ R→ (B∪N). For processes (with indices i and j),
and record variable x, v(i)(j)(x) defines the value of the copy of x in process
i corresponding to process j.

– w is a mapping n → n → Ch → (B⊥ ∪ N⊥). For processes (with indices i
and j), and channel variable x, the value of w(i)(j)(x) defines the content of
the copy of channel x to which i can write and j can read. If w(i)(j)(x) = ⊥
then the channel is empty.

Now, we are ready to define the transition relation −→. Consider two con-
figurations c1 = (n, s1, u1, v1, w1) and c2 = (n, s2, u2, v2, w2) of the same size n.
Consider a transition t rule of the form of (1) and a natural number 1 ≤ i ≤ n.
Intuitively, we will describe the effect of process i performing transition t. We
write c1

t, i−→ c2 to denote that the following conditions are satisfied:

– s2(j) = s1(j), u2(j) = u1(j), v2(j) = v1(j) for each j : 1 ≤ j 6= i ≤ n.
Furthermore, w2(j)(k) = w1(j)(k), if 1 ≤ j 6= i ≤ n and 1 ≤ k 6= i ≤ n, and
j 6= k. The other processes do not change their local states, local variables,
or their record variables. The channels which cannot be read from or written
to by process i are not changed either.

– s1(i) = q and s2(i) = q′. The current and new local states of process i should
be consistent with those given in the transition rule.

– One of the following conditions holds:
• θ is a local condition and the formula θ [ρ1] [ρ2] holds, where the sub-

stitutions are defined by ρ1 = {x← u1(i)(x)| x ∈ L}, and by ρ2 =
{xnext ← u2(i)(x)| x ∈ L}. Furthermore, v2 = v1 and w2 = w1. The
current and new values of the local variables of i are consistent with θ.

• θ = ∀ · θ1 is a universal quantified condition and θ1 [ρ1] [ρ2]
[
ρj3

] [
ρj4

]
holds for each j : 1 ≤ j 6= i ≤ n. The substitutions ρ1 and ρ2 are
defined as in the previous case, while ρj3 = {x← v1(i)(j)(x)| x ∈ R}, and
ρj4 = {xnext ← v2(i)(j)(x)| x ∈ R}. Furthermore w2 = w1. In addition to
the local variables, process i may check and update the values of its
record variables. The manner in which the variables are changed should
be consistent with the condition for each other process j.

• θ = ∃ · θ1 is an existential quantified condition and θ1 [ρ1] [ρ2]
[
ρj3

] [
ρj4

]
holds for some j : 1 ≤ j 6= i ≤ n. Furthermore w2 = w1. All the sub-
stitutions are defined as in the previous case. The difference is that the
variable changes should be consistent with the condition of the transition
for some other process j (rather than all other processes).

• θ = Com · θ1 is a communication condition. In this case, the formula
θ1 [ρ1] [ρ2]

[
ρj3

] [
ρj4

] [
ρj5

] [
ρj6

]
holds for some j : 1 ≤ j 6= i ≤ n. The

substitutions ρ1, ρ2, ρ
j
3, and ρj4 are defined as above, while ρj5 is defined

by {x← w1(j)(i)(x)| x ∈ Ch} and ρj6 by {xnext ← w2(i)(j)(x)| x ∈ Ch}.
Furthermore the following conditions are satisfied for each x ∈ Ch:
∗ either x does not occur in θ1 or both w1(j)(i)(x) 6= ⊥ and w2(j)(i) =
⊥. The channel can be read only if it is not empty. After the reading
operation, the channel becomes empty.
∗ either xnext does not occur in θ1 or w1(i)(j)(x) = ⊥. A channel can

be written to only if it is empty.

We write c1 −→ c2 to denote that c1
t, i−→ c2 for some t and i.

5 Safety Properties

Following the methodology of [3, 2], we introduce an ordering on configura-
tions, which we use to define the safety problem. Assume a distributed system
D = (Q,T). We assume that, the system starts executing from an initial con-
figuration, where each process starts running from an (identical) initial local
state, with predefined initial values in the local and record variables, and with
empty channels. In the induced transition system T (D) = (C,−→), we use Init
to denote the set of initial configurations. Notice that this set is infinite, since
there is a different initial configuration for each instance (size) of the system.

We define an ordering on configurations. To do that, we first introduce a
notation. Consider a configuration c = (n, s, u, v, w), a variable x ∈ L ∪R ∪Ch,
and i, j where 1 ≤ i 6= j ≤ n. Abusing notation, we define c(x)(i)(j) to be
u(i)(x) if x ∈ L, v(i)(j)(x) if x ∈ R, and w(i)(j)(x) if x ∈ Ch. Consider two

configurations c1 = (n1, s1, u1, v1, w1) and c2 = (n2, s2, u2, v2, w2). We write
c1 � c2 to denote that there is an injection h : n1 → n2 such that the following
conditions are satisfied for each i, j, l,m : 1 ≤ i, j, l,m ≤ n1:

1. s1(i) = s2(h(i)).
2. c1(i)(j)(x) = ⊥ iff c2(h(i))(h(j))(x) = ⊥ for all x ∈ Ch.
3. c1(i)(j)(x) = true iff c2(h(i))(h(j))(x) = true for all x ∈ LB ∪RB ∪ ChB.
4. c1(i)(j)(x) = c1(l)(m)(y) iff c2(h(i))(h(j))(x) = c2(h(l))(h(m))(y) for all
x, y ∈ LN ∪RN ∪ ChN .

5. c1(i)(j)(x) <k1 c1(l)(m)(y)3 implies that there is a k2 ≥ k1 such that
c2(h(i))(h(j))(x) <k2 c2(h(l))(h(m))(y) for all x, y ∈ LN ∪RN ∪ ChN .

A set of configurations D ⊆ C is upward closed (with respect to the ordering
�) if c ∈ D and c � c′ implies c′ ∈ D. For sets of configurations D,D′ ⊆ C we
use D −→ D′ to denote that there are c ∈ D and c′ ∈ D′ with c −→ c′.

The coverability problem for parameterized systems is defined as follows:

PAR-COV
Instance
– A distributed system D = (Q,T).
– Two sets of configurations Init and CF , with CF upward closed.

Question Init ∗−→ CF ?

It can be shown, using standard techniques (see e.g. [23]), that checking many
classes of safety properties, e.g. mutual exclusion, can be translated into instances
of the coverability problem. Therefore, checking safety properties amounts to
solving PAR-COV (i.e., to the reachability of upward closed sets).

6 Distributed Mutex by Lamport

We describe the distributed mutual exclusion algorithm by Lamport [17] in our
model. In this algorithm, a number of processes compete for a shared resource
and communicate by message passing. The protocol guarantees mutual exclusion
by allowing only the process with the earliest request to access its critical section.
Here, earliest is defined by means of logical clocks [17], one per process. A logical
clock is a local numerical variable that is strictly increased each time a process
performs a transition. The value of the local logical clock is appended to each
sent message. Each time a process receives a time-stamped message, it updates
its logical clock to a value that is strictly larger than the maximum of the time
stamp in the message, and of the previous value of the clock. Ties are broken by
giving priority to the process to the left. Here we model the relative positions of
the processes by introducing a Boolean local variable right that is unmodified
once initialized. This gives a total ordering that uniquely defines the process
with the earliest request.
3 recall x <k1 y iff x + k1 < y.

In our model (table 1) of the algorithm, each process is in one of five local
states, namely idle, ask, wait, use and free. The logical clock of a process is
represented by a numerical local variable clock. The process has a local variable
last which it uses to record the value of its logical clock at the time when it
last started sending requests to other processes. The process has also a Boolean
record variable checked which it uses to keep track of other processes to (from)
which it has already sent (received) messages such as requests, acknowledgments,
etc. Another record variable, namely Queue, is used to store the time stamps
associated with the requests received from other processes. Finally, the system
has two channel variable c and ts. A process uses its copies of the channels to
send timed-stamped messages. For instance, when a process wants to send a
time-stamped request to another process, then it puts the message req to the
relevant copy of c (the one writable by the current process and readable by the
other process) and the time stamp to the relevant copy of ts.

Each time a process takes a transition, its logical clock is increased using the
formula clock < clock next. Initially, all processes are in their initial local state
idle. When a process wants to enter the critical section, it first sends requests to
all other processes. This is done in three steps (transitions t1, t2, and t3). In t1,
the process moves from local state idle to local state ask. In doing this, it also
records the new value of its logical clock in the local variable last. Notice that
t1 is a local transition. In ask, the process loops sending requests to the other
processes, one at a time. This is done through t2 which is a communication
transition. In each execution of t2, the process chooses another process , and
checks whether it has already sent a request to that process (using the record
variable checked). If this is not the case then it sets checked to true, and sends a
time-stamped request to the other process on channels c and ts. More precisely,
it sends the request message req through c and the new value of its logical clock
through ts. In t3, the process checks whether it has sent a request to all the
other processes, by testing that all its copies of the record variable checked are
equal to true. Observe that t3 is a universally quantified transition.

A process can at any time receive a request from another process. This is
done by transition t9 which is a communication transition. The process receives
a request from another process through channel c, and the associated time stamp
through channel ts. It assigns to its logical clock a new value which is strictly
larger than both the old value of the logical clock (the formula clock < clock next)
and the received time stamp (the formula ts < clock next). It assigns the time
stamp to the copy of the record variable Queue corresponding to the other
process; then it sends back an acknowledgment to the other process together
with a time stamp which is equal to the new value of its logical clock.

After sending the requests, a process starts collecting acknowledgments (in
state wait). This is done by the communication transition t4. The process re-
ceives an acknowledgment from the copy of channel c corresponding to another
process together with the corresponding time stamp from channel ts. It updates
its logical clock, and marks it has received an acknowledgment from the other
process in a similar manner to above (see e.g., the explanation of t2).

The process enters the critical section (transition t5) only if it has received
acknowledgments from all other processes, and if its request is the earliest among
the received requests. The process request is the earliest if for each other pro-
cess j in the system, one of the three following conditions holds; either (i) no
request was received from process j (checked with Queue = zero); or the time
stamp associated with the received request (stored in Queue) is (ii) strictly
larger than last; or (ii) equal to last but process j is to the right of the current
process (right ∧ last = Queue).

Finally a process releases the resource by sending a release message to all the
other processes in the system. This is done in three steps (transitions t6, t7 and
t8). These steps are similar to the three steps of sending requests to the other
processes (transitions t1, t2 and t3). A process that receives a release message
(transition t10), updates its local clock, and removes from its local queue the
corresponding request.

Table 1: Lamport Distributed Mutex

States: Q = {idle, ask, wait, use, free} , any ∈ Q

Local: clock, last are naturals originally zero
Record: checked is a Boolean originally false

Queue is a natural originally zero
Channel: c is in {req, ack}⊥ originally ⊥

ts is in N⊥ originally ⊥

t1 : idle → ask .
`
clock < clock next

´
∧
`
last next = clock next

´
t2 : ask → ask . Com ·

0@ `
clock < clock next

´
∧
`
c next = req

´
∧
`
ts next = clock next

´
∧
`
¬checked ∧ checked next

´
1A

t3 : ask → wait . ∀
„ `

clock < clock next
´

∧
`
checked ∧ ¬(checked next)

´«

t4 : wait → wait . Com ·

0@ `
clock < clock next

´
∧ (c = ack) ∧

`
ts < clock next

´
∧
`
¬checked ∧ checked next

´
1A

t5 : wait → use . ∀

0BB@
`
clock < clock next

´
∧
`
checked ∧ ¬(checked next)

´
∧
„

(Queue = zero) ∨ (last < Queue)
∨ (right ∧ (last = Queue))

«
1CCA

t6 : use → free .
`
clock < clock next

´
t7 : free → free . Com ·

0@ `
clock < clock next

´
∧
`
c next = rel

´
∧
`
ts next = clock next

´
∧
`
¬checked ∧ checked next

´
1A

t8 : free → idle . ∀
„ `

clock < clock next
´

∧
`
checked ∧ ¬(checked next)

´«

t9 : any → any . Com ·

0BB@
`
clock < clock next

´
∧ (c = req) ∧

`
ts < clock next

´
∧
`
Queue next = ts

´
∧
`
c next = ack

´
∧
`
ts next = clock next

´
1CCA

t10 : any → any . Com ·

0@ `
clock < clock next

´
∧ (c = rel) ∧

`
ts < clock next

´
∧
`
Queue next = zero

´
1A

The set of configurations violating mutual exclusion is the set where at least
two processes are in state use.

7 Distributed Mutex by Ricart-Agrawala

The Ricart-Agrawala algorithm [21] is a modification of Lamport’s distributed
mutex. The modification aims at diminishing the number of exchanged messages
per entry to the critical section. This is achieved by not sending release messages,
and modifying the conditions for sending acknowledgment messages. In a similar
manner to our model of Lamport’s algorithm, each process can have one of the
five states: idle, ask, wait, use and free. We use two local numerical variables
clock and last, three Boolean record variables checked, right and deferred, and
two channel variables c and ts. Except for deferred, all variables play the same
roles as in Lamport’s algorithm. This variable is used to remember the processes
to which an acknowledgment should be sent when releasing the critical section.

Like in Section 6, a process sends requests by means of three transitions (t1, t2
and t3). A process that receives a request while in state idle or free, updates its
logical clock and sends back an acknowledgment (transition t9). If a process
receives the request when in states ask, wait or use, then it may take one of
two actions. If the time stamp received with the request is (i) strictly smaller
than the value of the local variable last, or is (ii) equal to last and the sender
of the request is to the left of the receiver, then the receiver sends back an
acknowledgment (transition t10). Otherwise, this is deferred (transition t11).

After sending the requests, a process collects acknowledgments (transition
t4). A process that did receive acknowledgments from all other processes can
access its critical section (transition t5). Finally a process releases the resource
by sending an acknowledgment message to each other process with a deferred
request (transitions t6, t7 and t8).

Table 2: Ricart-Agrawala Distributed Mutex

States: Q = {idle, ask, wait, use, free} ,
grant ∈ {idle, free} , hold ∈ {ask, wait, use}

Local: clock, last are naturals originally zero
Record: checked, deferred are Booleans originally false
Channel: c is in {req, ack}⊥ originally ⊥

ts is in N⊥ originally ⊥

t1 : idle → ask .
`
clock < clock next

´
∧
`
last next = clock next

´
t2 : ask → ask . Com ·

0@ `
clock < clock next

´
∧
`
c next = req

´
∧
`
ts next = clock next

´
∧
`
¬checked ∧ checked next

´
1A

t3 : ask → wait . ∀
„ `

clock < clock next
´

∧ checked ∧ ¬(checked next)

«

t4 : wait → wait . Com ·

0@ `
clock < clock next

´
∧ (c = ack) ∧

`
ts < clock next

´
∧
`
¬checked ∧ checked next

´
1A

t5 : wait → use . ∀
``

clock < clock next
´
∧ checked ∧ ¬(checked next)

´
t6 : use → free .

`
clock < clock next

´
t7 : free → free . Com ·

0@ `
clock < clock next

´
∧
`
c next = ack

´
∧
`
ts next = clock next

´
∧
`
deferred ∧ ¬(deferred) next

´
1A

t8 : free → idle . ∀
``

clock < clock next
´
∧ (¬deferred)

´
t9 : grant → grant . Com ·

0@ `
clock < clock next

´
∧ (c = req) ∧

`
ts < clock next

´
∧
`
c next = ack

´
∧
`
ts next = clock next

´
1A

t10 : hold → hold . Com ·

0BB@
`
clock < clock next

´
∧ (c = req) ∧

`
ch1ts < clock next

´
∧ ((ts < last) ∨ (ts = last ∧ ¬right))
∧
`
c next = ack

´
∧
`
ts next = clock next

´
1CCA

t11 : hold → hold . Com ·

0BB@
`
clock < clock next

´
∧ (c = req) ∧

`
ts < clock next

´
∧ ((last < ts) ∨ (ts = last ∧ right))
∧
`
¬deferred ∧ deferred next

´
1CCA

The set of configurations violating mutual exclusion is the set where at least
two processes are in state use.

8 Approximation and scheme overview

In this section, we use a methodology introduced in [3, 2] for solving PAR-COV.
The methodology consists in over-approximating the transition relation −→ of
Section 4 by a new monotonic transition relation ; =−→ ∪ ;1 . Intuitively,
the relation ;1 corresponds to the deletion of all processes (together with the
corresponding record and channel variables) violating a condition θ1 when taking
a quantified universal transition t = ∀ · θ1. Observe that a negative answer to
Init ∗; CF implies a negative answer to PAR-COV. We check Init ∗; CF using
a scheme based on backward reachability analysis. The scheme symbolically
represents sets of configurations by constraints. We write [[φ]] to refer to the
(infinite) upward closed set of configurations represented by a constraint φ. For
a (finite) set of constraints Φ, we define [[Φ]] =

⋃
φ∈Φ [[φ]]. We also write Pre(φ)

to mean a set of constraints, such that [[Pre(φ)]] = {c| ∃c′ ∈ [[φ]] . c ; c′}. The

set [[Pre(φ)]] needs to be upward closed in order to be represented by a set of
constraints. The monotonicity of ; ensures upward closedness.

Scheme. Given a finite set ΦF of constraints representing the set CF , we check
whether Init ∗

; [[ΦF]]. We perform backward reachability analysis, generating
a sequence [[Φ0]] ⊆ [[Φ1]] ⊆ [[Φ2]] ⊆ · · · , of finite sets of constraints such that
Φ0 = ΦF , and Φj+1 = Φj ∪ Pre(Φj). The procedure terminates when we reach
a point j where [[Φj]] ⊇ [[Φj+1]]. Notice that the termination condition implies
that Φj characterizes the set of all predecessors of [[φF]]. This means that Init ∗;
[[ΦF]] iff (Init

⋂
[[Φj]]) 6= ∅. Observe that, in order to implement the scheme (i.e.,

transform it into an algorithm), we need to be able (for any constraints φ, φ′)
to (i) check that (Init

⋂
[[φ]]) = ∅, (ii) compute the set Pre(φ); (iii) check that

[[φ]] ⊆ [[φ′]]. The definitions of constraints and the operations on them are similar
to [20] and are introduced in the appendix.

9 Experimental Results

The method has been implemented in a prototype. The tool starts from spec-
ifications of bad states (at least two processes in state use). We report on the
obtained results, using a 1.6 Ghz laptop with 1G of memory. Mutual exclusion

iterations # constraints time(sec) memory(MB)

Distr. Lamport 30 4676 85 18
Distr. Ricart-Agrawala 32 1205 13 < 5

Table 3. Obtained results

of both distributed algorithms has been checked fully automatically. We give the
number of iterations and constraints (in the final set resulting from the fixpoint
analysis), together with the required time in seconds and memory in megabytes.

10 Conclusions and Future Research

We have shown how to instantiate the monotonic abstraction scheme [3, 2] for
automatic verification of parameterized distributed protocols. We have described
how the method works on two non-trivial case studies, namely the distributed
Lamport and the Ricart-Agrawala mutex protocols. Both protocols are verified
automatically in our prototype without the need for manual intervention.

An interesting direction for future work is to extend the method to systems
whose configurations can be modeled by graphs such as cache coherence pro-
tocols and dynamically allocated data structures. There are also several other
interesting classes on problems for which monotonic abstraction seems to be
relevant. For instance, we are currently working on applying monotonic abstrac-
tion to perform shape analysis on memory heaps. The idea is to find suitable
pre-orders which allow to perform an abstract (over-approximate) reachability
analysis using upward-closed sets of heap graphs.

References

1. P. A. Abdulla, K. Čerāns, B. Jonsson, and Y.-K. Tsay. Algorithmic analysis of
programs with wqo domains. Information and Computation, 160:109–127, 2000.

2. P. A. Abdulla, G. Delzanno, and A. Rezine. Parameterized verification of infinite-
state processes with global conditions. In Proc. CAV, pages 145–157, 2007.

3. P. A. Abdulla, N. B. Henda, G. Delzanno, and A. Rezine. Regular model checking
without transducers. In Proc. TACAS, pages 721–736, 2007.

4. P. A. Abdulla, N. B. Henda, G. Delzanno, and A. Rezine. Handling parameterized
systems with non-atomic global conditions. In Proc. VMCAI ’08.

5. P. A. Abdulla and B. Jonsson. Verifying programs with unreliable channels. In-
formation and Computation, 127(2):91–101, 1996.

6. P. A. Abdulla, B. Jonsson, M. Nilsson, and J. d’Orso. Regular model checking
made simple and efficient. In Proc. CONCUR, pages 116–130, 2002.

7. T. Arons, A. Pnueli, S. Ruah, J. Xu, and L. Zuck. Parameterized verification with
automatically computed inductive assertions. In Proc. CAV, pages 221–234, 2001.

8. B. Boigelot, A. Legay, and P. Wolper. Iterating transducers in the large. In Proc.
CAV, pages 223–235, 2003.

9. D. Chkliaev, J. Hooman, and P. van der Stok. Mechanical verification of transaction
processing systems. In ICFEM, 2000.

10. E. Clarke, M. Talupur, and H. Veith. Proving ptolemy right: Environment abstrac-
tion principle for model checking concurrent system. In Proc. TACAS ’08.

11. G. Delzanno. Automatic verification of cache coherence protocols. In Proc. CAV,
pages 53–68, 2000.

12. E. Emerson and K. Namjoshi. On model checking for non-deterministic infinite-
state systems. In Proc. LICS, pages 70–80, 1998.

13. J. Esparza, A. Finkel, and R. Mayr. On the verification of broadcast protocols. In
Proc. LICS ’99.

14. S. M. German and A. P. Sistla. Reasoning about systems with many processes.
Journal of the ACM, 39(3):675–735, 1992.

15. Y. Kesten, O. Maler, M. Marcus, A. Pnueli, and E. Shahar. Symbolic model
checking with rich assertional languages. TCS, 256:93–112, 2001.

16. S. K. Lahiri and R. E. Bryant. Indexed predicate discovery for unbounded system
verification. In Proc. CAV, pages 135–147, 2004.

17. L. Lamport. Time, clocks and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558–565, 1978.

18. Z. Manna, A. Anuchitanukul, N. Bjørner, A. Browne, E. chang, M. Colón, L. de Al-
faro, H. Devarajan, H. Sipma, and T. Uribe. STEP: the Stanford Temporal Prover.
Draft Manuscript, June 1994.

19. P. Revesz. A closed form evaluation for datalog queries with integer (gap)-order
constraints. Theoretical Computer Science, 116(1):117–149, 1993.

20. A. Rezine. Parameterized Systems: Generalizing and Simplifying Automatic Veri-
fication. PhD thesis, Uppsala University, 2008.

21. G. Ricart and A. K. Agrawal. An optimal algorithm for mutual exclusion in
computer networks. Communications of the ACM, 24(1):9–17, 1981.

22. E. Sedletsky, A. Pnueli, and M. Ben-Ari. Formal verification of the ricart-agrawala
algorithm. In Proc. CFSTTCS ‘00.

23. M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification. In Proc. LICS, pages 332–344, June 1986.

24. T. Yavuz-Kahveci and T. Bultan. A symbolic manipulator for automated verifica-
tion of reactive systems with heterogeneous data types. STTT, 5(1), 2003.

