
On the Verification of Timed Ad Hoc Networks

Parosh Aziz Abdulla1, Giorgio Delzanno2, Othmane Rezine1, Arnaud
Sangnier3, and Riccardo Traverso2

1 Uppsala University 2 University of Genova 3 Liafa-University Paris 7

Abstract. We study decidability and undecidability results for parame-
terized verification of a formal model of timed Ad Hoc network protocols.
The communication topology is represented by a graph and the behavior
of each node is represented by a timed automaton communicating with
its neighbors via broadcast messages. We consider verification problems
formulated in terms of reachability, starting from initial configurations
of arbitrary size, of a configuration that contain at least one occurrence
of a node in a certain state. We study the problem for dense and discrete
time and compare the results with those obtained for (fully connected)
networks of timed automata.

1 Introduction

In recent years there has been an increasing interest in automated verification
methods for ad hoc networks, see e.g. [8,12,11,5,6]. Ad hoc networks consist of
wireless hosts that, in absence of a fixed infrastructure, communicate sending
broadcast messages. In this context, protocols are supposed to work indepen-
dently from a specific configuration of the network. Indeed, discovery protocols
are often applied in order to identify the vicinity of a given node. In the AHN
model proposed in [5] undirected graphs are used to represent a network in which
each node executes an instance of a fixed (untimed) interaction protocol based
on broadcast communication. Since individual nodes are not aware of the net-
work topology, in the ad hoc setting it is natural to parameterize verification
problems in the size and shape of the initial configuration as in the untimed case
in [5]. We observe however that protocols for ad hoc networks are often based
on time-sensitive conditions like time-outs or time-stamps (added to flooded
data). Parameterized verification of timed automata has been studied only for
fully connected networks and rendez-vous communication (Timed Networks) in
[4,2,3].

A natural combination of the AHN model in [5] and of Timed Network is
obtained by adding a connectivity graph to a network of timed automata com-
municating via broadcast messages, we call the resulting model Timed Ad hoc
Networks (TAHNs). For a fixed initial configuration, TAHNs can be specified in
model checkers like Uppaal [13] by using a shared global matrix to specify the
communication topology. This idea has been used to verify safety properties of
the LMAC protocol for initial configurations with a small number of nodes [8].

Following [5,6], in this paper we study decidability and undecidability proper-
ties of the local state reachability problem parametric on the initial configuration
of a TAHN, i.e., the problem of checking the existence of an initial configuration
that can evolve using continuous and discrete steps into a configuration exposing
a given local state – usually representing an error.

Compared to the positive results obtained for Timed Networks where the
control state reachability problem is decidable for processes with a single clock,
for the same type of processes the problem becomes undecidable in a very simple
class of topologies in which nodes are connected so as to form stars with diameter
five. The undecidability result can be ported to the more general class of graphs
with bounded path (for some bound N ≥ 5 on the length – number of nodes – of
paths). In the untimed case local state reachability is decidable for bounded path
topologies [5]. Furthermore, the problem turns out to be undecidable in the class
of cliques of arbitrary order (that contains graphs with arbitrarily long paths)
in which each timed automaton has at least two clocks. Decidability holds for
special topologies like stars with diameter three and cliques of arbitrary order
assuming that the timed automaton in each node has a single clock (as in Timed
Networks).

For discrete time, we show that the local state reachability problem becomes
decidable for processes with any number of clocks in the class of graphs with
bounded path. The same holds for cliques of arbitrary order as in the case of
dense time.
Related Work Decidability issues for untimed models of ad hoc Networks have
been considered in [5,6]. Model checking for timed automata has been applied to
verify protocols for ad hoc networks with a fixed number of nodes in [8]. Models
with a discrete global clock and a lazy exploration of configurations of fixed size
has been considered in [12]. Formal specification languages for timed models of
ad hoc networks have been proposed, e.g., in [10]. In contrast to these works,
we consider computatibility issues for verification of timed ad hoc networks with
parametric initial configurations. Decidability of some cases is proved by resort-
ing to an extension of Timed Networks with transfers. In the untimed case the
combination of rendez-vous and transfers is considered in Datanets, a model in
which processes have data taken from an ordered domain [9].
Outline In the next section we give some preliminaries. The models of Timed Ad
Hoc Networks and Time Networks are introduced in Sections 3–4. In Section 5,
we introduce the undecidability results for three different topologies. We give de-
cidability for different topologies under the dense time semantic in Section 6 and
under the discrete time semantics in Section 7. Finally, we give some conclusions
in Section 8. Due to lack of space, some proofs are moved to the Appendix.

2 Preliminaries

We use N and R≥0 for the set of natural numbers and set of non-negative real
numbers respectively. For sets A and B, we use f : A 7→ B to denote that f is
a total function that maps A to B. For a ∈ A and b ∈ B, we use f [a←↩ b] to

2

denote the function f ′ defined as follows: f ′(a) = b and f ′(a′) = f(a′) for all
a′ 6= a. We use [A 7→ B] to denote the set of all total functions from A to B.

3 Timed Ad Hoc Networks

An ad hoc network consists of a graph where the nodes represent processes that
run a common predefined protocol. This protocol is defined by a communicating
timed automaton. The values of the clocks of the automata inside the processes
are incremented continuously all at the same rate. In addition, a process may
perform a discrete transition. The latter is either a local transition or the result
of a communication event. In a local transition, the process changes its local
state without interacting with the other processes. Communication is performed
through selective broadcast, where a process sends a broadcast message to the
network. The effect of a broadcast is local to the vicinity of the sender, i.e.,
only the neighbors of the sending process are able to receive the message. The
connectivity of the nodes is reflected by the edges of the graph. Furthermore,
transitions are conditioned by values of the clocks of the process, and may reset
the values of some clocks.

We assume that each process operates on a set X of clocks. A guard is a
Boolean combination of predicates of the form k C x for k ∈ N, C ∈ {=, <,≤
, >,≥}, and x ∈ X. A reset R is a subset of X. We will use guards to impose
conditions on the clocks of processes that participate in transitions, and use
resets to identify the clocks that will be reset during the transition. A clock
valuation is a mapping X : X 7→ R≥0. For a guard g and a clock valuation X, we
write X |= g to indicate the validity of the formula we get by replacing each clock
x in g by its value X(x). Also, we will assume a finite alphabet Σ. The alphabet
induces a set of events, where an event is of one of three forms: (i) empty event τ
that represents a local move; (ii) broadcast event !!a, with a ∈ Σ, that represents
broadcasting the message a; or (ii) receive event ??a with a ∈ Σ, that represents
receiving the message a (that has been broadcast by another process).

Formally, a Timed Ad Hoc Network (TAHN for short) is defined by a pair
T = (G,P). The first component G = (V,E) is graph where V is a finite set
of vertices and E ⊆ V × V is a set of edges. The second component P , called
the protocol, is a pair (Q,R) where Q is a finite set of states, and R is a finite
set of rules. Intuitively, the graph G defines the topology of T where the set V
represents the nodes, and E defines the connectivity of the nodes. The vertices
belonging to an edge are called the endpoints of the edge. For an edge (u, v) ∈ E,
we often use the notation u ∼ v and say that the vertices u and v are adjacent
to each other. Furthermore, P defines the protocol that runs inside the nodes,
where Q is the set of local states of each node, while R is a set of rules describing
the behavior of each node. A rule ρ ∈ R is of the form

(
q, g

e−→ R, q′
)
where

q, q′ ∈ Q, g is a guard, e is an event, and R is a reset. We use #P to denote that
number of clocks inside each process.

3

Configurations A configuration γ is a pair (Q,X), where Q : V 7→ Q and
X : V 7→ [X → R≥0], i.e., the configuration assigns to each node a local state
and assigns to each clock in the node a value (in R≥0).

Transition Relation For configurations γ = (Q,X) and γ′ = (Q′,X ′), we
write γ =⇒T γ′ to denote that one of the following conditions is satisfied:

– Local: There exists a rule ρ =
(
q, g

τ−→ R, q′
)
and a vertex v ∈ V such that

Q(v) = q, X (v) |= g, Q′ = Q [v ←↩ q′], and X ′ = X [v ←↩ X] where X(x) = 0
if x ∈ R and X(x) = X (v)(x) otherwise.

– Broadcast: There exists a rule
(
q, g

!!a−→ R, q′
)
and a vertex v ∈ V such that

Q(v) = q, X (v) |= g, Q′(v) = q′, X ′(v)(x) = 0 if x ∈ R, and X ′(v)(x) =
X (v)(x) otherwise. Furthermore, for each v1 ∈ V −{v}, one of the following
conditions is satisfied:
• v1 ∼ v and there is a rule of the form

(
q1, g1

??a−→ R1, q
′
1

)
such that

Q(v1) = q1, X (v1) |= g1, Q′(v1) = q′1, X ′(v1)(x) = 0 if x ∈ R1, and
X ′(v1)(x) = X (v1)(x) otherwise.

• Q′(v1) = Q(v1), X ′(v1) = X (v1), and either v1 6∼ v or there is no rule
of the form

(
q1, g1

??a−→ R1, q
′
1

)
for any g1, R1, q

′
1 with Q(v1) = q1 and

X (v1) |= g1.
– Time: There is a δ ∈ R≥0 such thatQ(v′) = Q(v) and X ′(v)(x) = X (v)(x)+δ

for all v ∈ V and x ∈ X.

Topology A topology Top restricts the shape of the underlying graphG = (V,E)
in a TAHN T = (P,G). We write G ∈ Top to indicate that G satisfies Top.
Below, we give examples of some topologies.

– We denote by GRAPH the topology consisting of all finite graphs.
– The star topology of depth ` (with ` ≥ 0), denoted STAR(`), characterizes

graphs G for which there is a partitioning {v0} ∪ V1 ∪ · · · ∪ V` of V such
that (i) v0 ∼ v1 for all v1 ∈ V1, (ii) for each 1 ≤ i < ` and vi ∈ Vi there is
exactly one vi+1 ∈ Vi+1 with vi ∼ vi+1, (iii) for each 1 < i ≤ ` and vi ∈ Vi
there is exactly one vi−1 ∈ Vi−1 with vi ∼ vi−1, and (iv) no other nodes are
adjacent to each other. In other words, in a star topology of dimension `,
there is a central node v0 and an arbitrary number of rays. A ray consists of
a sequence of ` nodes, starting from v0 followed by some v1 ∈ V1, and then
by some v2 ∈ V2, etc. We call v0 the root, call the nodes in V1, . . . , V`−1 the
internal nodes, and call the nodes in V` the leaves of G.

– The bounded path topology of bound ` (with ` ≥ 0), denoted BOUNDED(`),
characterizes graphs G for which the length of the maximal simple path in
G is bounded by `. This means that there does not exist a finite sequence of
vertices (vi)1≤i≤m satisfying the following conditions (1) m > `, (2) vi 6= vj
for all i, j in {1, . . . ,m} such that i 6= j and (3) vi ∼ vi+1 for all i such that
1 ≤ i < m− 1.

– The set of cliques, denoted CLIQUE characterizes graphs G where v1 ∼ v2 for
all v1, v2 ∈ V with v1 6= v2.

4

Reachability We assume a distinguished local state qinit ∈ Q. A configuration
γinit is said to be initial if it is of the form

(
Qinit
Q ,X init

)
where Qinit

Q (v) = qinit ,
and Qinit

Q (v)(x) = 0 for all v ∈ V and x ∈ X. In other words, all the processes are
in their initial local states and all the clocks have value 0. A computation π of T
is a sequence γ0 =⇒T γ1 =⇒T · · · =⇒T γn where γ0 is an initial configuration.
In such a case, we say that γn is reachable in T . For a local state q ∈ Q, we
say that q is reachable in T if there is a configuration γ = (Q,X) such that γ is
reachable in T and Q(v) = q for some v ∈ V .

The (local state) reachability problem for a topology Top and a number K,
denoted TAHN−Reach (Top,K), is defined as follows:

Given a protocol P with #P = K and a local state q ∈ Q, is there a
TAHN T = (P,G) such that G ∈ Top and q is reachable in T .

The following results concerning untimed Ad Hoc Networks have been proved.

Theorem 1 ([5]). TAHN−Reach (GRAPH, 0) is undecidable. For each K ≥ 0, the
problem TAHN−Reach (BOUNDED(K), 0) is decidable.

4 Timed Networks

In this section, we recall the model of Timed Networks (TN for short) [4]. In a
similar manner to TAHNs, a TN contains an arbitrary number of identical timed
processes that operate on a finite number of local real-valued clocks. However,
there are three main differences between TNs and TAHNs. First, a TN contains
a distinguished controller that is a finite-state automaton without any clocks1.
Second, each process in a TN may communicate with all other processes and
hence it is not meaningful to describe topologies in the case of TNs. Finally,
communication takes place through rendez-vous between fixed sets of processes
rather than broadcast messages. In a similar manner to TAHNs, the values of
all clocks in a TN are incremented continuously at the same rate. In addition,
the TN can change its configuration according to a finite number of rules. Each
rule describes a set of transitions in which the controller and a fixed number
of processes synchronize and simultaneously change their states. A rule may be
conditioned on the local state of the controller, together with the local states
and clock values of the processes. If the conditions for a rule are satisfied, then a
transition may be performed where the controller and each participating process
changes its state. During a transition, a process may reset some of its clocks to
0.

We assume a finite set X of clocks and define guards and resets in a similar
manner to TAHNs. A family of timed networks (timed network for short) N is
a pair (Q,R), where Q is a finite set of states, partitioned into a set Qctrl of

1 This is the model defined in [4]. Adding clocks to the controller does not affect the
decidability results.

5

controller states, and a set Qproc of process states; and R is a finite set of rules
where each rule is of the form

[q0 → q′0] [q1; g1 → R1; q
′
1] · · · [qn; gn → Rn; q

′
n]

such that q0, q′0 ∈ Qctrl , for all i : 1 ≤ i ≤ n we have: qi, q′i ∈ Qproc , gi is
a guard, and Ri is a reset. Intuitively, the set Qctrl represents the states of the
controller and the set Qproc represents the states of the processes. A rule of the
above form describes a set of transitions of the network. The rule is enabled if
the state of the controller is q0 and if there are n processes with states q1, · · · , qn
whose clock values satisfy the corresponding guards. The rule is executed by
simultaneously changing the state of the controller to q′0 and the states of the n
processes to q′1, · · · , q′n, and resetting the clocks belonging to the sets R1, . . . , Rn.

Configurations A configuration γ of a timed network (Q,R) is a tuple of the
form (I, q,Q,X), where I is a finite index set, q ∈ Qctrl , Q : I → Qproc , and
X : I → X → R≥0. Intuitively, the configuration γ refers to the controller whose
state is q, and to |I| processes, whose states are defined by Q. The clock values
of the processes are defined by X . More precisely, for i ∈ I and x ∈ X, X (x)(i)
gives the value of clock x in the process with index i. We use |γ| to denote the
number of processes in γ, i.e., |γ| = |I|.

Transition Relation The timed network N above induces a transition relation
−→N on the set of configurations. The relation −→N is the union of a discrete
transition relation −→D, representing transitions induced by the rules, and a
timed transition relation −→T which represents passage of time.

The discrete relation −→D is the union
⋃

r∈R −→r , where −→r represents
a transition performed according to rule r . Let r be a rule of the form de-
scribed in the above definition of timed networks. Consider two configurations
γ = (I, q,Q,X) and γ′ = (I, q′,Q′,X ′). We use γ −→r γ

′ to denote that there
is an injection h : {1, . . . , n} → I such that for each i : 1 ≤ i ≤ n we have:

1. q = q0, Q(h(i)) = qi, and X (h(i)) |= gi. That is, the rule r is enabled.
2. q′ = q′0, and Q′(h(i)) = q′i. The states are changed according to r .
3. If x ∈ Ri then X ′(h(i))(x) = 0, while if x 6∈ Ri then X ′(h(i))(x) =
X (h(i))(x). In other words, a clock is reset to 0 if it occurs in the corre-
sponding set Ri. Otherwise its value remains unchanged.

4. Q′(j) = Q(j) and X ′k(j) = Xk(j), for j ∈ I \ range(h), i.e., the process states
and the clock values of the non-participating processes remain unchanged.

A timed transition is of the form γ −→T=δ γ
′ where γ = (I, q,Q,X), δ ∈ R≥0,

γ′ = (I, q,Q,X ′), X ′(j)(x) = X (j)(x) + δ for all j ∈ I and x ∈ X. We use
γ −→T γ

′ to denote that γ −→T=δ γ
′ for some δ ∈ R≥0.

We define −→N to be −→D ∪ −→T and use ∗−→N to denote the reflexive
transitive closure of −→N . Notice that if γ −→N γ′ then the index sets of γ and
γ′ are identical and therefore |γ| = |γ′|. For a configuration γ and a controller

6

state q, we use γ ∗−→N q to denote that there is a configuration γ′ of the form
(I ′, q,Q′,X ′) such that γ ∗−→N γ′.

Given γ0 −→N γ1 −→N γ2 . . . −→N γn, we say that γ0, . . . , γn is a compu-
tation of N .

Reachability. We assume a distinguished initial controller state qinitctrl ∈ Qctrl

and a distinguished initial process state qinitproc ∈ Qproc . A configuration γinit =

(I, q,Q,X) is said to be initial if q = qinitctrl , Q(i) = qinitproc , and X (i)(x) = 0 for
each i ∈ I and x ∈ X. This means that an execution of a timed network starts
from a configuration where the controller and all the processes are in their initial
states, and the clock values are all equal to 0. Notice that there is an infinite
number of initial configurations, namely one for each index set I. Concepts such
as that of computations and reachability are extended from TAHNs to TNs in
the obvious way.
The (controller state) reachability problem TN−Reach (K) is defined by a timed
network (Q,R) with K clocks (in each process), and a controller state q. The
task is to check whether q is reachable or not. In [2], the following result is shown.

Theorem 2. TN−Reach (2) is undecidable.

5 Undecidability with Dense Time

In this section, we show undecidability of the reachability problem for three
classes of TAHNs, namely (i) those with star topologies of depth 2 (one root and
several rays with two nodes) and with a single clock in each node; (ii) those with
clique topologies provided that each node has two clocks; and (iii) those with
bounded depth topologies if the depth of the underlying graph is 4 and with a
single clock in each node. In the first two cases, the undecidability result is shown
through a reduction from TN−Reach (2) (that is undecidable by Theorem 2).
The main idea of the proofs is to show that we can simulate broadcast (the
communication model of TAHNs) by rendez-vous (the communication model of
TNs). In each case we will simulate a TN N with two clocks per process by
a TAHN T . We will refer to the clocks inside a process of N as x1 and x2
respectively. For each state q in N , we will have a corresponding state T (q) in
T . Furthermore, we will have a number of auxiliary states in T that we need
to perform the simulation. The third undecidability result (for bounded depth
topologies) is shown by simulating the star case.

Two-Star Topologies We show that the reachability problem for the star
topology is undecidable even when the rays are restricted to have depth 2 and
the nodes are restricted to have a single clock.

Theorem 3. TAHN−Reach (STAR(2), 1) is undecidable.

Given a TN N = (Q,R) and a controller state q in N , we define a TAHN
T = (P,G) such that G ∈ STAR(2) and #P = 1, together with a local state

7

T (q), such that q is reachable in T iff q is reachable in N . The root of T plays
the role of the controller in N . Furthermore, each ray in T plays the role of
one process in N . The local state of a process in T is stored in the internal
node of the corresponding ray. Furthermore, the two clocks x1, x2 of a process
are represented by the clock of the internal node resp. the clock of the leaf of
the ray. For technical reasons, we require that T has at least three rays. In
case N has fewer than three processes, the additional rays will not simulate any
processes, and remain passive (except during the initialization phase; see below).
The simulation consists of two phases.

Initialization Recall that the nodes of a TAHN are identical in the sense that
they execute the same (predefined) protocol. This means that the nodes are not
a priori aware of their positions inside the network. The purpose of the initial-
ization phase is to identify the nodes that play the roles of the controller and
those that play the roles of the different processes. First, a node may broadcast
a message where it requests to become the node that simulates the controller
in N . In order to succeed, P requires that it should receive acknowledgements
from at least three other processes.

Notice that only the root of T can be successful since it is the only node that
is connected to more than two other nodes (the internal nodes are connected to
two other nodes while the leafs are connected to only one other node).

Once the root has become the controller, it will make the internal nodes
aware of their positions. It does that by sending a broadcast message. Due to
the star topology, this message is received only by the internal nodes. A node
receiving this broadcast message will initiate a “local protocol” inside its ray as
follows: (i) It changes local state to reflect that it now knows that it is indeed
an internal node. (ii) It makes the leaf of the ray aware of its position by broad-
casting a message. Such a message is received only by the leaf of the ray and
by the root (the latter simply ignores the message). (iii) The leaf broadcasts an
acknowledgment (that can only be received by the internal node of the ray).
(iv) The internal node changes state when it receives the acknowledgement and
declares itself ready for the next step. Notice that the internal node and the leaf
may choose to ignore performing steps (ii) or (iv). In such a case we say that the
ray has “failed”, otherwise we declare the ray to be “successful”. In the last step
of the initialization, the root will send one more broadcast where the following
takes places: (i) It changes local state to T (qinitctrl) which means that it is now
simulating the initial controller state. (ii) It checks that its clock is equal to 0
which means that the initialization phase has been performed instantaneously.
(iii) The internal nodes of the successful rays will change state to T (qinitproc). The
rest of the nodes will remain passive throughout the rest of the simulation. Now
all the nodes are ready: the root of T is in the initial state of the controller of N ;
the internal nodes of the successful rays are in the initial states of the processes
of N , and all clocks have values equal to 0.

Simulating Discrete Transitions Below, we show how T simulates a rule of
the form [q0 → q′0] [q1; g1 → R1; q

′
1] · · · [qn; gn → Rn; q

′
n] . The root of T is in

8

the state T (q0). First, the root resets its clock to 0 (this is done so that it can later
make sure that the simulation of the rule has not taken time). The simulation
consists of different phases, where in each phase the root tries to identify a ray
that can play the role of process k for 1 ≤ k ≤ n. To find the first ray, it sends
a broadcast message. An (internal) node that receives the broadcast and whose
local state is q1 may either decide to ignore the message or to try to become the
node that simulates the first process in the rule. In the latter case it will enter a
temporary state from which it initiates a sub-protocol whose goal is to confirm
its status as the simulator of the first process. In doing so, the node has guessed
(perhaps wrongly) that its clocks satisfy the values specified by the guard. If
the node has guessed wrongly it will eventually be excluded from the rest of
the simulation (will remain passive in the rest of the simulation). At the end of
this phase, exactly one node will be chosen among the ones that have correctly
guessed that their clocks satisfy g1. The successful node will be the one that
plays the role of the first process. The sub-protocol proceeds as follows: (i) The
internal node checks whether the value of its clock satisfies the guard g1. Recall
that each node contains one clock. Since the guard g1 only compares the clocks
x1, x2 with constants, the conditions of g1 can be tested on each of x1 and x2
separately. If the clock of the node does not satisfy g1 (which means that x1 does
not satisfy g1), the node will remain passive from now on (it has made the wrong
guess). Otherwise, the node resets its clock if R1 contains x1, and then broadcasts
a message (such a message is received by the leaf of the ray); (ii) The leaf checks
whether the value of its clock satisfies the guard g1 (i.e., if x2 satisfies g1); if yes it
resets its clock if x2 is included in R1, and then broadcasts an acknowledgement.
(iii) Upon receiving the above acknowledgement, the internal node declares itself
ready for the next step by broadcasting an acknowledgement itself. At the same
time, it moves to new local state and waits for a last acknowledgement from the
root (described below) after which it will move to local state T (q′1). (iv) When
the root receives the acknowledgement it sends a broadcast declaring that it has
successfully found a ray to simulate the first process. All the nodes in temporary
states will now enter local states from which they remain passive. To prevent
multiple nodes to play the role of the first process, the root enters en error state
if it happens to receive acknowledgements from several internal nodes. The root
now proceeds to identify the ray to simulate the second process. This continues
until all n processes have been identified. Then the root makes one final move
where the following events take place: (i) It moves its local state to T (q′0) (ii) It
sends a final boraodcast where the node ready for simulating the ith process will
now move to T (q′i) for all i : 1 ≤ i ≤ n (notice that there is at most one such
node for each i). (iii) It checks that its clock is equal to 0 (the simulation of the
rule has not taken any time).

The protocol associated to each phase is detailed in the appendix.

Simulating Timed Transitions This is done in a straightforward manner by
letting time pass in T by the same amount as it has done in N .

9

Cliques We show that the reachability problem for the clique topology is un-
decidable if the nodes have two clocks.

Theorem 4. TAHN−Reach (CLIQUE, 2) is undecidable.

We will build a protocol P with #P = 2 which will simulate N on the clique
topology. In a similar manner to the case of star topologies, the simulation
consists of two phases.

Initialization Phase The purpose of the initialization phase it to choose a
node that will simulate the controller. This choice is done non-deterministically
through a protocol that is initialized by a broadcast message. Notice that this
protocol exists in all the nodes since they run the same pre-defined protocol.
The first node which will perform the broadcast will become the controller (from
now on we refer to this node as the controller node). When the controller node
performs the above broadcast it moves to the state T (qinitctrl), while all the other
nodes will move to T (qinitproc).

Simulating Discrete Transitions Below, we show how a rule of the form of
the previous sub-section is simulated. In a similar manner to the case of stars,
the controller node first reset its clock to 0. The simulation again consists of
different phases, where in each phase the controller node tries to identify a ray
that can play the role of process i for 1 ≤ i ≤ n. To find the first process it sends
a broadcast. A node that receives the broadcast, whose local state is q1, and
whose clocks (x1 and x2) satisfy the guard g1, may decide to ignore the message
or to try to to become the node that simulates the first process in the rule. In
the latter case, the node declares itself ready for the next step by broadcasting
an acknowledgement. At the same time, it moves to new local state and waits for
a last acknowledgement from the controller node (described below) after which
it will move to local state T (q′1). To prevent multiple nodes to play the role
of the first process, the controller node enters en error state if it happens to
receive acknowledgements from several nodes. The controller node now proceeds
to identify the node to simulate the second process. This continues until all n
processes have been identified. Then the controller node performs the same three
steps as the ones in the final phase of the simulation described above for stars.

Bounded Path Topologies Using the result of Theorem 3 we can show that
the reachability problem can be extended to bounded path topologies. The result
uses a reduction to the two-star case, thus we need to consider topologies in which
the (number of vertices) simple paths can have 5 vertices in order to be able to
rebuild stars with rays of depth 2.

For such a reduction, we need a preliminary protocol that discovers a two-star
topology in an arbitrary graph in paths are allowed to have (at least) five nodes.
The discovery protocol first selects root, internal and leaf candidates and then
verify that they are connected in the desired way by sending all other nodes in
their vicinities to a special null state. The complete discovery protocol is detailed

10

in the appendix. Combining the discovery protocol and the undecidability results
for two-star topology we obtain the following theorem.

Theorem 5. TAHN−Reach (BOUNDED(5), 1) is undecidable.

6 Decidability with Dense Time

In the previous section we showed that TAHN−Reach (STAR(2), 1) is undecidable.
In this section we consider two other classes of topologies for which reachability
becomes decidable when nodes have a single clock, namely the class STAR(1)
and CLIQUE. A convenient way to prove these results is to resort to an extension
of Timed Networks with transfers for which control state reachability is still
decidable. When executed together with a rendez-vous, a transfer action from q
to q′ forces all processes in state q to move to state q′ (as in transfer arcs for
Petri nets). We give next a more detailed definition of the extended TN model.

Timed Networks with Transfers (TNT) A rule of a timed network with
transfer (TNT) N combines rendez-vous synchronization and transfer actions.
Namely, a TNT rule has the following form:

[q0 → q′0] [q1; g1 → R1; q
′
1] · · · [qn; gn → Rn; q

′
n]

[p1; g
′
1 →t R

′
1; p
′
1] · · · [p`; g′` →t R

′
`; p
′
`]

where actions with → denote rendez-vous communication, whereas actions with
→t denote transfers. For i : 1 ≤ i ≤ `, gi →t Ri is a guarded transfer where gi is
a guard, Ri is a reset, pi, p′i ∈ Qproc . We assume that there are no i : 1 ≤ i ≤ `
and j : 1 ≤ j ≤ n such that pi = qj ; and assume that pi 6= pj if i 6= j. A TNT
rule is enabled if the state of the controller is q0 and if there are n processes
with states q1, · · · , qn whose clock values satisfy the corresponding guards. The
rule is executed by simultaneously changing the state of the controller to q′0
and together with the states of selected processes p1, · · · , p`. Furthermore, each
process in state pi for i : 1 ≤ i ≤ ` whose clock value satisfies the guard g′i
moves to p′i while its clocks are reset according to R′i. Note that for a rule to be
enabled there is no requirement on the presence or absence of processes in states
p1, · · · , p`.

A formal account of the semantics of TNT rules is given in appendix. The
(controller state) reachability problem TNT−Reach (K) for processes with K
clocks is defined by replacing the TN transition relation with that for TNT.
The following result then holds.

Theorem 6. TNT−Reach (1) is decidable.

Sketch of proof. In [4], it is proved that TN−Reach (1) is decidable. The proof
is based on the general results in [1] based on a well quasi orderings of TN
configurations under which the transition relation is monotonic. Monotonicity
of the transition relation of a TNT still holds for the same ordering used in [4].

11

Furthermore, the algorithm used for computing predecessors can be extended
in order to cope with transfer action. This extension is similar to that used for
Data nets [9] or, for processes without clocks, to that used for Petri nets with
transfer arcs. We prove next that in TAHNs with one clock restricted to the
clique topology, the reachability problem is decidable.

Theorem 7. TAHN−Reach (CLIQUE, 1) is decidable.

Proof. We reduce TAHN−Reach (CLIQUE, 1) to TNT−Reach (1). The reduction
works as follows. Since in a clique graph all nodes are connected to each other,
a broadcast message sent by a node is always received by all other nodes. In
other words working with a clique is like working with a multiset of processes
as in a TNT. Broadcast communication can then be simulated by using TNT
rules in which the sender perfoms an individual step and reception of a message
is simulated by transfer actions, one for each state in which the message can be
received. Furthermore, we can insert a special rule to synchronize the controller
with the local state we want to reach in the TAHN. Local state reachability
corresponds then to control state reachability in the resulting TNT. The claim
then follows from Theorem 6.

A similar positive result can be obtained for TAHN with 1 clock restricted to the
star topology of depth 1. The main difference compared to the previous result is
that in a star of depth 1 we have to distinguish the root (the central node) from
the leaves. When the root performs a broadcast, it is transmitted to all the leaf
nodes, but when a leaf performs one, only the root can receive it.

Theorem 8. TAHN−Reach (STAR(1), 1) is decidable.

Proof. We reduce TAHN−Reach (STAR(1), 1) to TNT−Reach (1). Let T be a TAHN
with star topology of depth 1. We construct a TNTN that simulates T as follows.
Initially all TNT processes are in state qi. We first define an initialization step
in which the controller non-deterministically selects one of the processes in state
qi and elects it as the root of the simulated TAHN. All the remaining processes
in state qi are then used to simulate the leaves of the star. After this step, the
simulation of each TAHN rule r is split in two TNT rules: one for the root
process and one for a leaf process. A local rule is simulated by a rendez-vous
(with no transfer) for the root process and by a rendez-vous for a leaf process.
A broadcast rule executed by the root node is simulated with a TNT transfer
action involving the root process and all the leaf processes, whereas a broadcast
executed by a leaf is translated into a rendez-vous between a leaf and the root
process only. As for cliques, we can add rules for the controller to observe when
the root of a leaf process has reached a given local state. The claim then follows
from Theorem 6.

7 Decidability with Discrete Time

In this section we study the reachability problem for Discrete Time Ad Hoc
Networks (DTAHN). In this model clocks range over the natural numbers instead

12

of the reals. Let µ′ be the maximum constant used in the protocol rules and let
µ = µ′ + 1. When using discrete time, it is enough to restrict the evaluation of
clocks to the finite range I = [0, µ]. This follows from the fact that guards of
the form x > c remain enabled when time passes once the clock associated to
variable x reaches a value greater or equal to µ; while guards of the form x ≤ c
remain disabled. Therefore, beyond µ we need not distinguish between different
values for the same clock (see e.g. [2]). For every DTAHN T , we can then define a
finite-state process that describes the behavior of a node. We use Cµ,K to denote
configurations over undirected graphs with labels in Q× IK , where Q is the set
of local states of a process, I is the interval [0, µ], and K is the number of clocks
in each process.

The transition relation⇀T is obtained from that of TAHN by assuming that
the evaluation of clock variables is a function X : V 7→ [X → I] and by replacing
the time step by the discrete time step defined as follows.
Discrete Time Step For configurations γ = (Q,X) and γ′ = (Q′,X ′), we write
γ ⇀T γ

′ if, for all v ∈ V and x ∈ X, the following conditions are satisfied:

– Q(γ′) = Q(γ),
– X ′(v)(x) = X (v)(x) + 1, if X (v)(x) < µ
– X ′(v)(x) = X (v)(x) = µ, otherwise.

For a topology class Top and K ≥ 0, the control state reachability problem
DTAHN−Reach (Top,K) is the natural reformulation of the one defined for TAHN.

We show next that reachability is decidable when restricting the topology to
the class of bounded path graphs BOUNDED(N) for any fixed N > 1. The decision
procedure is obtained by resorting to the theory of well-structured transition sys-
tems [1]. The procedure is based on a symbolic backward exploration algorithm
in which we use constraints to finitely represent sets of configurations of variable
size taken from the class BOUNDED(N) (the configurations may potentially belong
to different TAHNs).

Ordering We first introduce the following ordering between configurations of
variable size. Given configurations γ = (Q,X) defined over G = (V,E) and
γ′ = (Q′,X ′) defined over G′ = (V ′, E′), γ � γ′ iff there exists an injective
function h : V 7→ V ′ such that:

– ∀u, u′ ∈ V , (u, u′) ∈ E if and only if (h(u), h(u′)) ∈ E′;
– ∀u ∈ V , Q(u) = Q′(h(u)) and X (u) = X ′(h(u)).

An upward closed set U satisfies the property that U = {γ′ | γ � γ′, γ ∈ U}.
The following property then holds.

Proposition 1. If U is an upward closed set of configurations (of variable size),
then Pre(U) = {γ | γ ⇀T γ′, γ′ ∈ U} is still upward closed wrt. �.

Proof. In [5] it has been proven, that for untimed AHN, selective broadcast is
monotone w.r.t. �. We observe that DTAHN restricted to configurations in Cµ,K

13

can be viewed as untimed AHN extended with a time step transition. Thus, we
just have to show monotonicity wrt. a time step γ ⇀T γ′. Since time can always
proceed, for every β � γ there is a configuration β′ such that β ⇀T β′ with a
time step. Now since h is label preserving both time steps will have the same
effect on nodes identified by h and thus γ′ � β′.

Constraints Assume a given process definition P . A constraint is a tuple Φ =
(G,Q,X), where G = (V,E) is a graph in BOUNDED(N), and Q and X are defined
on the set of vertices V . We call γΦ the associated configuration (Q,X) over
the graph G. The denotation of a constraint Φ is defined as the infinite set
of configurations [[Φ]] = {γ′ | γΦ � γ′} with variable size and topology. The
following proposition then holds.

Proposition 2. Given a constraint Φ, there exists an algorithm to compute a
finite set of constraints whose denotation corresponds to Pre([[Φ]]).

Proof. We can extend the symbolic predecessor operator defined for untimed
AHN in [5] by adding some new conditions and steps. In order to correctly
obtain predecessors of γ, rules of the form

(
q, g

e−→ R, q′
)
must be applied only

to nodes in state q′ which satisfy the post-condition R. When R is not empty,
i.e. some clocks have been reset, we do not know which was their values before
the step. In this case it is necessary to add a predecessor to the set Pre(γ) for
every possible combination of i ∈ I for those clocks – keeping the old values of
the node from configuration γ otherwise.
As an addition to regular protocol rules, we also have to consider time steps.
Thus, for every configuration γ that does not have 0-valued clocks, we have to
add to its set of predecessors every configuration γ′ such that γ′ can make a time
step into γ.

Theorem 9. DTAHN−Reach (BOUNDED(N),K) is decidable for any N ≥ 1 and
K ≥ 0.

Proof. From propositions 1 and 2, we can apply the general results in [1] to define
a backward search algorithm working on upward closed sets of extended config-
urations represented by their finite basis. The finite set of constraints (G,Q,X)
in which G is a single node v, Q(v) = q, and X(v) ∈ I can be used as finite rep-
resentation of all configurations containing the control state q. Furthermore, for
a fixed N ≥ 1 the induced subgraph relation is a well-quasi-ordering on the class
of N -bounded path graphs [7]. This implies that for any sequence of constraints
Φ0Φ1 . . . there exist i < j s.t. Φi � Φj . This property ensures the termination of
the symbolic backward reachability algorithm.

8 Conclusions

We have studied local state reachability for Timed Ad Hoc Networks in different
classes of topologies and considering the number of clocks of each node as a pa-
rameter. Fig. 1 shows a summary of our analysis. We also mention decidability

14

UNDECIDABLE

DECIDABLE

CLIQUE(2)
CLIQUE(1)

STAR(2,1)

STAR(1,1)

DISCRETE CLIQUE(N) N≥1

DISCRETE BOUNDED(N,K) N≥1 K≥1

DISCRETE BOUNDED DIAMETER(N,1) N≥3

BOUNDED(N,1) N≥5

Fig. 1. Decidability and undecidability results.

for DTAHN on cliques since, as for bounded paths, it derives from an applica-
tion of the theory of wsts. Undecidability for DTAHN on graphs with bounded
diameter follows instead from the result obtained in the untimed case in [6].

References

1. P. Abdulla, K. Cerans, B. Jonsson, and Y. Tsay. General decidability theorems for
infinite-state systems. In LICS’96, pages 313–321. IEEE Computer Society, 1996.

2. P. Abdulla, J. Deneux, and P. Mahata. Multi-clock timed networks. In LICS’04,
pages 345–354. IEEE Computer Society, 2004.

3. P. Abdulla and A. Nylén. Timed petri nets and bqos. In ICATPN’01, volume 2075
of LNCS, pages 53–70. Springer, 2001.

4. P. A. Abdulla and B. Jonsson. Model checking of systems with many identical
timed processes. TCS, 290(1):241–264, 2003.

5. G. Delzanno, A. Sangnier, and G. Zavattaro. Parameterized verification of ad hoc
networks. In CONCUR’10, volume 6269 of LNCS. Springer, 2010.

6. G. Delzanno, A. Sangnier, and G. Zavattaro. On the power of cliques in the
parameterized verification of ad hoc networks. In FoSSaCS’11, volume 6604 of
LNCS, pages 441–455. Springer, 2011.

7. G. Ding. Subgraphs and well quasi ordering. J. of Graph Theory, 16(5):489–502,
1992.

8. A. Fehnker, L. van Hoesel, and A. Mader. Modelling and verification of the LMAC
protocol for wireless sensor networks. In IFM’07, volume 4591 of LNCS, pages
253–272. Springer, 2007.

9. R. Lazic, T. Newcomb, J. Ouaknine, A. Roscoe, and J. Worrell. Nets with tokens
which carry data. Fund. Inf., 88(3):251–274, 2008.

10. M. Merro, F. F. Ballardin, and E. Sibilio. A timed calculus for wireless systems. In
Proc. of the 3rd Conference on Fundamentals of Software Engineering (FSEN’09),
volume 5961 of LNCS, pages 228–243. Springer, 2010.

11. M. Saksena, O. Wibling, and B. Jonsson. Graph grammar modeling and verification
of Ad Hoc Routing Protocols. In TACAS’08, volume 4963 of LNCS, pages 18–32.
Springer, 2008.

12. A. Singh, C. R. Ramakrishnan, and S. A. Smolka. Query-based model checking of
ad hoc network protocols. In CONCUR’09, volume 5710 of LNCS, pages 603–619.
Springer, 2009.

13. UPPAAL. http://www.uppaal.com/.

15

A Encoding a TN in a Two-Star Topology

In this section we present in more detail states and rules that must be added
to an initially empty TAHN in order to encode a TN protocol. As a convention,
we omit state labels every time we want fresh ones. Fig. 2 shows the protocol
that initializes the simulation. Every node in the system starts in state qinit
and tries to count the number of neighbors. The result of this operation is a
differentiation of the roles – root, internal and leaf nodes will act according to
their duties. Since leaf nodes are interesting only because of their clock, they
don’t need any particular state information to work properly. Once correctly
initialized, before and after each TN step simulation their state remains qok. In
the diagram of Fig. 2 the leftmost vertical branch correspond to selection of leaf
nodes, the branch in the middle to selection of internal nodes, and he rightmost
one to selection of the root node.

Now let us consider a TN rule r like the one below. q0→
q′0

 q1
g1 → R1

q′1

 · · ·

 qn
gn → Rn

q′n

Remember that we are working with nodes with a single clock with variable
named x. A condition g on the original TN with two clocks x1 and x2 must be
checked both on the internal node and on the leaf node of the ray. Therefore, we
write g(xj ← x) as a shorthand to mean the guard obtained by first projecting
g on the constraints involving only the variable xj , and then by replacing xj
with x in the resulting formula. For instance, if g = x1 ≥ 2, x2 = 4, then
g(x1 ← x) = x ≥ 2 and g(x2 ← x) = x = 4 Furthermore, for a reset R we define
R(xj ← x) = {x} if xj ∈ R, and = ∅ otherwise, i.e., we map a reset on xj to
a reset on clock variable x. For instance, if R = {x1}, then R(x1 ← x) = {x}
and R(x2 ← x) = ∅. The timed automaton for each of them will have instances
of protocols from figures 3, 4 and 5 composed as described next. The root node
first executes a step that resets its clock from T (q0) to qr1 and then executes the
first instance of ray selection as in figure 3. Auxiliary states and messsages are
indexed by the simulated rule r and by the current simulated action i. Given
0 < i ≤ n, the simulation goes on from qri to qri+1 until qrn+1 is reached, meaning
that a complete matching of rule r has been found. At this point the root makes
a last broadcast step !!done and goes to state T (q′0) if and only if its clock is still
0, forcing every selected ray to switch to their respective final states.

B Proof of Theorem 5: Discovery Protocol

In this section we define a discovery protocol that can be used to identify a star
topology with rays of depth two in any graph in which paths can have length five
(five vertices). We define the protocol P = (Q,R) with #P = 1 with qinit ∈ Q a
initial states. We denote by x the clock used by P . The description of the protocol

16

qinit

qok T (qinitctrl)

T (qinitproc)

true, ??ack, ∅ true, ??ack, ∅ true, ??ack, ∅

true, ??ack, ∅ true, ??ack, ∅ true, ??ack, ∅

true, !!ack, ∅ true, !!ack, ∅ true, !!ack, ∅ true, !!ack, ∅

true, ??int, ∅ true, ??ctrl, ∅ true, !!ctrl, ∅

true, !!leaf, ∅ true, !!int, ∅ x = 0, !!start, ∅

true, ??leaf, ∅

true, ??start, ∅

Fig. 2. Initializating the simulation

is given by the Figures 6. We assume that from the initial state P has three tran-
sitions labelled with empty event which allows to choose non-deterministically for
each node whether it is going to be the root (control state q0), a ray (control state
r0 or a leaf (control state s0) of the star topology. These three rules have then fol-
lowing form:

(
qinit , x = 0

τ−→ ∅, q0
)
,
(
qinit , x = 0

τ−→ ∅, r0
)
,
(
qinit , x = 0

τ−→ ∅, s0
)
.

The behavior of the node chosen to be the root which is in state q0 is given
by Figure 6. This node will first send a broadcast of a message root and if it
receives any messages before, then it goes in the error state. This will ensure
that all the other nodes connected to it which were also in state q0 will be in
the error state, and it will signal to the nodes connected to it which are in state
r0 and which are choose to be rays of the star that the building of the star has
begun.

The nodes in control state r0 on reception of the message root will run the
protocol depicted on Figure 7. Basically the main aim of this protocol is to ensure

17

qri

qdeadlock qri+1

qrn+1 T (q′0)

T (q0) qr1

true, !!selri , ∅ true, ??ackri , ∅ true, !!checkri , ∅

true, ??ackri , ∅ true, ??readyri , ∅

x = 0, !!doner, ∅

true, τ, {x}

Fig. 3. Ray selection: root node

that when the node choosen as the root node send the message endroot, then
all the nodes to which it was connected which were in state r0 before are either
in state null or in state r′0 and furhtermore none of the state in r′0 is connected
to another state which was initially in r0. This can be ensured by the fact that
each node receive a message root has to sent a message ackroot to arrive in
state r′0, this message ackroot is not received the root node, but is used to bring
adjacent nodes in state r0 to the null state. In fact if two adjacent nodes in state
r0 receive a message root, the first one sending ackroot will send the other one
in the state null. The ackroot message is also useful to ensure that a ray node
is node connected to two different nodes chosen as root node. So when reaching
the state r′0 is connected to at most one node which was in state q0 and wich is
not in state null and it is not connected to any node which was previously in
state r0 and which is not in state null.

Finally, the Figures 8 and 9 shows the dialog between the nodes chosen for
the leaves and the one chosen for the rays. A node which in state s0 will at some
point send a message leaf to its adjacent node, it has to do it when the other
node is in r′0 otherwise, the adjacent node will go to the state null by applying
the rule of Figure 7. Then the protocol will ensure that when a ray node reaches
rF it is connected exactly to one node in state sF and also (by the previous
explanation) to one node in state qF and furthermore each node in state sF is
connected to exactly one in state qF .

Finally, we have that if T = (P,G) is a TAHN such that G ∈ BOUNDED(5),
then all configurations γ = (Q,X) reachable in T satisfy the following properties:

– for all vertices v ∈ V such that Q(v) = qF , for all v′ ∈ V such that v ∼ v′,
we have Q(v′) = rF or Q(v′) = null,

– for all v ∈ V such that Q(v) = rF , there exists two vertices v1, v2 ∈ V such
that v ∼ v1, v ∼ v2 and Q(v1) = qF and Q(v2) = sF and for all vertices
v′ ∈ V \ {v1, v2}, v′ ∼ v implies Q(v′) = null,

18

– for all v ∈ V such thatQ(v) = sF , there exists at most one vertex v′ ∈ V such
that v ∼ v′ and Q(v′) 6= null and furthermore it is such that Q(v′) = rF .

Basically, this means that if γ is a configuration reachable in T then all the
nodes in the state qF can be seen as the root node of a star of depth 2 where the
rays are in state rF and the leaves in state qF and all the other nodes connected to
these nodes are in state null and will not take part to the further communication.
Hence from qF using the protocol proposed in the proof of Theorem 3, we can
now simulate the behavior of a N as if we were in a star of depth 2.

We have then that given aN and a final control state, if the associated control
state is reachable for some T restricted to topologies in BOUNDED(5), then it has
to be reachable for some T ′ restricted to topologies in STAR(2) equipped with
the protocol of Theorem 3. This holds because, the first part of our protocol will
build the star topology and then simulate N in this star. On the other hand,
assume the final control state is reachable in N , then using the proof of Theorem
3, we know there exists T ′ restricted to topologies in STAR(2) equipped with the
protocol of Theorem 3 for which the associated control state is reachable, and
since any star of depth 2 can be obtained with our pre-protcol, we deduce that
the associated control state will also be reachable in a T restricted to topologies
in BOUNDED(5) equipped with the protocol we just defined.

C Timed Networks with Transfers (TNT)

A TNT N is is a pair (Q,R), where Q is a finite set of states, partitioned into a
set Qctrl of controller states, and a set Qproc of process states; and R is a finite
set of rules where each rule is of the form q0→

q′0

 q1
g1 → R1

q′1

 · · ·

 qn
gn → Rn

q′n

 p1
g′1 →t R

′
1

p′1

 · · ·

 p`
g′` →t R

′
`

p′`

where the first part is exactly as for the rules for Timed Networks and for all
i : 1 ≤ i ≤ ` we have that gi →t Ri is a guarded transfer command where gi is a
guard and Ri is a reset and pi, p′i ∈ Qproc and there does not exists j : 1 ≤ j ≤ n
such that pi = qj neither j : 1 ≤ j ≤ ` such that i 6= j and pi = pj . A rule of the
above form is enabled if the state of the controller is q0 and if there are n processes
with states q1, · · · , qn whose clock values satisfy the corresponding guards. The
rule is executed by simultaneously changing the state of the controller to q′0
and the states of the n processes as in Timed Networks and furthermore each
process in state pi for i : 1 ≤ i ≤ ` whose clock value satisfies the guard g′i will
have its state changed into p′i and its clock will be reset according to R′i. Note
that for a rule to be enabled there is no requirement on the presence or not of
process in states p1, · · · , p`. A TNT N induces a transition relation −→T on
the set of configurations (that have the same form as TN configurations). The
relation −→T is the union of a discrete transition relation −→D, representing
transitions induced by the rules, and a timed transition relation −→T which

19

represents passage of time. The discrete relation −→D is the union
⋃

r∈R −→r ,
where −→r represents a transition performed according to rule r . Let r be a
rule of the form described in the above definition of timed networks. Consider
two configurations γ = (I, q,Q,X) and γ′ = (I, q′,Q′,X ′). We use γ −→r γ

′

to denote that there is an injection h : {1, . . . , n} → I such that for each
i : 1 ≤ i ≤ n and k : 1 ≤ k ≤ K we have:

1. q = q0, Q(h(i)) = qi, and gi(X1(h(i)), . . . ,XK(h(i))) holds. That is, the rule
r is enabled.

2. q′ = q′0, and Q′(h(i)) = q′i. The states are changed according to r .
3. If xk ∈ Ri then X ′k(h(i)) = 0, while if xk 6∈ Ri then X ′k(h(i)) = Xk(h(i)).
and for all j ∈ I \ range(h)
1. If Q(j) = pi for some 1 ≤ i ≤ ` and if g′i(X1(j), . . . ,XK(j)) holds, then
Q′(j) = p′i and X ′k(j) = 0 for each xk ∈ R′i and X ′k(j) = Xk(j) for each
xk 6∈ R′i.

2. Otherwise Q′(j) = Q(j) and X ′k(j) = Xk(j).
The timed transition relation is then the same as for timed networks. An the

(controller state) reachability problem TNT−Reach (K) for timed networks with
transfer working over K clocks is defined as for timed networks.

D Proof of Theorem 7

Let P = (Q,R) be a protocol with #P = 1 and let qinit , qF ∈ Q. Without loss
of generality we assume that if

(
q1, g1

??a−→ R1, q
′
1

)
and

(
q2, g2

??a−→ R2, q
′
2

)
are

two different rules in R then q1 6= q2 (in other words from each local state there
is at most one rule per message a labelled with ??a). Note that this restriction
can easily be obtained by adding empty event rules to the model. We now show
how to build a timed network with transfert N = (Q′,R′) with 1 clock which
will simulate the behavior of P . First the set of controller states Qctrl is equal
to {qc0, qc1} (with {qc0, qc1} ∩ Q = ∅) and the set of process states Qproc is equal
to Q. We assume that qc0 is the initial controller state and qinit is the initial
process state. The finite set of rules R′ is the smallest set satisfying the following
conditions:

– For each rule
(
q, g

τ−→ R, q′
)
in R there is a rule in R′ of the form: qc0→
qc0

 q
g → R
q′

– For each rule

(
q, g

!!a−→ R, q′
)
in R, there is a rule in R′ of the form: qc0→

qc0

 q
g → R
q′

 p1
g1 →t R1

p′1

 · · ·

 p`
g` →t R`

p′`

20

such that the set {
(
pi, gi

??a−→ Ri, p
′
i

)
| 1 ≤ i ≤ `} is exactly the subset of R

containing all the rules of the form
(
q0, g

′ ??a−→ R′, q′0

)
. Intuitively, this rule

select non deterministically a node which will perform a broadcast and then
simulate the broadcast using the transfert.

– There is a rule in R′ of the form: qc0→
qc1

 qF
(0 ≤ x)→ ∅

qF

Intuitively this rule allows the controller to detect that one of the process
has reached the state qF .

With this construction and using the semantics of both TAHN and TN with
transfert nodes, one can easily prove that there is a TAHN T = (P,G) such that
G ∈ CLIQUE and qF is reachable in T iff the controller state qc1 is reachable in
N . Hence since N works over one clock, using Theorem 6 we obtain the desired
result.

E Proof of Theorem 8

Let P = (Q,R) be a protocol with #P = 1 and let qinit , qF ∈ Q. As for the proof
of Theorem 7 we assume that from each local state there is at most one rule per
message a labelled with ??a. We now show how to build a timed network with
transfert N = (Q′,R′) with 1 clock which will simulate the behavior of P . First
the set of controller states Qctrl is equal to {qc0, qc1, qc2} (with {qc0, qc1} ∩ Q = ∅)
and the set of process states Qproc is equal to Q ∪ qr where Qr = {qr | q ∈ Q}.
The set qr will be used to distinguish the root from the leaves. We assume that
qc0 is the initial controller state and qinit is the initial process state. The finite
set of rules R′ is the smallest set satisfying the following conditions:

– There is a rule in R′ of the form: qc0→
qc1

 qinit

(0 = x)→ ∅
qinitr

Intuitively with this rule the timed network with broadcast selects non de-
terministically a node which will be the root.

– For each rule
(
q, g

τ−→ R, q′
)
in R there is a rule in R′ of the form (local

action of a leaf): qc1→
qc1

 q
g → R
q′

21

and a rule of the form (local action of the root): qc1→
qc1

 qr
g → R
q′r

– For each rule

(
q, g

!!a−→ R, q′
)
inR, there is a rule inR′ of the form (broadcast

from the root): qc1→
qc1

 qr
g → R
q′r

 p1
g1 →t R1

p′1

 · · ·

 p`
g` →t R`

p′`

such that the set {

(
pi, gi

??a−→ Ri, p
′
i

)
| 1 ≤ i ≤ `} is exactly the subset of R

containing all the rules of the form
(
q0, g

′ ??a−→ R′, q′0

)
.

– For each rule
(
q, g

!!a−→ R, q′
)
inR, there is a rule inR′ of the form (broadcast

from the root): qc1→
qc1

 q
g → R
q′

 p1,r
g1 →t R1

p′1,r

 · · ·

 p`,r
g` →t R`
p′`,r

such that the set {

(
pi, gi

??a−→ Ri, p
′
i

)
| 1 ≤ i ≤ `} is exactly the subset of

R containing all the rules of the form
(
q0, g

′ ??a−→ R′, q′0

)
. Note that in this

case only the root will receive the broadcast and we still use the transfert
in order to be sure that if it can receive it, it will change its state. However
only one of the transfert will be done since there is only note labelled by a
state in Qr.

– There is a rule in R′ of the form (a leaf reaches state qF): qc1→
qc2

 qF
(0 ≤ x)→ ∅

qF

and a rule of the form (the root reaches qF): qc1→

qc2

 qF,r
(0 ≤ x)→ ∅

qF,r

Intuitively this rule allows the controller to detect that one of the process
has reached the state qF .

With this construction and using the semantics of both TAHN and TN with
transfert nodes, one can easily prove that there is a TAHN T = (P,G) such that
G ∈ STAR(1) and qF is reachable in T iff the controller state qc2 is reachable in
N . Hence since N works over one clock, using Theorem 6 we obtain the desired
result.

22

T (qi)

T (q′i)

true, ??selri , ∅ true, ??checkri , ∅

true, !!ackri , ∅

true, ??checkri , ∅

gi(x1 ← x), !!checkri , Ri(x1 ← x)

true, ??readyri , ∅

true, !!readyri , ∅

true, ??doner, ∅

Fig. 4. Ray selection: internal node

qok

gi(x2 ← x), ??checkri , Ri(x2 ← x)

true, !!readyri , ∅

Fig. 5. Ray selection: leaf node

23

q0null
x ≥ 0, ??Σ, ∅

x = 0, !!root, ∅

null
x ≥ 0, ??Σ, ∅

x = 0, !!endroot, ∅

qF

x = 0, !!end, ∅

Fig. 6. The behavior of the node chosen as the root

r0null
x ≥ 0, ??Σ \ {root}, ∅

null
x ≥ 0, ??Σ, ∅

x = 0, ??root, ∅

null
x ≥ 0, ??Σ \ {endroot}, ∅

x = 0, !!ackroot, ∅

r′0

x = 0, ??endroot, ∅

Fig. 7. The behavior of the node chosen as a ray (communication with the root)

24

s0null
x ≥ 0, ??Σ \ {ackroot}, ∅

x = 0, !!leaf, ∅

null
x ≥ 0, ??Σ, ∅

x = 0, ??ackleaf, ∅

sF

x = 0, !!endleaf, ∅

Fig. 8. The behavior of the node chosen as a leaf

r′0null
x ≥ 0, ??Σ \ {leaf}, ∅

null
x ≥ 0, ??Σ, ∅

x = 0, ??leaf, ∅

null
x ≥ 0, ??Σ \ {endleaf}, ∅

x = 0, !!ackleaf, ∅

null
x ≥ 0, ??Σ \ {endroot}, ∅

x = 0, ??endleaf, ∅

rF

x = 0, ??endroot, ∅

Fig. 9. The behavior of the node chosen as a ray (communication with the leaf)

25

