
Noname manuscript No.
(will be inserted by the editor)

Approximated Parameterized Verification of Infinite-state
Processes with Global Conditions

Parosh Aziz Abdulla � Giorgio Delzanno �

Ahmed Rezine

Received: date / Accepted: date

Abstract We present a simple and effective approximated backward reachability pro-
cedure for parameterized systems with existentially and universally quantified global
conditions. The individual processes operate on unbounded local variables ranging over
the natural numbers. In addition, processes may communicate via broadcast, rendez-
vous and shared variables. The procedure operates on an over-approximation of the
transition system induced by the parameterized system. We verify mutual exclusion for
complex protocols such as atomic, non-atomic and distributed versions of Lamport’s
bakery algorithm.

Keywords Parameterized systems � unbounded processes � over-approximation

1 Introduction

We consider the analysis of safety properties for parameterized systems. A param-
eterized system consists of an arbitrary number of processes. The task is to verify
correctness regardless of the number of processes. This amounts to the verification of
an infinite family; namely one for each size of the system. Most existing approaches

P. Abdulla
Uppsala University
Tel.: +46-18-4713163
Fax: +46-18-511925
E-mail: parosh@it.uu.se

G. Delzanno
Università di Genova
Tel.: +39-10-3536638
Fax: +39-10-3536699
E-mail: giorgio@disi.unige.it

A. Rezine
Uppsala University
Tel.: +46-18-4713159
Fax: +46-18-511925
E-mail: rezine.ahmed@it.uu.se

2

to automatic verification of parameterized systems make the restriction that each pro-
cess is finite-state. However, there are many applications where the behavior relies on
unbounded data structures such as counters, priorities, local clocks, time-stamps, and
process identifiers.

In this paper, we consider parameterized systems where the individual processes
operate on Boolean variables, and on numerical variables which range over the natural
numbers. The transitions are conditioned by the local state of the process, values of
the local variables; and by global conditions which check the local states and variables
of the other processes. These conditions are stated as propositional constraints on the
Boolean variables, and as gap-order constraints on the numerical variables. Gap-order
constraints [22] are a logical formalism in which we can express simple relations on
variables such as lower and upper bounds on the values of individual variables; and
equality, and gaps (minimal differences) between values of pairs of variables. A global
condition is either universally or existentially quantified. An example of a universal
condition is “variable x of a given process i has a value which is greater than the value
of variable y in all other processes inside the system”. Process i is then allowed to
perform the transition only if this condition is satisfied. In an existential condition we
require that some (rather than all) processes satisfy the condition. In addition to these
classes of transitions, processes may communicate through broadcast, rendez-vous, and
shared variables.

To simplify the presentation, we introduce the class of systems we consider in a
stepwise manner. First, we consider a basic model where we only allow transitions with
local conditions (only the local state and local variables of the process are conditioned)
and global conditions. We describe how to derive the approximate transition relation
and how to analyze safety properties for the basic model. Then, we introduce the
additional features one by one. This includes using shared variables, broadcast and
rendez-vous communication and composition of global conditions. For each new feature,
we describe how to extend the approximate transition relation and the reachability
algorithm in a corresponding manner.

There are at least two advantages with using gap-order constraints as a language
for expressing the enabling conditions of transitions. First, they allow to handle a
large class of protocols where the behavior depends on the relative ordering of values
among variables, rather than the actual values of these variables. The second reason is
that they define a natural ordering on the set of system configurations. In fact, it can
be shown, using standard techniques (such as the ones in [24]), that checking safety
properties (expressed as regular languages) can be translated into the reachability of
sets of configurations which are upward closed with respect to this ordering.

To check safety properties, we perform backward reachability analysis using gap-
order constraints as a symbolic representation of upward closed sets of configurations.
In the analysis, we consider a transition relation which is an over-approximation of
the one induced by the parameterized system. To do that, we modify the semantics
of universal quantifiers by eliminating the processes which violate the given condition.
For instance, consider again the universal condition “variable x of a given process i
has a value which is greater than the value of variable y in all other processes inside
the system”. In the approximated semantics, process i is always allowed to take the
transition. However, when performing the transition, we eliminate each process j where
the value of y is smaller or equal to the value of x in i. The approximate transition
system obtained in this manner is monotonic with respect to the above mentioned
ordering, in the sense that larger configurations can simulate smaller ones. In fact, it

3

turns out that universal quantification is the only operation which does not preserve
monotonicity and hence it is the only source of approximation in the model. The fact
that the approximate transition relation is monotonic means that upward closedness
is maintained under the operation of computing predecessors. A significant aspect of
the reachability procedure is that the number of copies of variables (both Boolean and
numerical) which appear in constraints whose denotations are upward closed sets is
not bounded a priori. The reason is that there is an arbitrary number of processes each
with its own local copy of the variables.

The whole verification process is fully automatic since both the approximation and
the reachability analysis are carried out without user intervention. Observe that if the
approximate transition system satisfies a safety property then we can conclude that
the original system satisfies the property, too.

Termination of the approximated backward reachability analysis is not guaranteed
in general. However, the procedure terminates on all the examples we report in this
paper. Furthermore, from the results in [2] termination is guaranteed in some restricted
cases such as for systems with existential or universal global conditions but with at
most one local integer variable.

Case-studies In this paper we discuss in detail the application of our approximated
parameterized verification method to the analysis of several formulations of Lamport’s
bakery algorithm. The bakery algorithm [21] is a well-known solution to Dijkstra’s
critical section problem that works for any number of processes. The algorithm presents
three main phases. In the choosing phase, a process that is interested in entering
the critical section selects a new ticket (a number greater than zero). A new ticket
is supposed to have a value strictly greater than the tickets of all other processes.
Tickets may be requested concurrently by processes in the system. In the entry phase,
the process waits until the value of its ticket becomes smaller than the tickets of all
other interested processes and then enters the critical section. In the exit section, a
process releases the critical section and resets its ticket to zero. These phases can be
formulated in several different ways depending on the assumptions on the atomicity of
the statements used to generate and compare tickets.

In our experiments we automatically verify safety properties for parameterized
versions of the following formulations of Lamport’s bakery algorithm:

– A version with atomic computation of new tickets and an atomic entry phase.
– A version with race conditions in the computation of new tickets, but with an

atomic entry phase.
– A version where both choosing and entry phases are non-atomic. Non-atomic phases

are implemented by means of a marking sub-protocol. A process p applies the sub-
protocol to test the global condition process-by-process (p marks process q as visited
if the condition is verified for p and q).

– A distributed version of bakery, called the ticket algorithm in [7], that makes use
of a central monitor for distributing tickets and checking the entry conditions.

We also consider a bogus version of the second formulation of the bakery algorithm
(the version with race conditions on the computation of tickets). In this version, the
choosing flag used to control race conditions in the original version of the algorithm
is simply ignored. For the bogus version, our procedure returns symbolic traces (from
initial to bad states) that explain the subtle race conditions that may arise when the
flag is not tested.

4

These examples present challenging problems for parameterized verification meth-
ods in the following sense:

– Their underlying logic is already hard for manual or finite-state verification.
– They are all instances of multidimensional infinite-state systems in which processes

have unbounded local variables. Also the protocols (apart from Ticket) use an order
over identifiers to break ties in the entry section. These features cannot be modeled
without the use of abstractions in the framework of Regular Model Checking [19,
6,9,5].

– In all examples, global conditions are needed to model the communication mecha-
nisms used in the protocols.

Related Work The multi-dimensional parameterized models studied in the present pa-
per cannot be analyzed without use of additional abstractions by methods designed for
networks of finite-state processes, e.g., Regular Model Checking [19,6,9] and counter
abstraction methods [14,18,15,16]. The approximation scheme we apply in our back-
ward reachability procedure works well for a very large class of one-dimensional pa-
rameterized systems. In fact, the verification procedure used in [5] is a special case of
the current one, where the processes are restricted to be finite-state systems.

Parameterized versions of Lamport’s bakery algorithm have been tested using a
semi-automated verification method based on invisible invariants in [8], with the help
of environment abstraction for a formulation with atomicity conditions in [13], and using
heuristics to discover indexed predicates in [20]. We are not aware of other attempts of
fully automatic verification of parameterized versions of Lamport’s bakery algorithm
without atomic conditions.

In contrast to the above mentioned methods, our verification procedure is fully au-
tomated and it is based on a generic approximation scheme. Furthermore, our method
is applicable to versions of Lamport’s bakery both with and without atomicity condi-
tions and may return symbolic traces useful for debugging.

A parameterized formulation of an abstraction of the Ticket algorithm in which the
FIFO order of requests is not preserved is verified in [11]. With the help of universally
quantified guards and of our approximation, we verify a more precise model in which
the FIFO order of requests is always preserved. The verification procedure in [11] does
not handle parameterized universally quantified global conditions.

In contrast to symbolic methods for finite, a priori fixed collections of processes
with local integer variables, e.g., those in [12,17], our gap-order constraints are defined
over an infinite collections of variables. The number of copies of variables needed during
the backward search cannot be bounded a priori. This feature allows us to reason about
systems with global conditions over any number of processes. Furthermore, the present
method covers that of [2] which also uses gap-order constraints to reason about systems
with unbounded numbers of processes. However, [2] cannot deal with global conditions
which is the main feature of the examples considered here. By viewing processes as
atomic formulas and configurations as multisets of atomic formulas, we can exploit the
decidability result in [2] as a termination argument for symbolic backward reachability
for a restricted class of parameterized systems in which processes have at most one
integer local variable. The symbolic representation and the entailment operation we
use here are a natural generalization of those used for monadic atomic formulas in [2].
Termination for this class of parameterized systems follows from the well-quasi ordering
of entailment for monadic constraint multiset rewriting systems. Unfortunately, this

5

property does not hold for most of the examples considered here in which processes
have two or more integer local variables. For these systems, termination cannot be
guaranteed a priori, however our procedure often terminates in practical cases.

Outline In the next two Sections we give some preliminaries and define a basic model
for parameterized systems. Section 4 and 5 describe the induced transition system
and the coverability (safety) problem. In Section 6 we define the approximated tran-
sition system. Section 7 defines the gap-order constraints and presents the backward
reachability algorithm, while Section 8 describes the operations on constraints used
in the algorithm. Section 9 extends the basic model to cover features such as shared
variables, rendez-vous and broadcast. In Section 10 we give a detailed description of
our case studies and report the results of running our prototypes on them. Finally, in
Section 11, we give conclusions and directions for future work. In the appendix, we
give some proofs.

2 Preliminaries

In this section, we give some preliminary notations and definitions. We use B to denote
the set ftrue; falseg of Boolean values; and use N to denote the set of natural numbers.
For a natural number n, let n denote the set f1; : : : ; ng.

For a finite set A, we write a multiset over A as a list [a1; a2; : : : ; an], where ai 2 A
for each i : 1 � i � n. We use a 2 A to denote that a = ai for some i : 1 � i � n.
For multisets M1 = [a1; : : : ; am] and M2 = [b1; : : : ; bn], we use M1 �M2 to denote the
union (sum) of M1 and M2 (i.e., M1 �M2 = [a1; : : : ; am; b1; : : : ; bn]).

We will work with sets of variables. Such a set A is often partitioned into two
subsets: Boolean variables AB which range over B, and numerical variables AN which
range over N . We denote by B(AB) the set of Boolean formulas over AB. We will also
use a simple set of formulas, called gap formulas, to constrain the numerical variables.
More precisely, we let G(AN) be the set of formulas which are either of the form x = y

or of the form x �k y where �2 f<;�g, x; y 2 AN , and k 2 N . Here x �k y stands for
x+k � y1. We use F(A) to denote the set of formulas which has members of B(A) and
of G(N) as atomic formulas, and which is closed under the Boolean connectives ^ and
_ only (gap-order formulas are not closed under negation). For instance, if AB = fa; bg
and AN = fx; yg then � = (a � b) ^ (x + 3 < y) is in F(A). Sometimes, we write a
formula as �(y1; : : : ; yk) where y1; : : : ; yk are the variables which may occur in �; so we
can write the above formula as �(x; y; a; b).

For a set B = fx1; : : : ; xng � A, and a formula � 2 F(A), we use 9B: � to denote
the existentially quantified formula 9x1; � � �xn: �.

In [22], it is shown that gap-order formulas are effectively closed under existential
quantification. It is easy to verify that the same property holds for the subset of gap-
formulas we consider here. Since Boolean formulas are also effectively closed under
existential quantification, it follows that, for any finite set B with B � A, and any
formula � 2 F(A), we can compute a formula �0 2 F(A) which is equivalent to 9B: �.

Sometimes, we perform substitutions on logical formulas. A substitution is a set
fx1 y1; : : : ; xn yng of pairs, where xi and yi are variables of the same type, for

1 G(AN) is a subset of the gap formulas defined in [22].

6

each i : 1 � i � n. Here, we assume that xi 6= xj if i 6= j. For a formula � and a substi-
tution S, we use �[S] to denote the formula we get from � by simultaneously replacing
all occurrences of the variables x1; : : : ; xn by y1; y2; : : : ; yn respectively. Sometimes, we
may write �[S1][S2] � � � [Sm] instead of �[S1 [S2 [� � � [Sm]. As an example, if we have
� = (x1 < x2) ^ (x3 < x4) then �[x1 y2; x4 y3][x2 y] = (y2 < y) ^ (x3 < y3).

3 Parameterized Systems

In this section, we introduce a basic model for parameterized systems. The basic model
will be enriched by additional features in Section 9.

A parameterized system consists of an arbitrary (but finite) number of identical
processes. Each process is modelled as an extended finite-state automaton operating on
local variables which range over the Booleans and the natural numbers. The transitions
of the automaton are conditioned by the values of the local variables and by global
conditions in which the process checks, for instance, the local states and variables of
all the other processes inside the system. A transition may change the value of any
local variable inside the process (possibly deriving the new values from those of the
other processes). A parameterized system induces an infinite family of (potentially
infinite-state) systems, namely one for each size n. The aim is to verify correctness of
the systems for the whole family (regardless of the number n of processes inside the
system).

Formally, a parameterized system P is a triple (Q;X; T), where Q is a finite set of
local states, X is a finite set of local variables partitioned into XB (which range over
B) and XN (which range over N), and T is a finite set of transition rules. A transition
rule t is of the form

t :
ˆ
q ! q0 B �

˜
(1)

where q; q0 2 Q and � is either a local or a global condition. Intuitively, the process which
takes the transition changes its local state from q to q0. In the meantime, the values of
the local variables of the process are updated according to �. Below, we describe how
we define local and global conditions.

To simplify the definitions, we sometimes regard members of the set Q as Boolean
variables. Intuitively, the value of the Boolean variable q 2 Q is true for a particular
process if and only if the process is in local state q. We define the set Y = X [Q.

To define local conditions, we introduce the set Xnext which contains the next-value
versions of the variables in X. A variable xnext 2 Xnext represents the next value of
x 2 X. A local condition is a formula in F(X [Xnext). The formula specifies how local
variables of the current process are updated with respect to their current values.

Global conditions check the values of local variables of the current process, together
with the local states and the values of local variables of the other processes. We need
to distinguish between a local variable, say x, of the process which is about to perform
a transition, and the same local variable x of the other processes inside the system.
We do that by introducing, for each x 2 Y , two new variables self �x and other �x.
self denotes the process that is about to perform the transition and other any other
process different from self.

We define the sets self�Y = fself�xjx 2 Y g and other�Y = fother�xjx 2 Y g. The
sets self�X, other�Xnext , etc, are defined in the obvious manner. A global condition �

7

is of one of the following two forms:

8 other 6= self � �1 9 other 6= self � �1 (2)

where �1 2 F
`
self�X [other�Y [self�Xnext´. In other words, the formula checks the

local variables of the process which is about to make the transition (through self�X), and
the local states and variables of the other processes (through other�Y). It also specifies
how the local variables of the process in transition are updated (through self�Xnext).
A global condition is said to be universal or existential depending on the type of the
quantifier appearing in it. As an example, the following formula

8 other 6= self � (self�a) ^ (self�xnext
> other�x) ^ other�q1

states that the transition may be performed only if variable a of the current process
has the value true, and all the other processes are in local state q1. When the transition
is performed, variable x of the current process is assigned a value which is greater than
the value of x in all the other processes.

4 Transition System

We describe the transition system induced by a parameterized system.
A transition system T is a pair

`
D;=)

´
, where D is an (infinite) set of configura-

tions and =) is a binary relation on D. We use �=) to denote the reflexive transitive
closure of =). Let � be an ordering on D. We say that T is monotonic with respect to
� if the following property is satisfied: for all c1; c2; c3 2 D with c1 =) c2 and c1 � c3,
there is a c4 2 D such that c3 =) c4 and c2 � c4. We will consider several transition
systems in this paper.

First, a parameterized system P = (Q;X; T) induces a transition system T (P) =`
C;�!

´
as follows. C is the set of configurations. A configuration is defined by the local

states and the values of the local variables in the processes. Formally, a local variable
state v is a mapping from X to B [N which respects variables’ types. A process state
u is a pair (q; v) where q 2 Q and v is a local variable state. As mentioned in Section 3,
we may regard members of Q as Boolean variables. Thus, we can view a process state
(q; v) as a mapping u : Y 7! B [N , where u(x) = v(x) for each x 2 X, u(q) = true,
and u(q0) = false for each q0 2 Q n fqg. A configuration is a multiset [u1; u2; : : : ; un]
of process states. Intuitively, the above configuration corresponds to an instance of the
system with n processes. Notice that if c1 and c2 are configurations then so is their
union c1 � c2.

We define the transition relation �! on the set of configurations as follows. We
start by describing the semantics of local conditions. Recall that a local condition cor-
responds to one process changing state without checking states of the other processes.
Therefore, the semantics is defined in terms of two local variable states v; v0 corre-
sponding to the current resp. next values of the local variables of the process; and a
formula � 2 F(X [Xnext) (representing the local condition). We write (v; v0) j= �

to denote the validity of the formula � [�]
ˆ
�0
˜

where the substitutions are defined by
� := fx v(x)j x 2 Xg and �0 :=

˘
xnext v0(x)j x 2 X

¯
. In other words, we check

the formula we get by replacing the current- resp. next-value variables in � by their
values as defined by v resp. v0. The formula is evaluated using the standard interpre-
tations of the Boolean connectives, and the arithmetical relations <;�;=. For process
states u = (q; v) and u0 =

`
q0; v0

´
, we use (u; u0) j= � to denote that (v; v0) j= �.

8

Next, we describe the semantics of global conditions. The definition is given in
terms of two local variable states v; v0, a process state u1, and a formula � in the set
F
`
self�X [other�Y [self�Xnext´ (representing a global condition). The roles of v and

v0 are the same as for local conditions. We recall that a global condition also checks
states of all (or some) of the other processes. Here, u1 represents the local state and
variables of one such a process. We write (v; v0; u1) j= � to denote the validity of the for-
mula � [�]

ˆ
�0
˜

[�1] where the substitutions are defined by � := fself�x v(x)j x 2 Xg,
�0 :=

˘
self�xnext v0(x)j x 2 X

¯
, and �1 := fother�x u1(x)j x 2 Y g. The relation`

u; u0; u1
´
j= � is interpreted in a similar manner to the case of local conditions.

Now, we are ready to define the transition relation �!. Let t be a transition rule
of the form of (1). Consider two configurations c = c1 � [u] � c2 and c0 = c1 �

ˆ
u0
˜
� c2

where u = (q; v) and u0 =
`
q0; v0

´
. We denote by c

t�! c0 that one of the following
conditions is satisfied:

1. � is a local condition and
`
u; u0

´
j= �.

2. � is a universal global condition of the form of (2), and
`
u; u0; u1

´
j= �1 for each

u1 2 c1 � c2.
3. � is an existential global condition of the form of (2), and

`
u; u0; u1

´
j= �1 for some

u1 2 c1 � c2.

We use c �! c0 to denote that c t�! c0 for some t 2 T .

Example 1 Consider a parameterized system P = (Q;X; T), whereQ = fidle; wait; useg,
X = fnum 2 Ng, and T =

˘
t; t0
¯

. Both transitions t and t0 are defined below.
Consider a configuration c = [u1; u2; u3]. In this configuration, the process states

u1; u2 and u3 are associated with three processes, say p1, p2 and p3. We suppose
ui = (idle; vi) for each i : 1 � i � 3, v1(num) = 1, v2(num) = 10, and v3(num) = 11.
In other words, all three processes are in state idle, the variable num belonging to
process p1 is mapped to 1, the one belonging to process p2 is mapped to 10, and the
one belonging to process p3 is mapped to 11.

Let t be the local transition defined as

t =
ˆ
idle! wait B num0 > num

˜
Define the process state u01 as

`
wait; v01

´
, where the local variable state v01 sends

the variable num to 4. Since the condition v01(num) > v1(num) is satisfied, we can
associate u01 with the process p1, and state that c t�! c0 where c0 =

ˆ
u01; u2; u3

˜
.

Now let t0 be the universal global transition defined as

t
0 =

ˆ
wait! use B 8 other 6= self � (self�num < other�num)

˜
In order for process p1 to take the transition t0, it needs to be in state wait. Fur-
thermore, the value associated with its variable num should be smaller than the value
associated with the num variable belonging to each of the other processes. Observe
that this is the case in the configuration c0 =

ˆ
u01; u2; u3

˜
. In case process p1 takes

the transition t0, it changes state to use and updates its variable num to some ar-
bitrary numerical value, for instance 1. We can therefore write that c0 t0�! c00 where
c00 =

ˆ
u001 ; u2; u3

˜
and u001 = (use; v1).

9

5 Safety Properties

In this section, we introduce an ordering on configurations, and use it to define the
safety problem. Given a parameterized system P = (Q;X; T), we assume that, prior
to starting the execution of the system, each process is in an (identical) initial process
state uinit = (qinit ; vinit). In the induced transition system T (P) =

`
C;�!

´
, we

use Init to denote the set of initial configurations, i.e., configurations of the form
[uinit ; : : : ; uinit] . Notice that this set is infinite.

We define an ordering on configurations as follows. Consider two configurations,
c = [u1; : : : ; um] and c0 =

ˆ
u01; : : : ; u

0
n

˜
, where ui = (qi; vi) for each i : 1 � i � m,

and u0i =
`
q0i; v

0
i

´
for each i : 1 � i � n. We write c � c0 to denote that there is

an injection h : m ! n such that the following four conditions are satisfied for each
i; j : 1 � i; j � m:

1. qi = q0h(i).
2. vi(x) = v0h(i)(x) for each x 2 XB.
3. vi(x) = vj(y) iff v0h(i)(x) = v0h(j)(y), for each x; y 2 XN .
4. vi(x) <k vj(y) implies that there is a l � k with v0h(i)(x) <l v

0
h(j)(y), for each

x; y 2 XN .

In other words, for each process in c there is a corresponding process in c0. The local
states and the values of the Boolean variables coincide in the corresponding processes
(Conditions 1 and 2). Regarding the numerical variables, the ordering preserves equality
of variables (Condition 3), while gaps between variables in c0 are at least as large as
the gaps between the corresponding variables in c (Condition 4).

A set of configurations D � C is upward closed (with respect to the ordering �) if
c 2 D and c � c0 implies c0 2 D. For sets of configurations D;D0 � C we use D �! D0

to denote that there are c 2 D and c0 2 D0 with c �! c0.
The coverability problem for parameterized systems is defined as follows:

PAR-COV
Instance

– A parameterized system P = (Q;X; T).
– An upward closed set CF of configurations.

Question Init ��! CF ?

It can be shown, using standard techniques (see e.g. [24]), that checking safety proper-
ties (expressed as regular languages) can be translated into instances of the coverability
problem. Therefore, checking safety properties amounts to solving PAR-COV (i.e., to
the reachability of upward closed sets).

6 Approximation

In this section, we introduce an over-approximation of the transition relation of a
parameterized system. The aim of the over-approximation is to derive a new transition
system which is monotonic with respect to the ordering � defined on configurations in
Section 5. The only transitions which do not preserve monotonicity are those involving
universal global conditions. Therefore, the approximate transition system modifies the

10

behavior of universal quantifiers in such a manner that monotonicity is maintained.
Roughly speaking, in the new semantics, we remove all processes in the configuration
which violate the condition of the universal quantifier. Below we describe how this is
done.

In Section 4, we mentioned that each parameterized system P = (Q;X; T) induces
a transition system T (P) =

`
C;�!

´
. A parameterized system P also induces an

approximate transition system A(P) =
`
C;;

´
; the set C of configurations is identical

to the one in T (P). We define ;=
`
�! [;1

´
, where �! is defined in Section 4,

and;1 (which reflects the approximation of universal quantifiers) is defined as follows.
For a configuration c, a formula � 2 F

`
self�X [other�Y [self�Xnext´, and process

states u; u0, we use c	 (�; u; u0) to denote the configuration derived from c by deleting
all process states u1 such that

`
u; u0; u1

´
6j= �. To explain this operation intuitively,

we recall that a universal global condition requires that the current and next states
of the current process (described by u resp. u0) together with the state of each other
process (described by u1) should satisfy the formula �. The operation then removes
from c each process whose state u1 does not comply with this condition.

Consider two configurations c = c1 � [u] � c2 and c0 = c01 � [u0] � c02, where u = (q; v)
and u0 =

`
q0; v0

´
. Let t be a transition rule of the form of (1), such that � is a universal

global condition of the form of (2). We write c t
;1 c

0 to denote that c01 = c1	(�1; u; u
0)

and c02 = c2 	 (�1; u; u
0). We use c; c0 to denote that c t

; c0 for some t 2 T ; and use
�
; to denote the reflexive transitive closure of ;.

Example 2 Consider a parameterized system P = (Q;X; T), whereQ = fidle; wait; useg
and X = fnum 2 Ng.

Let t be the transition defined as

t =
ˆ
idle! use B 8 other 6= self � (self�num < other�num)

˜
Consider a configuration c = [u1; u2; u3], where the process states u1; u2 and u3 are
associated with processes p1; p2 and p3. We suppose u1 = (idle; vi) for i : 1 � i � 3,
and v1(num) = 3, v2(num) = 1, v3(num) = 5.

Process p1 cannot perform the transition t from idle to use since process p2 has
the minimal value for num. Thus, the test of the global condition fails.

In the approximated transition relation, the process p1 can take the transition,
for example c t

; c0 with c0 =
ˆ
u01; u3

˜
and u01 = (use; v1). This is because we delete

all processes that violate the global condition (p2 here). Notice that the resulting
configuration has a size that is smaller than the one of the configuration c.

Lemma 1 The approximate transition system
`
C;;

´
is monotonic with respect to

�.

Proof A detailed proof of this lemma is given in [23].

We define the coverability problem for the approximate system as follows.

APRX-PAR-COV
Instance

– A parameterized system P = (Q;X; T).
– An upward closed set CF of configurations.

Question Init �
; CF ?

11

Since �! �;, a negative answer to APRX-PAR-COV implies a negative answer
to PAR-COV.

7 Backward Reachability Analysis

In this section, we present a scheme based on backward reachability analysis for solving
APRX-PAR-COV. For the rest of this section, we fix an approximate transition system
A(P) =

`
C;;

´
.

7.1 Constraints

The scheme operates on constraints which we use as a symbolic representation for sets
of configurations. For each natural number i 2 N we make a copy Y i such that xi 2 Y i

if x 2 Y . A constraint � is a pair (m;), where m 2 N is a natural number, and 2
F(Y 1[Y 2[� � �[Ym). Intuitively, a configuration satisfying � should contain at least m
processes (indexed by 1; : : : ;m). The constraint � uses the elements of the set Y i to refer
to the local states and variables of process i. The values of these states and variables are
constrained by the formula . Formally, consider a configuration c = [u1; u2; : : : ; un]
and a constraint � = (m;). Let h : m 7! n be an injection. We write c j=h � to denote
the validity of the formula [�] where � :=

n
xi uh(i)(x)j x 2 Y and 1 � i � m

o
. In

other words, there should be at least m processes inside c whose local states and
variables have values which satisfy . We write c j= � to denote that c j=h � for
some h; and define [[�]] = fcj c j= �g. For a (finite) set of constraints �, we define
[[�]] =

S
�2� [[�]]. The following lemma follows from the definitions.

Lemma 2 For each constraint �, the set [[�]] is upward closed.

Proof A detailed proof of this lemma is given in [23].

In all the examples we consider, the set CF in the definition of APRX-PAR-COV can
be represented by a finite set �F of constraints.The coverability question can then be
answered by checking whether Init ��! [[�F]].

7.2 Entailment and Predecessors

To define our scheme we will use two operations on constraints, namely entailment,
and computing predecessors, defined below. We define an entailment relation v on
constraints, where �1 v �2 iff [[�2]] � [[�1]]. For sets �1; �2 of constraints, abusing
notation, we let �1 v �2 denote that for each �2 2 �2 there is a �1 2 �1 with
�1 v �2. Observe that �1 v �2 implies that [[�2]] � [[�1]].

For a constraint �, we let Pre(�) be a set of constraints, such that [[Pre(�)]] =˘
cj 9c0 2 [[�]] : c; c0

¯
. In other words Pre(�) characterizes the set of configurations

from which we can reach a configuration in � through the application of a single rule
in the approximate transition relation. In the definition of Pre we rely on the fact
that, in any monotonic transition system, upward-closedness is preserved under the
computation of the set of predecessors (see e.g. [1]). From Lemma 2 we know that [[�]]

12

is upward closed; by Lemma 1,
`
C;;

´
is monotonic, we therefore know that [[Pre(�)]]

is upward closed. In fact, we show in Section 8 that Pre(Φ) is finite and computable.
For a set � of constraints, we let Pre(Φ) =

S
�2Φ Pre(�).

7.3 Scheme

Given a finite set �F of constraints, the scheme checks whether Init �=) [[�F]]. We
perform a backward reachability analysis, generating a sequence �0 w �1 w �2 w � � �
of finite sets of constraints such that �0 = �F , and �j+1 = �j [Pre(Φj). Since
[[�0]] � [[�1]] � [[�2]] � � � � , the procedure terminates when we reach a point j where
�j v �j+1. Notice that the termination condition implies that [[�j]] = (

S
0�i�j [[�i]]).

Consequently, �j characterizes the set of all predecessors of [[�F]]. This means that
Init ��! [[�F]] iff

`
Init

T ˆ̂
�j
˜̃ ´
6= ;.

Observe that, in order to implement the scheme (i.e., transform it into an al-
gorithm), we need to be able to (i) compute Pre; (ii) check for entailment between
constraints; and (iii) check for emptiness of (Init

T
[[�]]) 6= ; for a constraint �.

7.4 Termination

The termination of the fixpoint computation is not guaranteed in general. However,
by using the theoretical analysis of monadic multiset rewriting systems with gap-order
constraints in [2], we can show that termination is guaranteed for processes with at
most one integer local variable (and any number of local Boolean variables).

The intuition however is as follows. In the framework of [2] a configuration of a
parameterized system is modeled as a multiset of atomic formulas. An atomic formula
p(d1; : : : ; dn) represents a process in state p and values d1; : : : ; dn for its n local vari-
ables. An atomic formula (predicate) with a single parameter is called monadic. Thus,
for monadic predicates, an atomic formula p(d) can be viewed as a process with state
p and value d (a natural number) for its unique integer local variable.

The symbolic representation and the corresponding entailment relation used in the
present paper are a natural generalization (to the case of n-ary predicates) of the
operations on multisets of monadic atomic formulas in [2].

Furthermore, since in our definition of parameterized systems we only allows gap-
order constraints as conditions, we can easily express transitions of parameterized sys-
tems with one integer local variable as rules in monadic constrained multiset rewriting
with gap-order constraints. For instance, rendez-vous is a multiset rewriting rule that
simultaneously rewrite two atomic formulas into two new ones thar correspond to the
next state of the communicating processes. We can then exploit the well-quasi order-
ing of entailment for symbolic configurations of monadic constrained multiset rewriting
systems in [2] as a termination argument for symbolic backward reachability of param-
eterized systems with (at most) one integer local variable.

We omit a detailed proof of this encoding here since most of the examples considered
in the present paper are outside the decidable class.

13

8 Constraint Operations

In this section, we show how to perform the three operations on constraints used in the
scheme presented in Section 7, namely computing Pre, entailment, and intersection
with initial states. In the rest of the section, we fix a parameterized systems P =
(Q;X; T). Recall that Y = X [Q.

8.1 Computing Pre

We show, for a constraint �0, how to compute the set Pre(�0). We will compute
Pre(�0) as

S
t2T Pret (�0) , where [[Pret (�0)]] =

n
cj 9:c0 2 [[�0]]: c t

; c0
o

. Consider a
transition rule t :

ˆ
q ! q0 B �

˜
. Consider also a constraint �0 =

`
m; 0

´
(where

 0 2 F
“
Y 1 [: : : [Ym

”
). Below, we describe how to compute Pret (�0) as a finite set

of constraints. The definition has several cases depending on the condition � (local,
existential, or global condition) as follows.

Local Conditions. If � is a local condition. By definition, we know that � 2 F
`
X [Xnext

´
.

First, we recall that t gives rise to a set of transitions, where a single process changes
state while the other ones remain passive. To capture this property, we will define the
formula �� as:

� ^ q ^

0@^
p6=q

:p

1A ^ q0next ^
0@ ^
p0 6=q0

:p0next

1A
Intuitively, the first conjunct � corresponds to the condition of the transition rule. The
second and third conjuncts encode the fact that the control state of the configuration
before performing the transition is equal to q, while the last two conjuncts encode that
the control state after performing the transition is equal to q0.

We define Pret (�0) to be the smallest set containing the constraints:

– A constraint �i = (m; i) where i is given by2

“
9Y i

:
“
�
�
h
�
i
1
i
^ 0

”” h
�
i
2
i

for each i : 1 � i � m. The substitutions are defined by

�
i
1 =

n
x

next x
ij xi 2 Y i

o
�
i
2 =

n
x x

ij xi 2 Y i
o

The constraint �i corresponds to the case where the process performing the tran-
sition is part of the definition of the constraint �0 (namely, it is the process rep-
resented by index i in �0). The role of the substitution �i1 is to guarantee that we
match each variable xi 2 Y i which occurs in 0 with the next-value variable xnext

in t. After eliminating the renamed next-value variables by projection (existential
quantification), we rename each x to the corresponding xi with the substitution
�i2.

2 Recall that the existential quantifier can be effectively eliminated (as described in Sec-
tion 2).

14

– A constraint � = (m+ 1;) where is given by“
9Ym+1

:
“
�
�
h
�
m+1
1

i
^ 0

”” h
�
m+1
2

i
where

�1 =
n
x

next x
m+1j xm+1 2 Ym+1

o
�2 =

n
x x

m+1j xm+1 2 Ym+1
o

Here, the process taking the transition is not part of �0. The process is therefore
represented by an index m+ 1 which is outside the range m of �0.

The constraint (m+ 1;) is needed in the definition of Pret in order to ensure that the
denotation of Pret (�0) contains all predecessors of the denotation of �0. Notice however
that, when computing the transitive closure Pre�t of Pret the constraint (m+ 1;)
becomes redundant. Indeed, it does not add new information with respect to that
represented by the original constraint �0.

Example 3 (Pre of a local rule) Consider a parameterized system with states fp; qg, a
local Boolean variable f and a local rule t :

ˆ
p! q B �

˜
where � equals

`
fnext = f

´
.

Now consider the constraint �0 =
“

1; q1 ^ f1
”

. If the transition t is performed by the

process represented in �0, we obtain the constraint �1 =
“

1; p1 ^ f1
”

. If the process
that performed the transition is not the one represented in the constraint �0, we obtain
the constraint �2 = (2; q1 ^ f1 ^ p2) with size two. The latter constraint is derived by
introducing in �0 a process with state p and no constraints on f . Notice that the deno-
tation of �1 is not a subset of the one of �2, and vice versa. We need both constraints
to symbolically represent the predecessors of the denotation of �0. Also, notice that
[[�1]] 6�

ˆ̂
�0
˜̃

, whereas [[�2]] �
ˆ̂
�0
˜̃

, i.e., the configurations denoted by �2 are already
denoted by the set

˘
�0
¯
[Pret (�0).

Existential Conditions. If � is of the form 9 other 6= self � �1, where the condition �1
is in F

`
self�X [self�Xnext [other�Y

´
. The main difference compared to the case of

local conditions is that we have to consider two processes. More precisely, in addition
to the process (with index i) which performs the transition, we have also to consider a
witness process (with index j) which enables the transition. The definition of Pret (�0)
consists of several cases corresponding to whether or not the processes i and j are parts
of �0. We define Pret (�0) to be the smallest set containing the following constraints:

– A constraint �i;j =
`
m; ij

´
where i;j is given by“

9Y i
:
“
�
�
1
h
�
i
1
i h
�
j
2

i
^ 0

”” h
�
i
3
i

for each i : 1 � i 6= j � m. The constraint �ij corresponds to the case where both
the process (with index i) performing the transition, and the witness process (with
index j) are parts of the definition of the constraint �0. The formula ��1 is defined
in a similar manner to �� above (with the difference that � is replaced by �1). The
substitutions are defined by

�
i
1 =

n
self�xnext x

ij xi 2 Xi
o
[
n
q
next q

ij q 2 Q
o

�
j
2 =

n
other�x x

j j xj 2 Y j
o

�
i
3 =

n
self�x x

ij xi 2 Xi
o
[
n
q q

ij q 2 Q
o

15

The substitutions �i1 and �i3 here respectively play the same role as the substi-
tutions �i1 and �i2 in the case of local conditions (taking into consideration that
local variables are preceded by the prefix self in the case of global conditions and
that �1 is in F

`
self�X [self�Xnext [other�Y

´
,i.e., self �q cannot occur in �1 for

q 2 Q[Qnext). The substitution �j2 encodes the conditions imposed on the witness
process (with index j).

– A constraint �i;m+1 =
`
m+ 1; i;m+1

´
where i;m+1 is given by

“
9Y i

:
“
�
�
1
h
�
i
1
i h
�
m+1
2

i
^ 0

”” h
�
i
3
i

for each i : 1 � i � m. The substitutions �i1 and �i3 are identical to the previous
case. The substitution �m+1

2 is defined by

�
m+1
2 =

n
other�x x

m+1j xm+1 2 Ym+1
o

Here, the process (with index i) taking the transition is part of �0, while the witness
process is not. The witness process is therefore represented by an index m+1 which
is outside the range m of �0.
Notice that this case gives rise to a constraint �i whose size is larger than the size of
the original constraint �0. Furthermore, in contrast to the case of local conditions,
the new constraint �i;m+1 is not necessarily subsumed by �0. This makes the sizes
of constraints which arise in the reachability analysis unbounded in general.

– We have two cases where the process taking the transition is not part of �0, and
where the witness process may or may not be part of �0. In a similar manner to
the case of local conditions, the generated constraints are all subsumed by �0 and
can therefore be safely discarded in the reachability analysis. The details of these
cases are given in the appendix.

Example 4 (Pre of an existential rule) Add to the parameterized system of example 3
the rule t :

ˆ
p! q B 9 other 6= self � �1

˜
where �1 is

`
self�fnext = self�f ^ other�f

´
.

Consider the constraint �0 =
“

2; q1 ^ :f1 ^ p2
”

. If both the process that performed
the transition t and the witness process are represented in �0, we get the constraint
�12 =

“
2; p1 ^ :f1 ^ p2 ^ f2

”
. If the witness process is not represented in �0 we insert

it, and obtain the constraint �13 =
“

3; p1 ^ :f1 ^ p2 ^ f3
”

. If the witness process
is represented in �0, but not the process that performed the transition, we obtain
the constraint �31 =

“
3; q1 ^ :f1 ^ p2 ^ f2 ^ p3

”
. Finally, if both the process that

performed the transition and the witness process are not represented in �0, we obtain
the constraint �34 =

“
4; q1 ^ :f1 ^ p2 ^ p3 ^ f4

”
. Observe that [[�31]] �

ˆ̂
�0
˜̃

, and
[[�34]] �

ˆ̂
�0
˜̃

. Observe also that [[�13]] 6�
ˆ̂
�0
˜̃

, meaning that �13 has to be added
during the fixpoint computation.

Universal Conditions. If � is of the form 8 other 6= self � �1 where the condition �1 is in
F
`
self�X [self�Xnext [other�Y

´
. We define Pret (�0) to be the smallest set containing

the constraints:

16

– A constraint �i = (m; i) where i is given by0@9Y i
:

0@ ^
1�j 6=i�m

�
�
1
h
�
i
1
i h
�
j
2

i
^ 0

1A1Ah�i3i
for each i : 1 � i � m.
The constraint �i corresponds to the case where the process (with index i) per-
forming the transition is part of the definition of the constraint �0. The formula
��1 and the substitutions �i1, �j2, and �i3 are defined like for the case of existential
conditions. The difference is that we apply ��1 on all the other processes, and not
only on one witness (as encoded by the conjunction operator).

– In a similar manner to the local condition case, we have one more constraint where
the process taking the transition is not part of �0. The generated constraint is
subsumed by �0 and can therefore be safely discarded in the reachability analysis.
The details of this case is given in the appendix.

Example 5 (Pre of a universal rule) Add to the parameterized system of examples 3, 4
the rule t :

ˆ
p! q B 8 other 6= self � �1

˜
with �1 =

`
self�fnext = self�f ^ other�f

´
.

Consider the constraint �0 =
“

2; f1 ^ p2
”

. If the process that performed the transition

t is represented in �0, we obtain the constraint �1 =
“

2; p1 ^ f1 ^ p2 ^ f2
”

. In the case
where the process that performed the transition is not represented in the constraint
�0, we obtain the constraint �3 =

“
3; f1 ^ p2 ^ f2 ^ p3

”
. Observe that [[�3]] �

ˆ̂
�0
˜̃

,
but that [[�1]] 6�

ˆ̂
�0
˜̃

.

Lemma 3 We have [[Pret (�0)]] =
n

cj 9:c0 2 [[�0]]: c t
; c0

o
for any transition t with a

local condition, a global existential condition, or a global universal condition.

Proof see appendix.

Entailment Consider two constraints � = (m;), and �0 =
`
m0; 0

´
. Let H(�; �0)

be the set of injections h : m 7! m0. We use h to denote the formula [�], where
� :=

n
xi xh(i)j x 2 Y and 1 � i � m

o
. The following lemma gives a logical charac-

terization which allows the computation of the entailment relation.

Lemma 4 Given two constraints � = (m;), and �0 =
`
m0; 0

´
, we have � v �0 iff

8y1 � � � yk:

0@ 0(y1; : : : ; yk) �
_

h2H(�;�0)

h(y1; : : : ; yk)

1A (3)

Proof see appendix.

Example 6 (Entailment) Consider a parameterized system (Q;X; T) with Q = fp; qg,
and X = fx 2 Ng. We compare the constraints � = (4;) and �0 =

`
4; 0

´
with

 = x
1 � x2 � x3 � x4

and

0 = x

1 � x2 � x4 ^ x1 � x3 � x4

17

Among all the possible renamings, let us consider h1 = f1 ! 1; 2 ! 2; 3 ! 3; 4 ! 4g
and h2 = f1 ! 1; 2 ! 3; 3 ! 2; 4 ! 4g. When restricting our attention to renamings
h1 and h2 we obtain the formula

8x1; x2; x3; x4:

0@ 0 �
0@x1 � x2 � x3 � x4

_

x1 � x3 � x2 � x4

1A1A
which is valid. Thus, we have that � v �0 holds. Let us fix now a configuration c =
[u1; u2; u3; u4]. Clearly, if there is an injection h such that c j=h �, then the relative
order of the values v2 and v3 of the variable x for the processes that are mapped to
position 2 and 3 in � is either v2 � v3 or v3 < v2. Thus, from h we can build injections
h1 and h2 such that either c j=h2 � or c j=h2 �. Thus, entailment corresponds to
containment of denotations.

Intersection with Initial States For a constraint � = (m;), we have (Init
T

[[�]]) 6=
; iff [uinit ; : : : ; uinit] j= �, where the multiset [uinit ; : : : ; uinit] is of size m.

9 Additional Features

In this section, we add a number of features to the model of Section 2. These features
are modelled by generalizing the guards which are allowed in the transitions. For all
the new features, we can use the same constraint system as in Section 7; consequently
checking entailment and intersection with initial states need not be modified. Also, as
shown in the appendix, the definition of the Pre operator can be extended to cope with
the new classes of guards.

Binary and N-ary Communication In binary communication two processes per-
form a rendez-vous, changing states simultaneously. Such a transition can be encoded
by considering a more general form of existential global conditions than the one al-
lowed in Section 3. More precisely we take �1 in the definition of an existential global
conditions (see (2)), to be a formula in the set

F

“
self�X [other�Y [self�Xnext [other�Y next

”
In other words, the formula �1 may also constrain variables in the set other�Y next . Here,
self and other� represent the two processes involved in the rendez-vous. For instance,
the transitionˆ

idle! busy B 9 other 6= self � other�wait ^ other�usenext
˜

represents a rendez-vous between a process in state idle and a process in state wait.
The first moves to busy while the second one moves to use.

We can naturally generalize the binary communication scheme by introducing the
use of existentially quantified conditions of the form

9 other1; : : : ; othern 6= self � �1

18

where other �1; : : : ; other �n represent n distinct processes (all different from self) and
�1 is defined over variables and next-variables associated to the qualifiers self, other�
1; : : : ; other�n, i.e. �1 is in the set

F

self�X [self�Xnext [

n[
i=1

otheri � Y [otheri � Y
next

!

This kind of quantification can be used to specify synchronization between n+1 distinct
processes. For instance, the transition24 busy ! busyp B

0@9 other1; other2 6= self �
other1 � waith ^ other1 � use

next
h ^

other2 � usel ^ other2 � preempted
next
l

1A35
represents a rendez-vous between a process in state busy and two processes, one in
state waith (h=high priority) and the other one in state usel (l=low priority). The
first one moves to busyp (p=preemption), the second moves to useh and the third one
moves to preemptedl.

Shared Variables We assume the presence of a finite set Xs of Boolean and nu-
merical shared variables that can be read and written by all processes in the system.
A transition may both modify and check Xs together with the local variables of the
processes. Shared variables can be modeled as special processes. The updating of the
value of a shared variable by a process can be modeled as a rendez-vous between the
process and the variable.

Broadcast A broadcast transition is initiated by a process, called the initiator. To-
gether with the initiator, each other process inside the system responds simultaneously
changing its local state and variables. We can model broadcast transitions by gener-
alizing universally quantified conditions. The generalization is similar to the case of
binary communication, i.e., we allow variables in other�Y next to occur in the quantified
formula. For instance, the transition24 idle! wait B

0@8 other 6= self�
(other�wait ^ other�xnext = self�x) _
(:other�wait ^ other�xnext = other�x)

1A35
models the broadcasting of the value of variable x in the initiator to all processes which
are in state wait. In the rest of the paper we often omit to mention assignments of the
form xnext = x (i.e. variables remain unchanged unless we specify the update in the
condition).

Composite Conditions As a final possible extension, we allow conditions obtained
as conjunctions and disjunctions of local and global conditions. As an example, we may
consider conditions like

(9 other 6= self � self�xnext = other�x) ^ (8 other 6= self � other�x � self�xnext)

to specify that the local variable x is updated with the minimum of the current values
of variable x in all other processes.

19

var number: shared array [0..n-1] of integer;

Process P[i] :=
loop forever

number[i] := max(number[0],number[1],...,number[n-1])+1;
for j := 0 to n-1 do begin

while number[j] <> 0 and (number[j], j) << (number[i],i) do skip;
end;
(* critical section *)
number[i] := 0;
(* non-critical section *);

Fig. 1 Pseudo-code for the bakery mut-ex algorithm with atomic assignment. The relation
(a; b) << (c; d) holds iff a < c or (a = c and b < d).

10 Case-studies

In this section we discuss the application of our verification method. For this purpose,
we consider four different formulations of Lamport’s bakery algorithm. The algorithm
is a well-known solution to the critical section problem where an arbitrary and finite
number of processes compete for a shared resource. A simple version of the algorithm
can be written in the pseudo-code of Figure 1. The rationale behind the algorithm is as
follows. Each process has a local variable number in which it stores a ticket. Initially
number equals zero. When a process is interested in entering the critical section, it
sets its number to a value strictly greater than the tickets (i.e., value of number) of
all other processes in the system. We will refer to this step as the choosing phase. A
possible way to implement this phase is by choosing a value strictly larger than the
maximum value of number in all processes. After the choosing phase, a process waits
until its ticket is less than the tickets of all other interested processes. We will refer
to this step as the entry phase. Once the process finishes its entry phase, it enters the
critical section. When a process releases the critical section, it resets its ticket to zero
(releasing phase).

In the following, we specify different models (formulations) for the above algorithm.
These models differ on the assumptions concerning two phases, namely the choosing
phase and the entry phase. We use parameterized systems with global conditions to
specify the different formulations.

Notation: To simplify the presentation we use the following abbreviations: s� instead
of self�, o� instead of other�, and, for any variable x, we use the primed variable x0 as
an abbreviation for xnext.

Also, the only primed variables we explicitly specify in the conditions are those
updated during the corresponding transition. In other words, all non mentioned primed
variables are assumed to equal their non-primed counterpart.

10.1 Simplified Bakery Algorithm

Let us assume in Figure 1 that both the choosing and the entry phases are atomic
operations. Under these assumptions, we model the bakery algorithm as shown in
Figure 2. Individual processes have a local state in the set Q = fidle; wait; useg, and
a local variable num used to maintain the current ticket. In rule t1 a process moves

20

States: Q = fidle; wait; useg

Local variables: X = fnum 2 Ng

Transitions:

t1 :
ˆ
idle! wait B 8 o 6= s � s�num0 > o�num ˜

t2 :
ˆ
wait! use B 8 o 6= s � `

o�num = 0 _ s�num < o�num ´ ˜
t3 :

ˆ
use! idle B num0 = 0

˜
Fig. 2 Simplified Bakery Algorithm.

from idle to wait and assigns to num a value strictly greater than the value of num in
all other processes. This operation is done in an atomic phase and models the choosing
phase. In rule t2 a process moves from wait to use only if the value of num in any other
process, i.e., o �num, is either zero (not interested in entering the critical section) or
larger than the ticket stored in the local variable num (s�num < o�num). We model the
entry phase using a universally quantified formula, i.e., as an atomic step. In the last
rule t3, a process moves from use to idle and resets num to zero. Initial configurations
consist of processes in state idle with their local variables num set to zero. Thus, a
process uses rule t3 to jump to its initial state. Our model corresponds to the model
with atomicity assumptions of [13].

In this case-study we are interested in verifying the safety of the mutual exclusion
algorithm for any number of processes. Unsafe states are configurations in which at
least two processes are inside the critical section. This infinite set of configurations can
be modelled by the single constraint

�F =
“

2; use1 ^ use2
”

As shown in Table 1, when running our procedure on this model with �F , the analysis
terminates and in the resulting fixpoint there are no constraints whose denotations
contain initial states. This proves that mutual exclusion holds for the model in Figure
2 for any number of processes.

10.2 Bakery with Race Conditions

The original formulation of the bakery algorithm does not take any atomicity assump-
tion on the computation of fresh tickets. The entry condition becomes more complicated
if we drop this assumption. Such a formulation can be written in the pseudo-code of
Figure 3. Since two processes may choose the same ticket, the condition compares the
tickets and the identifiers: if two processes choose the same ticket, the one with the
smaller identifier gets higher priority. We assume that all identifiers are different. Fur-
thermore, in order to protect the test in the entry phase from race conditions in the
choosing phase, Lamport’s algorithm uses one Boolean flag for each process (hence the
array choosing). The flag is set to true before starting the assignment to the local vari-
able number, and to false after its completion. A process performing the entry phase

21

var choosing: shared array [0..n-1] of boolean;
number: shared array [0..n-1] of integer;

Process P[i] :=
loop forever
choosing[i] := true;
number[i] := max(number[0],number[1],...,number[n-1])+1;
choosing[i] := false;
for j := 0 to n-1 do begin

while choosing[j] do skip;
while number[j] <> 0 and (number[j], j) << (number[i],i) do skip;

end;
(* critical section *)
number[i] := 0;
(* non-critical section *);

Fig. 3 Pseudo code for bakery algorithm with race conditions on assignments. The relation
(a; b) << (c; d) holds iff a < c or (a = c and b < d).

States: Q = fidle; choose; wait; useg

Local variables: X = fid; aux; num 2 Ng

Transitions:
t1 :

ˆ
idle! choose B 8 o 6= s � s�aux0 > o�num ˜

t2 :
ˆ
choose! wait B num0 = aux

˜

t3 :

2664
wait! use B0@ 8 o 6= s�

:o�choose ^
(o�num = 0 _ s�num < o�num _ (s�num = o�num ^ s�id < o�id))

1A
3775

t4 :
ˆ
use! idle B num0 = 0

˜
Fig. 4 Bakery with Race Conditions.

and willing to compare its ticket with another process in its choosing phase, is forced
to wait for the other process to conclude its choosing phase.

In Figure 4 we present a parameterized system that models the bakery algorithm
with race conditions in the choosing phase. Here, each process has a local state from the
set Q = fidle; choose; wait; useg and three local variables. The variable id maintains
the identifier of the process. The variable num maintains the current value of the
ticket. Finally, the variable aux is used to split in two phases the assignment of the
fresh number to num, i.e., to make explicit the non-atomicity of the choosing phase.
The choosing phase spans over two rules. In rule t1 we first update aux with a value
greater than the tickets of all other processes. In rule t2 we assign aux to num. Rule
t3 models the entry phase by means of a universally quantified formula. The current
process compares its number with the number of all other processes. We assume this
phase to be atomic. Notice that the condition fails (i.e. the process waits) in each one of
the following cases: another process id0 is choosing a number, id0 has chosen a number
that is strictly smaller than the value of num or id0 has chosen a number that is equal
to the value of num but id0 < id. Rule t4 models the release of the critical section and

22

Step 6`
2; idle1; idle2; id1 < id2´

: 12; 11; t1 F

Step 5`
2; idle1; choose2; id1 < id2´

: 11; 9; t1 F`
2; idle1; choose2; aux2 > 0; id1 < id2´

: 10; 8; t1 z

Step 4`
2; choose1; choose2; id1 < id2; aux1 < aux2´

: 9; 7; t2 F`
2; choose1; choose2; id1 < id2; aux1 = aux2´

: 8; 6; t2 z

Step 3`
2; choose1; wait2; id1 < id2; aux1 < num2´

: 7; 5; t3 F`
2; choose1; wait2; id1 < id2; aux1 = num2´

: 6; 4; t3 z

Step 2`
2; choose1; use2; id1 < id2; aux1 < num2´

: 5; 3; t2 F`
2; choose1; use2; id1 < id2; aux1 = num2´

: 4; 2; t2 z

Step 1`
2; wait1; use2; id1 < id2; num1 < num2´

: 3; 1; t3 F`
2; wait1; use2; id1 < id2; num1 = num2´

: 2; 1; t3 z

Step 0 : Bad states`
2; use1; use2; id1 < id2´

: 1 F;z

Fig. 5 Excerpt from the fixpoint for Bogus bakery: the data after each formula are tracking
information: number for the formula, number of formula from which it derives from, and
transition used to derived it.

the return to the initial state. As in the simplified version of bakery, we prove that
mutual exclusion holds for the model in Figure 4 for any number of processes starting
from �F . We show the results in Table 1.

10.3 A Bogus Formulation of the Bakery Algorithm

Our verification procedure builds a symbolic reachability graph that can be used for
debugging purposes. To illustrate, let us consider again the bakery algorithm described
in the previous section. If we remove the condition :o� choose from the entry condition
in t3, we obtain a new transition defined as»

wait! use B 8 o 6= s �
„

o�num = 0 _ s�num < o�num
_
`

s�num = o�num ^ s�id < o�id
´«–

This modified version of Lamport’s bakery algorithm is a classical example used in
textbooks to explain why the choosing flag is needed.

As shown in Table 1, when executed on this model our verification procedure ter-
minates after 10 iterations. Among the formulas computed in the fixpoint, we find two
formulas representing initial configurations (two idle processes). By exploiting some
tracking information inserted during the search it is possible to reconstruct a symbolic
trace from these formulas to the formula representing bad states. The resulting error
trace is indicated as F in Figure 5 and contains constraints 12, 11, 9, 7, 5, 3, and 1.
This trace represents the following type of execution. Process 2 moves to state choose,
selects a number m, and assigns it to the local variable aux. Process 1 moves to state
choose, and, then selects and assigns to the local variable aux a number n s.t. n < m.
Process 2 assigns aux to num. Since process 1 has not assigned the new value stored
in aux to num, process 2 can enter the critical section. Process 1 now assigns aux to
num and enters the critical section because its number is smaller than that of process

23

States:
Q = QA [QM

where QA: fidle; wait; useg and QM : fnull; visitedc; visitedeg

Local variables:
X = fis marking 2 Bg [XA [XM

where XA: fid; num; aux 2 Ng and XM : fs id; r id 2 Ng
Transitions (part I):

t1 :

2666664
idle! choose B

aux0 = num ^ 8 o 6= s �

0BBB@
:o�is marking

_

0BB@
o�is marking

^
0@ (o�s id = s�id ^ o�null0)

_
o�s id 6= s�id

1A
1CCA

1CCCA

3777775

t2 :

2666664
choose! choose B

9 o1; o2 6= s �

0BBB@
o1 �is marking ^ o1 �null ^ o1 �s id = s�id ^
:o2 �is marking ^ o1 �r id = o2 �id ^ o1 �visited0c
^

0@ (o2 �num > s�aux ^ s�aux0 = o2 �num)
_

o2 �num � s�aux

1A
1CCCA

3777775

t3 :

2666664
choose! wait B

num0 > aux ^ 8 o 6= s �

0BBB@
:o�is marking

_

0BB@
o�is marking

^
0@ (o�s id = s�id ^ o�visitedc)

_
o�s id 6= s�id

1A
1CCA

1CCCA

3777775

Fig. 6 Non-atomic computation of ticket.

2. This execution corresponds to a real error trace that explain why a process has to
wait that the choosing phase of all other processes is terminated before entering the
critical section.

Another interesting error trace is that indicated by the symbol z in Figure 5 that
contains constraints 10, 8, 6, 4, 2, and 1. When computing predecessors, the constraint
10 produces a formula subsumed by the formula 12. This implies that it is possible to
reach an instance of 10 from an initial state. By looking at the trace from 10 to the
bad states, we discover another subtle error trace. Process 2 selects a value n greater
than the value of num for process 1 and assigns it to aux. Process 1 chooses a value
m = n, and assigns it to aux. Process 2 can enter the critical section because process
1 has not terminated the assignment. Process 1 completes its assignment and enters
the critical section since its identifier is less than that of process 2.

10.4 Bakery with Non-atomic Conditions

In this section we present a formal model for a version of the bakery algorithm in which
choosing and entry phase are both non-atomic. Testing a condition non-atomically on
a set of processes means that we admit any possible interleaving between the test of
the condition over each other processes and any other enabled transition.

24

Transitions (part II) :

t4 :

2664
wait! wait B

8 o 6= s � :o�is marking _
0@ o�is marking ^

0@ (o�s id = s�id ^ o�null0)
_

o�s id 6= s�id

1A 1A
3775

t5 :

2666664
wait! wait B

9 o1; o2 6= s �

0BBB@
o1 �is marking ^ :o2 �is marking ^ o1 �null ^ o1 �s id = s�id
^o2 �id = o1 �r id ^ :o2 �choose ^ o1 �visited0e
^

0@ o2 �num = 0 _ s�num < o2 �num
_

(o2 �num = s�num ^ s�id < o1 �r id)

1A
1CCCA

3777775

t6 :

2664
wait! use B

8 o 6= s � :o�is marking _
0@ o�is marking ^

0@ (o�s id = s�id ^ o�visitede)
_

o�s id 6= s�id

1A 1A
3775

t7 :
ˆ
use! idle B num0 = 0

˜
Fig. 7 Non-atomic entry phase.

Our non-atomic model of bakery is based on the following idea. Let us first consider
the computation of new tickets. Each process uses an auxiliary local variable aux used
to compute the maximal value among the set of values of num in other processes. The
computation of a new ticket is performed by visiting the other processes in an arbitrary
order. Fix one of the other processes, the maximum value of aux and num is assigned
to num, and the process is marked as visited. When all processes have been visited, a
value strictly greater than aux is assigned to num.

The entry condition is tested in a similar way. Specifically, we compares the value
of num in the current process with the value of num in each other process. If the entry
condition is satisfied by a process, we mark it as visited. When all processes have been
visited, we can enter the critical section.

The formal model is shown in Figure 6 (non-atomic choosing phase), and Figure
7 (non-atomic entry phase). We use here processes of two types: agents and marking
processes. Agents model processes competing for the critical section. Marking processes
are used to mark visited agents. We associate a marking process to each pair of pro-
cess identifiers. A Boolean local variable is marking is used to distinguish between
the two types of processes, i.e., we assume that is marking is set to true only for
marking processes. Agents and marking are defined on the set of states QA and QM ,
respectively (see Figure 6). Agents have three local variables, namely id (agent iden-
tifier), num (ticket), and aux (auxiliary variable). Marking processes have two local
variables, namely s id (the process that computes a ticket or tests a condition), and
r id (the index of the process to be visited). The flag is marking is used to select the
subset of local variables that are relevant for the two types of processes (agents ignore
s id and r id, whereas marking processes ignore id, num and aux). Since we need to
mark processes in two distinct phases (choosing and entry), marking processes assume
three different states: null, visitedc (choosing phase) and visitede (entry phase). Initial
states are collections of idle agents (each one with unique identifiers) and of marking

25

processes in state null. Notice that, for a fixed process identifier id, the collection of
marking processes such that s id = id can be viewed as an unbounded array indexed
on all other process identifiers whose cells, say marking(id; id0), contain a value in
fnull; visitedc; visitedeg.

We are ready now to explain the meaning of the rules in Figure 6. In transition t1,
when a process id wants to enter the critical section, it assigns num to an auxiliary
variable aux, and sets the state of the marking process marking(id; id0) to null for
each other processes id0. Then, it moves to state choose. Notice that with conditions
of the form

8 o 6= s � :o�is marking _ (o�is marking ^ ')

like the condition used in t1, we can require ' to hold only on processes that represent
marking processes. In transitions t2, process id compares aux with the value of other
processes. Specifically, for each process id0 the maximum value between aux in id and
num in id0 is assigned to aux0 and id0 is marked as visited, i.e., the state of process
marking(id; id0) is updated to visitedc. These rules are specified via a synchronization
of three processes (two agents and a marking process). In transition t3, the process id
moves to state wait when all other processes have been visited (i.e. marking(id; id0) is
in state visitedc for any id0) and updates num by taking a value strictly greater than
aux. This ensures the freshness of the generated ticket.

We now describe the rules in Figure 7. In transition t4, process id sets the state
of marking(id; id0) to null, and starts comparing its current ticket with the ticket of
all other processes. In transition t5, process id tests the entry condition on process
id0. If the condition succeeds, the state of marking(id; id0) is updated to visitede
meaning that id0 has been successfully visited. This transition employs an existential
quantification that involves three processes. In transition t6, process id checks that all
marking processes are in state visitede and then enters critical section (state use). In
transition t7, process id releases the critical section, and sets num back to zero.

In this model unsafe states are configurations in which at least two processes are
inside the critical section. They can be modeled by the single constraint

�F =
„

4; :is marking
1 ^ :is marking2 ^ is marking3 ^ is marking4^

use1 ^ use2 ^ id1 = s id3 ^ id2 = r id3 ^ id2 = s id4 ^ id1 = r id4

«
With this formula, we assert the presence of at least two distinct processes in state use
(process 1 and 2) and of two marking processesmarking(id1; id2) andmarking(id2; id1)
with any possible content.

As shown in Table 1, in this case the symbolic fixpoint computation terminates.
Furthermore, initial configurations (i.e. in which all processes are in state idle and all
marking processes have state null) do not occur in the denotation of the resulting
fixpoint. This proves that mutual exclusion holds for any number of processes.

10.5 Distributed Bakery: Ticket Mutual Exclusion Algorithm

As a final experiment, we analyze a variation of the bakery algorithm used in distributed
systems. The Ticket Algorithm [7] is a distributed version of the bakery algorithm in
which a central monitor is used to generate tickets and to maintain the ticket of the
process to be served next. The central monitor can be modeled by means of two global
variables: t maintains the next fresh ticket, and s the ticket of the next process to serve.

26

Global variables:
X = ft; s 2 Ng
Local variables:
X = fa 2 Ng

States:
Q: fidle; wait; useg

Transitions:

t1 :
ˆ
idle! wait B a0 = t ^ t0 > t

˜
t2 :

ˆ
wait! use B a = s

˜
t3 :

ˆ
use! idle B (9 o 6= s � s�s0 = o�a) ^ (8 o 6= s � s�s0 � o�a)

˜
Fig. 8 Ticket mutex algorithm.

Model N-R N-I E-R E-I S-R S-I T-R T-I
Atomic conditions 6 6 0.8s 0.01s

p p
Race conditions 9 4 2.1s 0.01s

p p
Bogus 10 6 0.8s 0.22s

p p
Non-atomic conditions 14 11 18s 0.3s

p p
Ticket algorithm 9 19 0.3s 1.4s

p p

Table 1 Experimental results on different formulations of the bakery algorithm.

When interested in entering the critical section, a process gets a fresh ticket and stores
it in a local integer variable a. Then it waits until its turn comes, i.e., until s = a and
then enters. When a process leaves the critical section, the monitor assigns to s the
smallest value among all processes in the system. In other words, the central monitor
maintains the processes waiting to enter the critical section in a FIFO queue. Since
processes have a single local integer variable, our algorithm is guaranteed to terminate
when applied to this model.

As shown in Table 1, our procedure terminates and it automatically proves mutual
exclusion for any number of processes.

A parameterized formulation of an abstraction of the ticket algorithm with central
monitor in which rules have no universally quantified guards is studied in [11]. In [11]
the central monitor may forget tickets (the update of turn is defined by a jump to
any larger value). Thus, the model does not keep the FIFO order of requests. With
the help of universally quantified guards and of our approximation, we verify a more
precise model in which the FIFO order of requests is always preserved.

10.6 Summary of Experiments

Table 1 summarizes the experimental results for the different formulations of the bak-
ery algorithm described in this section. The later example is discussed in [3]. For the
experiments we have used two different implementations of the verification procedure.
The first implementation is based on the general purpose clp(Q,R) solver for real arith-
metic, while the second implementation is based on a specialized solver we implement

27

by adapting difference bound matrices on integers to handle gap-order constraints. In
Table 1, R and I indicate the use of the real and integer solver respectively. N indicates
the number of iterations needed for computing the fixpoint. E indicates the execution
time. Finally, S and T indicate if the safety properties has been proved or if an error
trace has been detected.

11 Conclusion and Future Work

We have presented a method for approximate reachability analysis of systems which
consist of an arbitrary number of processes each of which is infinite-state. Based on
the method, we have implemented a prototype and automatically verified several non-
trivial mutual exclusion protocols. In this paper we have discussed in detail verification
of mutual exclusion for several formulations of Lamport’s bakery algorithm including
formulations without atomicity assumptions on global conditions.

Our method has been successfully applied to several other examples of parame-
terized systems like Burns’, Dijkstra and Szymanski’s mutual exclusion protocols with
atomicity conditions [5], and to distributed protocols like Ricart-Agrawala [4]. Descrip-
tions of these case-studies are given in [23]. Our approximation scheme cannot directly
be applied to protocols in which processes in a given state are used to control race
conditions among processes competing for the critical section. One such example is a
non-atomic formulation of Szymanski’s mutual exclusion algorithm. For this protocol,
our approximation returns a spurious trace. We are currently working at a refinement
method to eliminate this kind of false positives.

Our algorithm relies on an abstract ordering which can be naturally extended to
several different types of data structures. We are currently developing similar algo-
rithms for systems with more complicated topologies such as trees and general forms
of graphs. This would allow us to extend our method in order to verify systems such
as those in [10].

References

1. Abdulla, P.A., Čerāns, K., Jonsson, B., Tsay, Y.K.: Algorithmic analysis of programs with
well quasi-ordered domains. Information and Computation 160, 109–127 (2000)

2. Abdulla, P.A., Delzanno, G.: On the coverability problem for constrained multiset rewrit-
ing. In: Proc. AVIS’06, 5th Int. Workshop on on Automated Verification of Infinite-State
Systems (2006)

3. Abdulla, P.A., Delzanno, G., Rezine, A.: Parameterized verification of infinite-state pro-
cesses with global conditions. In: Proc. 19th Int. Conf. on Computer Aided Verification,
Lecture Notes in Computer Science, vol. 4590, pp. 145–157 (2007)

4. Abdulla, P.A., Delzanno, G., Rezine, A.: Monotonic abstraction in action (automatic ver-
ification of distributed mutex algorithms). In: ICTAC (2008). To appera.

5. Abdulla, P.A., Henda, N.B., Delzanno, G., Rezine, A.: Regular model checking without
transducers (on efficient verification of parameterized systems). In: Proc. TACAS ’07, 13th
Int. Conf. on Tools and Algorithms for the Construction and Analysis of Systems (2007)

6. Abdulla, P.A., Jonsson, B., Nilsson, M., d’Orso, J.: Regular model checking made simple
and efficient. In: Proc. CONCUR 2002, 13th Int. Conf. on Concurrency Theory, Lecture
Notes in Computer Science, vol. 2421, pp. 116–130 (2002)

7. Andrews, G.: Foundations of Multithreaded, Parallel, and Distributed Programming. Ad-
dison Wesley (2000)

28

8. Arons, T., Pnueli, A., Ruah, S., Xu, J., Zuck, L.: Parameterized verification with auto-
matically computed inductive assertions. In: Berry, Comon, Finkel (eds.) Proc. 13th Int.
Conf. on Computer Aided Verification, Lecture Notes in Computer Science, vol. 2102, pp.
221–234 (2001)

9. Boigelot, B., Legay, A., Wolper, P.: Iterating transducers in the large. In: Proc. 15th Int.
Conf. on Computer Aided Verification, Lecture Notes in Computer Science, vol. 2725, pp.
223–235 (2003)

10. Bouajjani, A., Habermehl, P., Rogalewicz, A., Vojnar, T.: Abstract tree regular model
checking of complex dynamic data structures. In: Proc. 13th Int. Symp. on Static Analysis
(2006)

11. Bozzano, M., Delzanno, G.: Beyond parameterized verification. In: Proc. TACAS ’02, 8th
Int. Conf. on Tools and Algorithms for the Construction and Analysis of Systems, Lecture
Notes in Computer Science, vol. 2280, pp. 221–235 (2002)

12. Bultan, T., Gerber, R., Pugh, W.: Model-checking concurrent systems with unbounded
integer variables. ACM Trans. on Programming Languages and Systems 21(4), 747–789
(1999)

13. Clarke, E., Talupur, M., Veith, H.: Environment abstraction for parameterized verifica-
tion. In: Proc. VMCAI ’06, 7th Int. Conf. on Verification, Model Checking, and Abstract
Interpretation, Lecture Notes in Computer Science, vol. 3855, pp. 126–141 (2006)

14. Delzanno, G.: Automatic verification of cache coherence protocols. In: Emerson, Sistla
(eds.) Proc. 12th Int. Conf. on Computer Aided Verification, Lecture Notes in Computer
Science, vol. 1855, pp. 53–68. Springer Verlag (2000)

15. Emerson, E., Namjoshi, K.: On model checking for non-deterministic infinite-state systems.
In: Proc. LICS ’98, 13th IEEE Int. Symp. on Logic in Computer Science, pp. 70–80 (1998)

16. Esparza, J., Finkel, A., Mayr, R.: On the verification of broadcast protocols. In: Proc.
LICS ’99, 14th IEEE Int. Symp. on Logic in Computer Science (1999)

17. Fribourg, L., Richardson, J.: Symbolic verification with gap-order constraints. In: LOP-
STR’96, Lecture Notes in Computer Science, vol. 1207 (1997)

18. German, S.M., Sistla, A.P.: Reasoning about systems with many processes. Journal of the
ACM 39(3), 675–735 (1992)

19. Kesten, Y., Maler, O., Marcus, M., Pnueli, A., Shahar, E.: Symbolic model checking with
rich assertional languages. Theoretical Computer Science 256, 93–112 (2001)

20. Lahiri, S.K., Bryant, R.E.: Indexed predicate discovery for unbounded system verification.
In: CAV 2004, pp. 135–147 (2004)

21. Lamport, L.: A new solution of Dijkstra’s concurrent programming problem. Commun.
ACM 17(8), 453–455 (1974)

22. Revesz, P.: A closed form evaluation for datalog queries with integer (gap)-order con-
straints. Theoretical Computer Science 116(1), 117–149 (1993)

23. Rezine, A.: Parameterized systems: Generalizing and simplifying automatic verification.
Ph.D. thesis, Uppsala University (2008)

24. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verifica-
tion. In: Proc. LICS ’86, 1st IEEE Int. Symp. on Logic in Computer Science, pp. 332–344
(1986)

A Computing Pre

In the following we use u, u0 and ũ to denote process states, that is, mappings from Y to
B [N . Unless otherwise specified, a process state indexed by i, for instance ui, is a mapping
from Y i to B [N . Given a substitution � =

˘
xj xij xi 2 Y i

¯
, we write (�)inv to mean the

substitution
˘
xi xj j xj 2 Y j

¯
. We sometimes view a process state ui : Y i ! B [N as the

substitution
˘
xi u(xi)j xi 2 Y i

¯
. For a substitution � =

˘
xi xj j xj 2 Y j

¯
, and a process

state ui : Y i ! B [N , we write ui [�] to mean the process state that sends each variable xj
in Y j to u(xi).

Proof (lemma 3) Recall �0 = (m; 0) and � is the condition in the transition t. We distinguish
three cases depending on whether � is a local, a global existential or a global universal condition.
We show Pret (�0) =

n
c 2 [[�0]] j c t

; c0
o

for each case by considering both directions.

� Local conditions. Can be easily deduced from the existential and the universal cases.

29

� Existential conditions.

* First direction: [[Pret (�0)]] �
n
cj 9c0 2 [[�0]] : c t

; c0
o

.
For �0 = (m; 0), let � = (n; i;j) be in Pret (�0). The following four cases are possible
by definition of Pret . Either i) (n; i; j) = (m; k; l) for some k; l in m and k 6= l, or
ii) (n; i; j) = (m+ 1; k;m+ 1) for some k in m, or iii) (n; i; j) = (m+ 1;m+ 1; l) for
some l in m, or iv) (n; i; j) = (m+ 2;m+ 1;m+ 2). Intuitively, the process taking the
transition is indexed by i, while the witness is indexed by j.
We let c be a configuration in [[�]] and show the existence of a configuration c0 in [[�0]]
such that c t

; c0. We assume c to equal
ˆ
u1; : : : ; ujcj

˜
where, up to a renaming, uk for

k in n are mappings from Y k to B[N such that i;j [u1; : : : ; un] holds. That is to say““
9Y i: 0 ^ ��1

ˆ
�i1

˜ h
�j2

i” ˆ
�i3

˜”
[u1; : : : ; un] (4)

where ��1 is defined as

�1 ^ self�q ^ self�q0next ^
^
p 6=q

:self�p ^
^

p0 6=q0

:self�q0next

while �i1 =
˘

self�xnext xij xi in Y i
¯

, �j2 =
˘

other�x xj j xj in Y j
¯

, and �i3 =˘
self�x xij xi in Y i

¯
. Notice that ui, respectively uj , is the only process state in

u1; : : : ; un mapping variables in Y i, respectively Y j .
Observe that (4) implies the existence of a mapping from Y i to B[N (that we denote
u0i) and such that“

 0 ^ ��1
ˆ
�i1

˜ h
�j2

i” ˆ
u1; : : : ; ui

ˆ
(�i3)inv

˜
; : : : ; un; u

0
i

˜
(5)

Intuitively, u0i corresponds to the next-values of the process that took the transition t.
Define c0 to be the configuration

h
u01; : : : ; u

0
jcj

i
where u0k = uk for each k in (jcj) n fig.

Notice that, except for the variables of process i, the variables of processes in c0 are
mapped to the same values as those of c.
We show c0 2 [[�0]]. Observe that 0 in (5) does not refer to any element of self�Y , or Y o

for o =2 m. We therefore discard ui and u0o for o outside m, and deduce 0
ˆ
u01; : : : ; u

0
m

˜
.

In other words, the configuration
ˆ
u01; : : : ; u

0
m

˜
is in [[�0]]. Clearly,

ˆ
u01; : : : ; u

0
m

˜ � c0

(take the injection to be the identity on m). Lemma (2) says the set [[�0]] is upward
closed, and hence c0 2 [[�0]].
Now, we show c t

; c0. It is sufficient to prove c t�! c0. Observe (5) also implies“
��1

ˆ
�i1

˜ h
�j2

i” ˆ
u1; : : : ; ui

ˆ
(�i3)inv

˜
; : : : ; un; u0i

˜
. Because ��1

ˆ
�i1

˜ h
�j2

i
only depends on

variables in self�Y , Y i or Y j , we can ignore process states that map other variables,
meaning we can write

“
��1

ˆ
�i1

˜ h
�j2

i” ˆ
ui

ˆ
(�i3)inv

˜
; u0i; uj

˜
. This has two consequences.

i) ui, respectively u0i, ensures the first process is at state q, respectively q0, and ii)`
ui; u

0
i; uj

´ j= �1. In other words, [u1; : : : ; un] t�! ˆ
u01; : : : ; u

0
n

˜
. Furthermore, since

the transition modifies only the local state of process i, and because the existential
quantification remains valid in any larger configuration, we have that c t�! c0.

* Second direction:
n
cj 9c0 2 [[�0]] : c t

; c0
o
� [[Pret (�0)]].

The transitions involving existential conditions are not over-approximated, hence c t
;

c0 iff c t�! c0. Assume c =
ˆ
u1; : : : ; ujcj

˜
and c0 =

h
u01; : : : ; u

0
jc0j

i
. Observe that c �! c0

says jcj = jc0j, and implies the existence of i 6= j, both in jc0j, such that the three
following statements hold. First, the process i is at q in c, and at q0 in c0; second`
ui; u

0
i; uj

´ j= �1; and third uk = u0k for every k in jc0j n fig.
Also, recall �0 = (m; 0). We can assume, up to a renaming, that process states
u01 : : : ; u

0
jc0j verify 0

ˆ
u01; : : : ; u

0
m

˜
, i 2 m+ 1 and j 2 m+ 2 n fig. Define n to take the

maximum on fm; i; jg.

30

The condition 0 only depends on control states and variables in Y 1 : : : Ym. Define
�i3 to be the substitution

˘
self�x xij xi 2 Y i

¯
. 0 does not depend on elements of

self�Y , and we clearly get

 0
ˆ
u01; : : : ; ui

ˆ
(�i3)inv

˜
; : : : ; u0n

˜
(6)

Also, recall
`
ui; u

0
i; uj

´ j= �1 means �1 holds when occurrences of self � x, self � xnext ,
and other � x are respectively replaced by the values stated in ui, u0i and uj . Fur-
thermore, ui and u0i respectively state that process i is at q and q0. Define �i1 =˘

self�xnext xij xi in Y i
¯

, and �j2 =
˘

other�x xj j xj in Y j
¯

. We can therefore
write

“
��1

ˆ
�i1

˜ h
�j2

i” ˆ
ui

ˆ
(�i3)inv

˜
; u0i; uj

˜
. Since ��1 only depends on self �x, self �xnext ,

and other � x, we deduce“
��1

ˆ
�i1

˜ h
�j2

i” ˆ
u1; : : : ui

ˆ
(�i3)inv

˜
; : : : un; u

0
i

˜
(7)

By combining (6) and (7), we get“
9Y i:

“
 0 ^ ��1

ˆ
�i1

˜ h
�j2

i”” ˆ
u1; : : : ui

ˆ
(�i3)inv

˜
; : : : un

˜
We deduce [u1; : : : ; un] is in [[(n; i;j)]]. Lemma (2) says [[(n; i;j)]] is upward closed.
Combined with [u1; : : : ; un] � c (identity on n), we conclude that the configuration c
is also in [[Pret (�0)]].

� Universal conditions

* First direction [[Pret (�0)]] �
n
cj 9c0 2 [[�0]] : c t

; c0
o

For �0 = (m; 0), let � = (n; i) be in Pret (�0). Two cases are possible according
to the definition of Pret . Either i) (n; i) = (m; k) for some k in m, or ii) (n; i) =
(m+ 1;m+ 1). Intuitively, the process taking the transition is indexed by i, This
process may or may not be represented in 0.
We let c be a configuration in [[�]] and show the existence of a configuration c0 in [[�0]]
such that c t

; c0. Up to a renaming, we write c both as c1�[ui]�c2 and as
ˆ
u1; : : : ; ujcj

˜
,

where i [u1; : : : ; un]. That is to say0@9Y i:

0@ 0 ^ ^
j2nnfig

��1
ˆ
�i1

˜ h
�j2

i1A ˆ
�i3

˜1A [u1; : : : ; un] (8)

where ��1 is defined as in the existential case.

�1 ^ self�q ^ self�q0next ^
^
p 6=q

:self�p ^
^

p0 6=q0

:self�p0next

where �i1 =
˘

self�xnext xij xi in Y i
¯

, �j2 =
˘

other�x xj j xj in Y j
¯

, and �i3 =˘
self�x xij xi in Y i

¯
. Notice that ui is the only process state in u1; : : : ; un mapping

variables in Y i. Notice also that all variables in Y j for j 2 n n fig are constrained in
(8).
We deduce the existence of a process state u0i mapping variables in Y i to B [N such
that the following holds0@ 0 ^ ^

j2nnfig

��1
ˆ
�i1

˜ h
�j2

i1A ˆ
u1; : : : ; ui

ˆ
(�i3)inv

˜
; : : : ; un; u

0
i

˜
(9)

Define both configurations c̃ and c0 as:

c̃ = (c1 	 (�1; ui; u0i)) � [ui] � (c2 	 (�1; ui; u0i));

c0 = (c1 	 (�1; ui; u0i)) � [u0i] � (c2 	 (�1; ui; u0i)):

31

Notice that
“V

j2nnfig �
�
1

ˆ
�i1

˜ h
�j2

i” ˆ
u1; : : : ; ui

ˆ
(�i3)inv

˜
; : : : ; un; u0i

˜
implies each pro-

cess state in fu1; : : : ; ung n fuig is in (c1 � c2)	 (�1; ui; u0i).
By construction, we have that ui and u0i, respectively ensure process i is at state q
and q0. Moreover, we have

`
ui; u

0
i; u

´ j= �1 for each u in (c1 � c2)	 (�1; ui; u0i). That is
to say, c̃ t�! c0, and c t

;1 c0. In order to conclude, we show c0 in [[�0]].
The statement (9) ensures 0

ˆ
u1; : : : ; ui

ˆ
(�i3)inv

˜
; : : : ; un; u0i

˜
. Since 0 does not men-

tion variables in self�Y , we get 0
ˆ
u1; : : : ; u0i; : : : ; un

˜
. Recall that each process state

in fu1; : : : ; ung n fuig is in (c1 � c2) 	 (�1; ui; u0i). Clearly
ˆ
u1; : : : ; u0i; : : : ; un

˜ � c0.
Since [[�0]] is upward closed by lemma (2), we conclude c0 to be in [[�0]].

* Second direction
n
cj 9c0 2 [[�0]] : c t

; c0
o
� [[Pret (�0)]]

Let c and c0 be two configurations such that c t
; c0 and c0 in [[�0]]. We show c is in [[�]]

for some � in Pret (�0).
Recall that �0 = (m; 0). Assume c0 =

h
u01; : : : ; u

0
jc0j

i
, where up to a renaming the

process that took the transition has index i in m+ 1 and 0
ˆ
u01; : : : ; u

0
m

˜
. Intuitively,

the case i = m+ 1 corresponds to the case where the process that took the transition
is not represented in 0.
Let u be the process state of the process in c = c1 � [u] � c2 taking the transition t. By
definition of c t

; c0 we have, c0 = c01 � [u0i] � c02 where i) u in c is at q and u0i in c0 is at
q0, and ii) c01 = c1 	 (�1; u; u0i) while c02 = c2 	 (�1; u; u0i).
We show c in [[�]] for � = (n; i) with i 2 n and n 2 fm;m+ 1g.
Define the configuration c̃ to be c̃ = c̃1 � [ũi] � c̃2 = [ũ1; : : : ; ũn] with ũk = u0k for each
k 2 n n fig, and ũi maps xi 2 Y i to the same value u maps x 2 Y to. Intuitively
c̃ corresponds to a predecessor, without approximation, of c0. Consider the injection
sending each process state in c̃ to the first equal process state in c, this injection is well
defined since c̃ is obtained through deletion of processes from c. This means c̃ � c. In
the following we show c̃ 2 [[�]]. This is sufficient to show c also in [[�]] because the later
is upward closed by lemma (2).
The condition 0 does not refer to elements of self �Y . Define the substitution �i3 as˘

self�x xij xi 2 Y i
¯

. By construction

 0
ˆ
ũ1; : : : ; ũi

ˆ
(�i3)inv

˜
; : : : ; ũn; u

0
i

˜
Define substitutions �i1 and �j2 to respectively equal

˘
self�xnext xij xi 2 Y i

¯
and˘

self�x xj j xj 2 Y j
¯

. Recall that
“
u; u0i; u

0
j

”
j= �1 for each u0j in c01 and c02. This

implies
“
�1

ˆ
�i1

˜ h
�j2

i” ˆ
ũi

ˆ
(�i3)inv

˜
; u0i; ũj

˜
for each ũj in c̃1 and c̃2. Also recall ũi,

respectively u0i, states process i to be at local state q, respectively q0. Therefore:0@ 0 ^ ^
j2nnfig

��1
ˆ
�i1

˜ h
�j2

i1A ˆ
ũ1; : : : ; ũi

ˆ
(�i3)inv

˜
; : : : ; ũn; u

0
i

˜
That is:0@9Y i:

0@ 0 ^ ^
j2mnfig

��1 [�2] [�3]
h
�j4

i1A1A ˆ
ũ1; : : : ; ũi

ˆ
(�i3)inv

˜
; : : : ; ũn

˜
Hence, c̃ j= and c̃ 2 [[�]].

Proof (lemma 4) We show both directions
– First direction (if). Given c in [[�0]], we show c in [[�]]. since c is in [[�0]], we get that
c = [u1; : : : ; un] and (up to renaming) 0 [u1; : : : ; um0] holds. From (3) we deduce the
existence of an injection h in H(�; �0) such that h [u1; : : : ; um0] holds. In other words,
the configuration

ˆ
uh(1); : : : ; uh(m)

˜
is in [[�]]. Clearly

ˆ
uh(1); : : : ; uh(m)

˜ � c, which results
in c 2 [[�]].

32

– Second direction (only if)
Suppose (3) does not hold. We find a configuration c in [[�0]] but not in [[�]]. The fact that
(3) does not hold entails the existence of at least a substitution to y1; : : : ; yk, for which
 0(y1; : : : ; yk) holds but not

W
h2H(�;�0)

h(y1; : : : ; yk). Reformulate such a substitution
into the configuration c = [u1; : : : ; um] of size m. Clearly, h [u1; : : : ; um] does not hold
for any injection h 2 H(�; �0). The configuration c is therefore outside [[�]].

Now, we explain the computation of Pre for both rendez-vous and Broadcast. In the
following, we assume a constraint �0 = (m; 0).

Binary Communication We assume Ym+1 and Ym+2 to be fresh copies of Y . We define
the following four substitutions

�i1 =
˘

self�xnext xij xi 2 Y i
¯

�j2 =
˘

other�xnext xj j xj 2 Y j
¯

�i3 =
˘

self�x xij xi 2 Y i
¯

�j4 =
˘

other�x xj j xj 2 Y j
¯

The set Pret (�0) contains the constraints � = (n; i;j) with

 i;j =
“
9(Y i [Y j): 0 ^ ��1

ˆ
�i1

˜ h
�j2

i” ˆ
�i3

˜ h
�j4

i
The tuple (n; i; j) can take the following values:

– (n; i; j) = (m; i; j) and i; j 2 m and i 6= j.
– (n; i; j) = (m+ 1; i;m+ 1) and i 2 m
– (n; i; j) = (m+ 1;m+ 1; j) and j 2 m
– (n; i; j) = (m+ 2;m+ 1;m+ 2).

Broadcast We let Y knext , for k : 1 � k � m+ 1, be m+ 1 fresh copies of Y . We define the
following five substitutions

�i1 =
n

self�xnext xi
next j xinext 2 Y inext

o
�j2 =

n
other�xnext xj

next j xjnext 2 Y jnext
o

�i3 =
˘

self�x xij xi 2 Y i
¯

�j4 =
˘

other�x xj j xj 2 Y j
¯

�5 =
n
xk xk

next j xknext 2 Y knext ; k : 1 � k � n
o

The set Pret (�0) contains the constraints � = (n; i) with

 i = 9(
[
k2n

Y knext):

0@ 0 [�5] ^
^

j2nnfig

��1
ˆ
�i1

˜ h
�j2

i ˆ
�i3

˜ h
�j4

i1A
The tuple (n; i) can take the following values:

– (n; i) = (m; i) and i 2 m.
– (n; i) = (m+ 1;m+ 1).

For a a binary communication or a broadcast t, one can prove [[Pret (�0)]] =
n
c t
; c0j c0 2 [[�]]

o
by using straightforward generalizations of the proofs for transitions with existential and uni-
versal conditions.

