
R-automata
?

Parosh Aziz Abdulla, Pavel Krcal, and Wang Yi

Department of Information Technology,
Uppsala University, Sweden

Email: {parosh,pavelk,yi}@it.uu.se

Abstract. We introduce R-automata � a model for analysis of systems
with resources which are consumed in small parts but which can be re-
plenished at once. An R-automaton is a �nite state machine which oper-
ates on a �nite number of unbounded counters (modeling the resources).
The values of the counters can be incremented, reset to zero, or left
unchanged along the transitions. We de�ne the language accepted by an
R-automaton relative to a natural number D as the set of words allowing
a run along which no counter value exceeds D. As the main result, we
show decidability of the universality problem, i.e., the problem whether
there is a number D such that the corresponding language is universal.
The decidability proof is based on a reformulation of the problem in
the language of �nite monoids and solving it using the factorization for-
est theorem. This approach extends the way in which the factorization
forest theorem was used to solve the limitedness problem for distance
automata in [Sim94]. We also show decidability of the non-emptiness
problem and the limitedness problem, i.e., whether there is a natural
number D such that the corresponding language is non-empty resp. all
the accepted words can also be accepted with counter values smaller than
D. Finally, we extend the decidability results to R-automata with Büchi
acceptance conditions.

1 Introduction

We consider systems operating on resources which are consumed in small parts
and which can be (or have to be) replenished completely at once. To model such
systems, we introduce R-automata � �nite state machines extended by a �nite
number of unbounded counters corresponding to the resources. The counters
can be incremented, reset to zero, or left unchanged along the transitions. When
the value of a counter is equal to zero then the stock of this resource is full.
Incrementing a counter means using one unit of the resource and resetting a
counter means the full replenishment of the stock.

We de�ne the language accepted by an R-automaton relative to a natural
number D as the set of words allowing an accepting run of the automaton such
that no counter value exceedsD in any state along the run. We study the problem
of whether there is a numberD such that the corresponding language is universal.

? This work has been partially supported by the EU CREDO project.

This problem corresponds to the fact that with stock size D, the system can
exhibit all the behaviors without running out of resources. We show that this
problem is decidable in 2-EXPSPACE. We extend this result to show decidability
of the limitedness problem, i.e., to decide whether there is a natural number D
such that all the accepted words can also be accepted with the counter value
smaller than D. We also show the decidability of the non-emptiness problem. As
a second technical contribution, we extend the decidability of the universality
problem to R-automata with Büchi acceptance conditions.

To prove decidability of the universality problem, we adopt the technique
from [Sim94] and extend it to our setting. We reformulate the problem in the lan-
guage of �nite monoids and solve it using the factorization forest theorem [Sim90].
In [Sim94], this theorem is used for solving the limitedness problem for dis-
tance automata. Distance automata are a subclass of R-automata with only one
counter which is never reset. In contrast to this model, we handle several counters
and resets. This extension cannot be encoded into the distance automata.

The decision algorithm deals with abstractions of collections of runs in order
to �nd and analyze the loops created by these collections. The main step in
the correctness proof is to show that each collection of runs along the same
word can be split (factorized) into short repeated loops, possibly nested. Having
such a factorization, one can analyze all the loops to check that none of the
counters is only increased without being reset along them. If none of the counters
is increased without being reset then we can bound the counter values by a
constant derived from the length of the loops. Since the length of the loops is
bounded by a constant derived from the automaton, all words can be accepted
by a run with bounded counters. Otherwise, we show that there is a +-free
regular expression such that for any bound there is a word obtained by pumping
this regular expression which does not belong to the language. Therefore, the
language cannot be universal for any D.

Related work. The concept of distance automata and the limitedness prob-
lem were introduced by Hashiguchi [Has82]. The limitedness problem is to decide
whether there is a natural number D such that all the accepted words can also be
accepted with the counter value smaller thanD. Di�erent proofs of the decidabil-
ity of the limitedness problem are reported in [Has90,Leu91,Sim94]. The last of
these results [Sim94] is based on the factorization forest theorem [Sim90,Col07].
The model of R-automata, which we consider in this paper, extends that of
distance automata by introducing resets and by allowing several counters. Fur-
thermore, all the works mentioned above only consider the limitedness problem
on �nite words, while we here extend the decidability result of the universality
problem to the case of in�nite words. Distance automata were extended in [Kir05]
with additional counters which can be reset following a hierarchical discipline
resembling parity acceptance conditions. R-automata relax this discipline and
allow the counters to be reset arbitrarily. Universality of a similar type of au-
tomata for tree languages is studied in [CL08]. A model with counters which can
be incremented and reset in the same way as in R-automata, called B-automata,
is presented in [BC06]. B-automata accept in�nite words such that the counters

2

are bounded along an in�nite accepting computation. Decidability of our prob-
lems can be obtained using the results from [BC06]. However, this would require
complementation of a B-automaton which results in a non-elementary blowup
of the automaton state space.

The fact that R-automata can have several counters which can be reset al-
lows, for instance, to capture the abstractions of the sampled semantics of timed
automata [KP05,AKY07]. A sampled semantics given by a sampling rate ε = 1/f
for some positive integer f allows time to pass only in steps equal to multiples of
ε. The number of di�erent clock valuations within one clock region (a bounded
set of valuations) corresponds to a resource. It is �nite for any ε while in�nite in
the standard (dense time) semantics of timed automata. Timed automata can
generate runs along which clocks are forced to take di�erent values from the
same clock region (an increment of a counter), take exactly the same value (a
counter is left unchanged), or forget about the previously taken values (a counter
reset).

2 Preliminaries

First, we introduce the model of R-automata and its unparameterized semantics.
Then, we introduce the parameterized semantics, the languages accepted by the
automaton, and the decision problems.

R-automata. R-automata are �nite state machines extended with counters.
A transition may increase the value of a counter, leave it unchanged, or reset
it back to zero. The automaton on its own does not have the capability of
testing the values of the counters. However, the semantics of these automata is
parameterized by a natural number D which de�nes an upper bound on counter
values which may appear along the computations of the automaton. Let N denote
the set of non-negative integers.

An R-automaton with n counters is a 5-tuple A = 〈S,Σ,∆, s0, F 〉 where

� S is a �nite set of states,
� Σ is a �nite alphabet,
� ∆ ⊆ S ×Σ × {0, 1, r}n × S is a transition relation,
� s0 ∈ S is an initial state, and
� F ⊆ S is a set of �nal states.

Transitions are labeled (together with a letter) by an e�ect on the counters.
The symbol 0 corresponds to leaving the counter value unchanged, the symbol
1 represents an increment, and the symbol r represents a reset. We use t, t1, . . .
to denote elements of {0, 1, r}n which we call e�ects. A path is a sequences of
transitions (s1, a1, t1, s2),(s2, a2, t2, s3), . . . , (sm, am, tm, sm+1), such that ∀1 ≤
i ≤ m.(si, ai, ti, si+1) ∈ ∆. An example of an R-automaton is given in Figure 1.

Unparameterized semantics. We de�ne an operation ⊕ on the counter
values as follows: for any k ∈ N, k ⊕ 0 = k, k ⊕ 1 = k + 1, and k ⊕ r = 0.
We extend this operation to n-tuples by applying it componentwise. The oper-
ational semantics of an R-automaton A = 〈S,Σ,∆, s0, F 〉 is given by a labeled

3

s0 s1

s2

a, (1, 0)

b, (r, r)a, (0, 1)

b, (0, 1)

a, (0, r)

Fig. 1. An R-automaton with two counters.

transition system (LTS) JAK = 〈Ŝ, Σ, T, ŝ0〉, where the set of states Ŝ contains
pairs 〈s, (c1, . . . , cn)〉, s ∈ S, ci ∈ N for all 1 ≤ i ≤ n, with the initial state
ŝ0 = 〈s0, (0, . . . , 0)〉. The transition relation is de�ned by (〈s, (c1, . . . , cn)〉, a, 〈s,
(c′1, . . . , c

′
n)〉) ∈ T if and only if 〈s, a, t, s′〉 ∈ ∆ and (c′1, . . . , c

′
n) = (c1, . . . , cn)⊕t.

We shall call the states of the LTS con�gurations.
We write 〈s, (c1, . . . , cn)〉 a−→ 〈s, (c′1, . . . , c′n)〉 if (〈s, (c1, . . . , cn)〉, a, 〈s, (c′1,

. . . , c′n)〉) ∈ T . We extend this notation also for words, 〈s, (c1, . . . , cn)〉 w−→
〈s, (c′1, . . . , c′n)〉, where w ∈ Σ+.

Paths in an LTS are called runs to distinguish them from paths in the un-
derlying R-automaton. Observe that the LTS contains in�nitely many states,
but the counter values do not in�uence the computations, since they are not
tested anywhere. In fact, for any R-automaton A, JAK is bisimilar to A consid-
ered as a �nite automaton (without counters and e�ects). The LTS induced by
the R-automaton from Figure 1 is in Figure 2.

s0, (0, 0) s1, (1, 0)
a

s1, (1, 1)
b

s1, (1, 2)
b

s1, (1, 3)
b

s2, (0, 1) s2, (0, 0)
a

a b b b b

a

Fig. 2. The unparameterized semantics of the R-automaton in Figure 1.

Parameterized Semantics.Next, we de�ne theD-semantics of R-automata.
We assume that the resources associated to the counters are not in�nite and we
can use them only for a bounded number of times before they are replenished
again. If a machine tries to use a resource which is already completely used up,
it is blocked and cannot continue its computation.

For a given D ∈ N, let ŜD be the set of con�gurations restricted to the con�g-
urations which do not contain a counter exceedingD, i.e., ŜD = {〈s, (c1, . . . , cn)〉|

4

〈s, (c1, . . . , cn)〉 ∈ Ŝ and (c1, . . . , cn) ≤ (D, . . . ,D)} (≤ is applied component-
wise). For an R-automaton A, the D-semantics of A, denoted by JAKD, is JAK
restricted to ŜD. We write 〈s, (c1, . . . , cn)〉 a−→D 〈s, (c′1, . . . , c′n)〉 to denote the
transition relation of JAKD. We extend this notation for words, 〈s, (c1, . . . , cn)〉

w−→D 〈s, (c′1, . . . , c′n)〉 where w ∈ Σ+. The 2-semantics of the R-automaton from
Figure 1 is in Figure 3.

s0, (0, 0) s1, (1, 0)
a

s1, (1, 1)
b

s1, (1, 2)
b

s2, (0, 1) s2, (0, 0)
a

a b b b

a

Fig. 3. The 2-semantics of the R-automaton in Figure 1.

It is easy to see that for each D1 < D2, JAKD2 simulates JAKD1 and JAK
simulates JAKD2 . Even stronger, for each ŝ ∈ ŜD1 , let ŝD1 , ŝD2 , ŝ denote the
con�gurations in JAKD1 , JAKD2 , JAK, respectively. Then ŝD2 simulates ŝD1 and ŝ
simulates ŝD2 .

We abuse the notation to avoid stating the counter values explicitly when it
is not necessary. We de�ne the reachability relations −→ and −→D over pairs
of states and words as follows. For s, s′ ∈ S and w ∈ Σ+, s

w−→ s′ if and only
if there is a path (s, a1, t1, s1), (s1, a2, t2, s2), . . . , (s|w|−1, a|w|, t|w|, s

′) such that

w = a1 · a2 · · · a|w|. For each D ∈ N, s w−→D s′ if also for all 1 ≤ i ≤ |w|,
t1 ⊕ t2 ⊕ · · · ⊕ ti ≤ (D, . . . ,D). It also holds that s

w−→D s′ if and only if there

is a run 〈s, (0, . . . , 0)〉 w−→D 〈s′, (c1, . . . , cn)〉.
Language. The (unparameterized or D-) language of an R-automaton is

the set of words which can be read along the runs in the corresponding LTS
ending in an accepting state (in a con�guration whose �rst component is an
accepting state). The unparameterized language accepted by an R-automaton A

is L(A) = {w|s0
w−→ sf , sf ∈ F}. For a givenD ∈ N, theD-language accepted by

an R-automaton A is LD(A) = {w|s0
w−→D sf , sf ∈ F}. The unparameterized

language of the R-automaton from Figure 1 is ab∗a∗. The 2-language of this
automaton is a(ε+ b+ bb+ bbb)a∗.

Problem De�nition. Now we can ask a question about language non-
emptiness or universality of an R-automaton A parameterized by D, i.e., is there
a natural number D such that LD(A) = ∅ or LD(A) = Σ∗. Figure 4 shows an
R-automaton A such that L2(A) = Σ∗.

The language de�nitions and the questions can also be formulated for in�nite
words with Büchi acceptance conditions. The unparameterized ω-language of the

5

s0 s1

s2

a, r

a, 1
a, 1

b, 0 b, 0

b, 0

Fig. 4. A 2-universal R-automaton.

automaton from Figure 1 is abω + ab∗aω. The 2-ω-language of this automaton is
a(ε+ b+ bb+ bbb)aω.

3 Universality

The main result of the paper is the decidability of the universality problem for
R-automata formulated in the following theorem.

Theorem 1. For a given R-automaton A, the question whether there is D ∈ N
such that LD(A) = Σ∗ is decidable in 2-EXPSPACE.

First, we introduce and also formally de�ne the necessary concepts (pat-
terns, factorization, and reduction) together with an overview of the whole proof.
Then we show the construction of the reduced factorization trees and state the
correctness of this construction. Finally, we present an algorithm for deciding
universality.

3.1 Concepts and Proof Overview

When an R-automaton A is not universal for all D ∈ N then there is an in�nite
set X of words such that for each D ∈ N there is wD ∈ X and wD /∈ LD(A). We
say then that X is a counterexample. The main step of the proof is to show that
there is an X which can be characterized by a +-free regular expression. In fact,
we show that X also satis�es a number of additional properties which enable
us to decide for every such a +-free regular expression, whether it corresponds
to a counterexample or not. Another step of the proof is to show that we need
to check only �nitely many such +-free regular expressions in order to decide
whether there is a counterexample at all.

Patterns. The standard procedure for checking universality in the case of
�nite automata is subset construction. Whenever there are non-deterministic
transitions s

a−→ s1 and s
a−→ s2 then we build a �summary� transition {s} a−→

{s1, s2}. This summary transition says that from the set of states {s} we get to
the set of states {s1, s2} after reading the letter a. In the case of R-automata,

6

subset construction is in general not guaranteed to terminate since the values
of the counters might grow unboundedly. To deal with this problem, we exploit
the fact that the values of the counters do not in�uence the computations of the
automaton. Therefore, we perform an abstraction which hides the actual values
of the counters and considers only the e�ects along the transitions instead. The
abstraction leads to a more complicated variant of summary transitions namely
so called patterns.

We de�ne a commutative, associative, and idempotent operation ◦ on the set
{0, 1, r}: 0 ◦ 0 = 0, 0 ◦ 1 = 1, 0 ◦ r = r, 1 ◦ 1 = 1, 1 ◦ r = r, and r ◦ r = r. In fact,
if we de�ne an order 0 < 1 < r then ◦ is the operation of taking the maximum.
We extend this operation to e�ects, i.e., n-tuples, by applying it componentwise
(this preserves all the properties of ◦). An e�ect obtained by adding several other
e�ects through the application of the operator ◦ summarizes the manner in which
the counters are changed. More precisely, it describes whether a counter is reset
or whether it is increased but not reset or whether it is only left untouched.

A pattern σ : (S × S) −→ 2{0,1,r}n

is a function from pairs of automaton
states to sets of e�ects. Let us denote patterns by σ, σ1, σ

′, As an example,
consider a pattern σ involving states s and s′ and two counters. Let σ(s, s) =
{(0, 0), (1, 1)}, σ(s′, s′) = {(1, 1), (1, 0)}, σ(s, s′) = {(1, 1)} and σ(s′, s) = {(1, 1)}.
This pattern is depicted in Figure 5a.

Clearly, for a given R-automaton there are only �nitely many patterns; let us
denote this �nite set of all patterns by P. We de�ne an operation • on P as follows.
Let (σ1•σ2)(s, s′) = {t|∃s′′, t1, t2. t1 ∈ σ1(s, s′′), t2 ∈ σ2(s′′, s′), t = t1◦t2}. Note,
that • is associative and it has a unit σe, where σe(s, s′) = {(0, . . . , 0)} if s = s′

and σe(s, s′) = ∅ otherwise. Therefore, (P, •) is a �nite monoid.

For each word we obtain a pattern by running the R-automaton along this
word. Formally, let Run : Σ+ −→ P be a homomorphism de�ned by Run(a) = σ,
where t ∈ σ(s, s′) if and only if (s, a, t, s′) ∈ ∆.

Loops. In the case of �nite automata, a set of states L and a word w con-
stitute a loop in the subset construction if L

w−→ L, i.e., starting from L and
reading w, we end up in L again. The intuition behind the concept of a loop
is that several iterations of the loop have the same e�ect as a single iteration.
In our abstraction using patterns, loops are words w such that w yields the
same pattern as w2, w3, We can skip the starting set of states, because the
function Run starts implicitly from the whole set of states S (if there are no
runs between some states then the corresponding set of e�ects is empty). More
precisely, a word w is a loop if Run(w) is an idempotent element of the pattern
monoid. Two loops are identical if they produce the same pattern. Observe that
the pattern in Figure 5a is idempotent.

Factorization. We show that each word can be split into short identical
loops repeated many times. The loops can possibly be nested, so that this split
(factorization) de�nes a factorization tree. The idea is that since we have such a
factorization for each word, it is su�cient to analyze only the (short) loops and
either �nd a run with bounded maximal value of the counters or use the loop
structure to construct a counterexample regular expression.

7

On a higher level we can see a factorization of words as a function which for
every word w = a1a2 · · · al returns its factorization tree, i.e., a �nite tree with
branching degree at least 2 (except for the leaves) and with nodes labeled by
subwords v of w such that the labeling function satis�es the following conditions:

� if a node labeled by v has children labeled by w1, w2, . . . , wm then v =
w1 · w2 · · ·wm,

� if m ≥ 3 then σ = Run(v) = Run(wi) for all 1 ≤ i ≤ m and σ is idempotent,
� the leaves are labeled by a1, a2, . . . , al from left to right.

An example of such a tree is in Figure 5b. It follows from the factorization
forest theorem [Sim90,Col07] that there is such a (total) function which returns
trees whose height is bounded by 3 · |P| where |P| is the size of the monoid.

(a) (b)

s s

s′ s′

(0, 0) , (1, 1)

(1, 0) , (1, 1)

(1, 1)

(1, 1)

acabbac

ac

abbac

a c

ab b ac

a b a c

Fig. 5. A pattern involving two states and two counters (a) and a factorization tree
(b). Run(abbac) = Run(ab) = Run(b) = Run(ac) and it is idempotent.

We de�ne the length of a loop as the length of the word (or a pattern se-
quence) provided that only the two longest iterations of the nested loops are
counted. This concept is de�ned formally in Subsection 3.3. We say that the
loops are short if there is a bound given by the automaton so that the length
of all the loops is shorter than this bound. A consequence of the factorization
forest theorem is that there is a factorization such that all loops are short.

Reduction. We have de�ned the loops so that the iterations of a loop have
the same e�ect as the loop itself. Therefore, it is enough to analyze a single
iteration to tell how the computations look when the loop is iterated an arbitrary
number of times. By a part in an idempotent pattern σ, we mean an element (an
e�ect) in the set σ(s, s′) for some states s and s′. We will distinguish between
two types of parts, namely bad and good parts. A bad part corresponds only to
runs along which the increase of some counter is at least as big as the number of
the iterations of the loop. A part is good if there is a run with this e�ect along
which the increase is bounded by the maximal increase induced by two iterations
of the loop. Formally, we de�ne a function reduce which for each pattern returns
a pattern containing all good parts of the original pattern, but no bad parts.
Then we illustrate it on a number of examples.

8

For a pattern σ, core(σ) is de�ned as follows:

core(σ)(s, s′) =
{
σ(s, s′) ∩ {0, r}n if s = s′

∅ otherwise

Let reduce(σ) = σ • core(σ) • σ.
For an automaton with one state s, one counter, and a loop w with pattern σ,

if σ(s, s) = {(1)} then the whole pattern is bad, i.e., reduce(σ)(s, s) = ∅. Notice
that any run over wk increases the counter by k. On the other hand, if σ(s, s) =
{(0)} or σ(s, s) = {(r)} then the whole pattern is good, i.e., reduce(σ) = σ.

With more complicated patterns we need a more careful analysis. Let us con-
sider a loop w with pattern σ where σ(s, s) = {(0)}, σ(s′, s′) = {(1)}, σ(s, s′) =
{(1)}, and σ(s′, s) = {(1)}. We will motivate why the part (1) ∈ σ(s′, s′) is good.
For any k, we can take the run over wk which starts from s′, moves to s after the
�rst iteration, stays in s for k − 2 iterations, and �nally moves back to s′ after
the kth iteration. Then, the e�ect of the run is (1). Furthermore, the counter
increase along the run is bounded by twice the maximal counter increase while
reading w. In fact, using a similar reasoning, we can show that all parts of σ are
good (which is consistent with the fact that reduce(σ) = σ).

As the last example, let us consider the pattern from Figure 5a. First, we
show that the part (1, 0) ∈ σ(s′, s′) is bad. The only run over wk with e�ect
(1, 0) is the one which comes back to s′ after each iteration. However, this run
increases the �rst counter by k. On the other hand, the part (1, 1) ∈ σ(s′, s′) is
good by a similar reasoning to the previous example. In fact, we can show that
all other parts of the pattern are good (which is consistent with the value of
reduce(σ) in Figure 6).

s

s′

s

s′

s

s′

s

s′

=

s

s′

s

s′

(0, 0) , (1, 1)

(1, 0) , (1, 1)

(1, 1)

(1, 1)

(0, 0) (0, 0) , (1, 1)

(1, 0) , (1, 1)

(1, 1)

(1, 1)

(0, 0) , (1, 1)

(1, 1)

(1, 1)

(1, 1)

Fig. 6. σ • core(σ) • σ = reduce(σ) where σ is the pattern from Figure 5a

Reduced Factorization Trees. For a factorization of a word w, we need
to check whether there is a run which goes through a good part in every loop.
In order to do that, we enrich the tree structure, so that each node will now be
labeled, in addition to a word, also by a pattern. The patterns are added by the
following function: given an input sequence of patterns, the leaves are labeled
by the elements of the sequence, nodes with branching degree 2 are labeled by
the composition of the children labels, and we label each node with branching
degree at least 3 by σ, where σ is the idempotent label of all its children. Now,
based on this labeling, we build a reduced factorization tree for w in several steps
(formally described in Subsection 3.2).

9

We start with the sequence of patterns obtained by Run from the letters of
the word. In each step, we take the resulting sequence from the previous step,
build a factorization tree from it, and label it by patterns as described above.
Then we take the lowest nodes such that they have at least 3 children and they
are labeled by a pattern σ such that reduce(σ) 6= σ. We change the labels of
these nodes to reduce(σ). We pack the subtrees of these nodes into elements
of the new sequence and we leave other elements of the sequence unmodi�ed.
This procedure eventually terminates and returns one tree with the following
properties (the important invariant is shown in Lemma 1):

� if a node labeled by σ has two children labeled by σ1, σ2 then σ = σ1 • σ2,
� if a node labeled by σ has m children labeled by σ1, . . . , σm, m ≥ 3, then
σi = σj for all 1 ≤ i, j ≤ m, σ1 is idempotent, and σ = reduce(σ1).

An example of a reduced factorization tree is in Figure 7. We show that there
is a factorization function such that the height of all reduced factorization trees
produced by it is bounded by 3 · |P|2 (Lemma 3) using the factorization forest
theorem and a property of the reduction function that if reduce(σ) 6= σ then
reduce(σ) <J σ, where <J is the usual ordering of the J -classes on P, J is
a standard Green's relation; σ ≤J σ′ if and only if there are σ1, σ2 such that
σ = σ1 • σ′ • σ2; σ <J σ

′ if and only if σ ≤J σ′ and σ′ �J σ (Lemma 2).

σ1, abcdecc

σ2, ab reduce(σ5), cdecc

σ3, a σ4, b σ5, c σ5, de σ5, c σ5, c

σ6, d σ7, e

Fig. 7. An example reduced factorization tree. σ1 = σ2 • reduce(σ5), σ2 = σ3 • σ4, and
σ5 = σ6 • σ7. For all leaves labeled by σ̂, â, σ̂ = Run(â).

Correctness. Let σ be the label of the root of a reduced factorization tree
for a word w and let pump(r, k) for a +-free regular expression r and for a k ∈ N
be the word obtained by repeating each r1, where r

∗
1 is a subexpression of r,

k-times. Then

� if σ(s0, sf) 6= ∅ for some sf ∈ F then there is a run from s0 to s over w in

8|P|
2
-semantics,

� otherwise, there is a +-free regular expression r such that for all D there is
a k such that there is a counter which exceeds D along all runs from s0 to
sf , sf ∈ F , over pump(r, k).

10

The previous items are formulated in Subsection 3.3, Lemma 5 and Lemma 6.
Relation to Simon's Approach. There are several important di�erences

between the method presented in this paper and that of Simon [Sim94]. Our
notion of pattern is a function to a set of e�ects, while in Simon's case it is a
function to the set {0, 1, ω}. Because of the resets and the fact that there are
several counters, it is not possible to linearly order the e�ects. Thus, a collection
of automaton runs can be abstracted into several incomparable e�ects. The sets
are necessary in order to remember all of them. Furthermore, the di�erent no-
tion of pattern requires a new notion of reduction which does not remove loops
labeled also by resets. We need to show then that application of this notion of
reduction during the construction of the reduced factorization trees preserves
the correctness.

3.2 Construction of the Reduced Factorization Tree

We de�ne labeled �nite trees to capture the looping structure of pattern se-
quences. Let Γ be a set of �nite trees with two labeling functions Pat and Word,
which for each node return a pattern and a word, respectively. We will abuse
the notation and, for a tree T , we use Pat(T) or Word(T) to denote Pat(N) or
Word(N), respectively, where N is the root of T . We also identify nodes with the
subtrees in which they are roots. We can then say that a node T has children
T1, . . . , Tm and then use Ti's as trees. For a tree T , we de�ne its height h(T)
as h(T) = 1 if T is a leaf, h(T) = 1 + max{h(T1), . . . , h(Tm)} if T1, . . . , Tm are
children of the root of T .

By Γ+ we mean the set of nonempty sequences of elements of Γ . By (Γ+)+ we
mean the set of nonempty sequences of elements of Γ+. Let us denote elements
of Γ+ by γ, γ1, γ

′, For γ ∈ Γ+, let |γ| denote the length of γ.
Let f : Γ+ → P be a homomorphism with respect to • de�ned by f(T) =

Pat(T). We call a function d : Γ+ → (Γ+)+ a factorization function if it satis�es
the following conditions. If d(γ) = (γ1, γ2, . . . , γm) then γ = γ1 · γ2 · · · γm, if
m = 1 then |γ| = 1, and if m ≥ 3 then f(γ) = f(γi) for all 1 ≤ i ≤ m and f(γ)
is an idempotent element.

For a factorization function d we de�ne two functions tree : Γ+ → Γ and
cons : Γ+ → Γ+ inductively as follows. Let 〈σ,w〉 denote a tree which consists
of only the root labeled by σ and w.

tree(γ) =

γ if |γ| = 1,
〈σ1 • σ2, w1 · w2〉 with children tree(γ1), tree(γ2), if d(γ) = (γ1, γ2),

σi = Pat(tree(γi)), wi = Word(tree(γi)) for i ∈ {1, 2},
〈reduce(σ), w1 · w2 · · ·wm〉 with children tree(γ1), . . . , tree(γm), if

m ≥ 3, d(γ) = (γ1, γ2, . . . , γm), σ = Pat(tree(γ1)), and
wi = Word(tree(γi)) for all 1 ≤ i ≤ m.

The function tree builds a tree (resembling a factorization tree) from the
sequence of trees according to the function d. The only di�erence from straight-
forwardly following the function d is that the labeling function Pat might be

11

changed by the function reduce. Let us color the trees in the function cons either
green or red during the inductive construction of a new sequence.

cons(γ) =

γ if |γ| = 1. Mark γ green.
cons(γ1) · cons(γ2) · · · cons(γm)

if d(γ) = (γ1, γ2, . . . , γm) and either m = 2 or
there is 1 ≤ i ≤ m such that cons(γi) contains
a red tree or reduce(f(γ1)) = f(γ1).

tree(γ) if d(γ) = (γ1, γ2, . . . , γm),m ≥ 3, no cons(γi)
contains a red tree and reduce(f(γ1)) 6= f(γ1).
Mark the tree red.

The function cons updates the sequence of trees trying to leave as much as
possible untouched, but whenever Pat would be changed by the reduce function
for the �rst time (on the lowest level), it packs the whole sequence into a single
tree with changed Pat label of the root using the function tree.

TB

TA

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

Fig. 8. Application of cons to T1 · · ·T15. The black nodes represent the nodes for which
reduce(σ) 6= σ. The resulting sequence is T1T2T3T4TAT8T9TBT15.

The important property of the construction is that for each tree in the new
sequence it holds that whenever a node has more than two children, they are all
labeled by identical idempotent patterns. Let us call a tree balanced if whenever
a node T has children T1, T2, . . . , Tm, where m ≥ 3, then Pat(T1) = Pat(T2) =
· · · = Pat(Tm), it is an idempotent element in P, and Pat(T) = reduce(Pat(T1)).

Lemma 1. For a γ ∈ Γ+, if all trees in γ are balanced then all trees in cons(γ)
are balanced.

Proof. The only possibility where a new tree can occur in cons(γ) is as a result
of tree(γ′) for some γ′. The conditions on γ′ are that d(γ) = (γ1, . . . , γm) and
for all 1 ≤ i ≤ m, cons(γi) does not contain a red tree. Then we prove that
Pat(tree(γ)) = f(γ) for any γ ∈ Γ+ such that cons(γ) contains only green trees
by induction on h(tree(γ)). If h(tree(γ)) = 1 then it follows directly from the

12

de�nition of f . If h(tree(γ)) > 1 and d(γ) = (γ1, γ2) then the claim follows from
the induction hypothesis and the fact that f is a homomorphism. If h(tree(γ)) >
1 and d(γ) = (γ1, . . . , γm), m ≥ 3, then the claim follows from the induction
hypothesis and the fact that cons(γ) contains only red trees, concretely, tree(γ)
is green, from which it follows that reduce(f(γ1)) = f(γ1).

The fact that tree(γ′) is balanced follows directly from the previous property
and the condition on the function d that Pat(γ1) = f(γ1) = f(γi) = Pat(γi) for
all 1 ≤ i ≤ m.

ut
Now we show how to get a sequence of trees from runs of the automaton. Let

treeRun : Σ+ −→ Γ+ be a homomorphism with respect to the word composition
de�ned by treeRun(a) = 〈Run(a), a〉.

Assume that there is a factorization function d �xed. Let for a word w ∈
Σ+, γw be de�ned as consn(treeRun(w)), where n ∈ N is the least such that
consn(treeRun(w)) = consn+1(treeRun(w)). Note that γw is always de�ned, be-
cause for all γ ∈ Γ+, |cons(γ)| ≤ |γ| and if |cons(γ)| = |γ| then cons(γ) = γ. Let
Tw = tree(γw). We call Tw the reduced factorization tree of w. From Lemma 1
it follows that Tw is balanced (note that if consn(γ) = consn+1(γ) then consn(γ)
contains only green trees).

Remark. Notice that we do not explicitly mention the factorization function
d in the de�nition of a reduced factorization tree Tw constructed by d from a
word w. It is always clear from the context which factorization function we mean.

To prove that the height of the reduced factorization trees is bounded for a
given automaton, we need to show a technical property of the reduction function,
namely that reduction strictly reduces the J level of the pattern (J is a standard
Green's relation; σ ≤J σ′ if and only if there are σ1, σ2 such that σ = σ1 •σ′ •σ2;
σ <J σ

′ if and only if σ ≤J σ′ and σ′ �J σ).

Lemma 2. For any idempotent pattern σ, either reduce(σ) = σ or reduce(σ) <J
σ.

Proof. From the idempotence of σ it follows that reduce(σ) = σ • reduce(σ) • σ.
This property is su�cient for the proof of Lemma 3 from [Sim94] which applies
to our case. This proof uses Green's relations.

We present also an alternative proof without using Green's relations here.
First we show that if reduce(σ) 6= σ then there are t and s such that t ∈ σ(s, s)

but t /∈ reduce(σ)(s, s). Assume that it is not the case. Because σ is idempotent
and the function reduce does not add anything to the pattern, there are s, s′, t
such that t ∈ σ(s, s′), t /∈ reduce(σ)(s, s′). Because σ is idempotent, there are
s′′, t1, t2, t3 such that t1 ∈ σ(s, s′′), t2 ∈ σ(s′′, s′′), t3 ∈ σ(s′′, s′), t = t1 ◦ t2 ◦ t3.
From the assumption, t2 ∈ reduce(σ)(s′′, s′′), i.e., there are ŝ, t′, t′′, t′′′ such that
t′ ∈ σ(s′′, ŝ), t′′ ∈ core(σ)(ŝ, ŝ), t′′′ ∈ σ(ŝ, s′′), t2 = t′ ◦ t′′ ◦ t′′′. But because σ is
idempotent, t1 ◦ t′ ∈ σ(s, ŝ) and t′′′ ◦ t3 ∈ σ(ŝ, s′), so t ∈ reduce(σ)(s, s′), which
is a contradiction with the assumption.

Let us say that s and s′ are merged by t in σ if t ∈ σ(s, s), t ∈ σ(s′, s′), t ∈
σ(s, s′), t ∈ σ(s′, s). We write it (s, t) ∼m (s′, t). In fact, for an idempotent pat-
tern σ, the relation ∼m is an equivalence relation on the set of pairs (s, t). Note

13

that if s, s′ are merged by t in σ and t /∈ reduce(σ)(s, s) then t /∈ reduce(σ)(s′, s′).
Therefore, the number of ∼m equivalence classes of reduce(σ) is strictly smaller
than that of σ (unless they are equal).

Let 0 < 1 < r. Let t = (b1, . . . , bn) < t′ = (b′1, . . . , b
′
n) if bi < b′i for all

1 ≤ i ≤ n. The set of e�ects together with this order is a �nite lattice. Let ↓ t
denote a principal ideal in this lattice generated by t. We try to construct σ1, σ2

so that σ′ = σ, where σ′ = σ1 • reduce(σ) • σ2, and we show that if we do not
want to fail then reduce(σ) = σ.

Let us say that s, t where t ∈ σ′(s, s) goes through s′, t′ if there are t1, t2, t3,
t4, t5 such that t1 ∈ σ1(s, s1), t2 ∈ σ(s1, s′), t3 ∈ core(σ)(s′, s′), t4 ∈ σ(s′, s2), t5 ∈
σ2(s2, s), t3 < t′, and t′ ∈ σ(s′, s′). The main idea of the rest of this proof is that
to be able to construct i di�erent equivalence classes wrt. ∼m, we need i di�erent
equivalence classes in reduce(σ). We will be interested only in the e�ects on the
loops, i.e., only in t ∈ σ′(s, s′) where s = s′.

Note that if σ′ is idempotent (and we want this, because σ is idempotent)
then if s1, t1, s2, t2 go through s3, t

′, s4, t
′, respectively, and (s3, t′) ∼m (s4, t′)

in σ then (s1, t1∨ t2) ∼m (s2, t1∨ t2) in σ′. This follows from the idempotency of
σ′ and the de�nition of the relation merged; the reasoning is similar to the one
in the �rst paragraph of this proof.

We show by induction on the size of ↓ t that if t ∈ σ(s, s) for some s then
we need as many equivalence classes which contain a t′ ∈↓ t in their second
component in reduce(σ) as in σ to not to introduce any t ∈ σ(s, s′) such that t /∈
σ(s, s′). The basic step is clear from the previous paragraph. For the induction
step, if s, t goes through some s′, t′ such that t′ < t then t ∈ reduce(σ)(s′, s′)
must hold and thus it also goes through s′, t. Also, each s, t, s′, t which are not
merged in σ have to go through s1, t, s2, t which are not merged in σ. Therefore,
there are needed as many equivalence classes which contain t in their second
component as there are in σ.

ut
We state the factorization forest theorem. It was formulated and proved by

Simon [Sim90], the best known bound is shown in [Col07].

Theorem 2 (Factorization Forest Theorem). For a �nite monoid P and a
homomorphism f : Γ+ −→ P, there is a factorization function d such that for
all γ ∈ Γ+, h(tree(γ)) ≤ 3|P|.

We show that for each R-automaton there is a factorization function such
that for any w the height of the tree Tw is bounded by a constant computed
from the parameters of the automaton.

Lemma 3. Given an R-automaton A, there is a factorization function d such
that for all words w ∈ Σ+, h(Tw) ≤ 3 · |P|2.

14

Proof. Let us �rst de�ne the nesting depth function nd : Γ+ → N by

nd(γ) =

1 if γ = 〈σ, a〉
1 + nd(γ′) if |γ| = 1,

γ 6= 〈σ, a〉,
γ = tree(γ′)

max{nd(Ti), . . . , nd(Tk)} if γ = T1 · · ·Tk

Note that for any w ∈ Σ+ and for any tree in γw, either the tree consists of
only a root (it is equal to 〈σ, a〉 for some σ and a) or it has been obtained as
tree(γ′) for some γ′ ∈ Γ+. Note also, that for each such tree, there is exactly one
such γ′ (for a �xed d). Therefore, the nesting depth function nd is well-de�ned
for all γw.

From Lemma 2 it follows that whenever nd is applied to a γ such that |γ| = 1,
γ 6= 〈σ, a〉, γ = tree(γ′), γ′ = T1 · · ·Tk then for all 1 ≤ i ≤ k, Pat(γ) <J Pat(Ti).
Thus, for any w ∈ Σ, nd(γw) ≤ |P|.

From Theorem 2, we know that there is d such that h(tree(γ)) ≤ max{h(T1),
. . . , h(Tk)}+3·|P| for all sequences γ = T1 · · ·Tk. Therefore, h(Tw) = h(tree((γw)),
h(tree((γw)) ≤ 3 · |P| · nd(γw) ≤ 3 · |P|2 for this d.

ut

3.3 Correctness

To formulate the �rst correctness lemma, we de�ne the following concept of a
length function l : Γ → N inductively by

l(T) =

1 if T is a leaf
l(T1) + l(T2) if T has two children T1, T2

2 ·max{l(T1), . . . , l(Tm)} if T has children T1, . . . , Tm,m ≥ 3

By induction on h(Tw) and using the bound derived in Lemma 3, one can
show the following claim.

Lemma 4. Given an R-automaton A, there is a factorization function d such
that for all words w ∈ Σ+, l(Tw) ≤ 8|P|

2
.

Proof. By induction on h(Tw) and using the bound derived in Lemma 3.
ut

We say that s
w−→ s′ or s

w−→D s′ realizes t if there is a witnessing path
(s, a1, t1, s1), (s1, a2, t2, s2), . . . , (s|w|−1, a|w|, t|w|, s

′) such that t = t1◦t2◦· · ·◦t|w|.
If s

w−→D s′ (or s
w−→ s′) realizes t = (b1, . . . , bn), the counter values along a run

〈s, (c1, . . . , cn)〉 w−→ 〈s′, (c′1, . . . , c′n)〉 produced by this path satisfy the following
conditions:

� if bi = 0 then ci = c′′i for all states 〈s′′, (c′′1 , . . . , c′′n)〉 along the run,
� if bi = r then c′′i = 0 (since it is reset) in some state 〈s′′, (c′′1 , . . . , c′′n)〉 along
the run, and

15

� if bi = 1 then ci < c′i (and it is not reset along the run).

Let us de�ne RunD(w) to be the pattern obtained by running the automaton
over w in the D-semantics. Formally, RunD(w)(s, s′) contains t if and only if

s
w−→D s′ realizes t. Note that the function RunD is not a homomorphism with

respect to the word composition. We also de�ne a relation v on patterns by
σ v σ′ if and only if for all s, s′, σ(s, s′) ⊆ σ′(s, s′).

From Lemma 4 we show that there is a factorization function such that for
every w, Pat(Tw) corresponds to the runs of the R-automaton which can be
performed in the D-semantics for any big enough D. This is formulated in the
following lemma.

Lemma 5. Given an R-automaton, there is a factorization function such that
for all w ∈ Σ+ and for all D ∈ N, D ≥ 8|P|

2
, Pat(Tw) v RunD(w).

Proof. Let us �x a factorization function d satisfying Lemma 4. We show this
lemma by proving the following claim by induction on h(Tw). For any w ∈ Σ+,

if t ∈ Pat(Tw)(s, s′) then s w−→D s′ realizing t for D = l(Tw). From Lemma 4 we

have that such a run exists also in any D-semantics for D ≥ 8|P|
2
.

The basic step follows directly from the de�nition of the function treeRun.
Assume that the tree has the root 〈σ1 • σ2, w1 · w2〉 with children Tw1 and

Tw2 (note that for each subtree T , T = TWord(T)), where σ1 = Pat(Tw1), σ2 =
Pat(Tw2). Then there are s′′, t1, t2 such that t1 ∈ σ1(s, s′′), t2 ∈ σ2(s′′, s′), and
t = t1 ◦t2. From the induction hypothesis, s

w1−→D1 s
′′ realizes t1 and s

′′ w2−→D2 s
′

realizes t2, where D1 = l(Tw1), D2 = l(Tw2). Clearly, if we concatenate any two

paths given by these relations, we get s
w−→D1+D2 s

′ realizing t1 ◦ t2. From the
de�nition of the length function, l(Tw) = l(Tw1) + l(Tw2) = D1 +D2.

Assume that the tree has the root 〈reduce(σ), w1 · · ·wm〉 with children Tw1 ,
. . . , Twm , where m ≥ 3, σ = Pat(Tw1). Then there are s′′, t1, t2, t3 such that t1 ∈
σ(s, s′′), t2 ∈ σ(s′′, s′′), t3 ∈ σ(s′′, s′), t = t1◦t2◦t3, and t2 ∈ {0, r}n (this follows
directly from the de�nition of the function reduce). Since Pat(Twi

) = σ for all
1 ≤ i ≤ m ((which we have from Lemma 1) then from the induction hypothesis

s
w1−→l(Tw1) s

′′ realizes t1, s
′′ wi−→l(Twi

) s
′′ realizes t2 for all 2 ≤ i ≤ m − 1, and

s′′
wm−→l(Twm) s

′ realizes t3.
Let us analyze the length of the concatenation of the paths given by these

relations. For each counter, if its corresponding e�ect in t2 is 0 then the bound on
this counter during the whole path is l(Tw1)+l(Twm), because it is left unchanged
during the path part over w2 · w3 . . . wm−1. If the corresponding e�ect in t2 of
the counter is r then the counter is reset at least once in each path part over
w2, w3, · · · , wm−1. Therefore, it is bounded by the maximal length between two
resets, which is bounded by max{l(Tw1)+ l(Tw2), l(Tw2)+ l(Tw3), . . . , l(Twm−1)+
l(Twm

)}. Then, s w−→D s′ realizes t, where D = 2 ·max{l(Tw1), . . . , l(Twm
)}.
ut

Of particular interest are runs starting in the initial state.

16

Corollary 1. Given an R-automaton A, there is a factorization function such
that for all words w, if Pat(Tw)(s0, s) 6= ∅ then there is a run 〈s0, (0, . . . , 0)〉

w−→D 〈s, (c1, . . . , cn)〉 where D = l(Tw).

It remains to show that if the relation between the patterns in the previous
lemma is strict then there is a word for each D which is a witness for the
strictness, i.e., the runs over this word in the D-semantics generate a smaller
pattern than over the original word. These witness words are generated from a
+-free regular expression r by pumping r1 for all subexpressions r∗1 of r. Let
us de�ne a function re which for a reduced factorization tree returns a +-free
regular expression inductively by

re(T) =

Word(T) if T is a leaf
re(T1) · re(T2) if T has two children T1, T2

(re(T1))∗ if T has children T1, T2, . . . , Tm,m ≥ 3

For a +-free regular expression r and a natural number k > 0, let the function
pump(r, k) be de�ned inductively as follows: pump(a, k) = a, pump(r1 · r2, k) =
pump(r1, k) · pump(r2, k), and pump(r∗, k) = pump(r, k)k.

For example, pump(a(bc∗d)∗aa∗, 2) = abccdbccdaaa.

Lemma 6. Given an R-automaton and a factorization function, for all w ∈ Σ+

and all D ∈ N there is a k ∈ N such that RunD(pump(re(Tw), k)) v Pat(Tw).

Proof. We show this lemma by proving the following claim by induction on
h(Tw). For all D ∈ N there is k ∈ N such that for v = pump(re(Tw), k), if
s

v−→D s′′ realizes t then t ∈ Pat(Tw)(s, s′) (note that this holds also for all
k′ > k).

The basic step follows directly from the de�nition of the function treeRun
(with any k).

Assume that the tree has the root 〈σ1 • σ2, w1 · w2〉 with children Tw1 and
Tw2 , where σ1 = Pat(Tw1), σ2 = Pat(Tw2). Let k1, k2 be the constants from the
induction hypothesis applied to Tw1 and Tw2 . Let k = max{k1, k2}. Let us denote
v1 = pump(re(Tw1), k), v2 = pump(re(Tw2), k), v = v1 · v2 = pump(re(Tw), k).
Assume that s

v−→D s′′ realizes t. Then there must be an s′′ such that s
v1−→D s′′,

s′′
v2−→D s′ realize t1, t2, respectively, such that t = t1 ◦ t2. From the induction

hypothesis, t1 ∈ Pat(Tw1)(s, s
′′) and t2 ∈ Pat(Tw2)(s

′′, s′). Because Pat(Tw) =
σ1 • σ2 = Pat(Tw1) • Pat(Tw2), we have that t = t1 ◦ t2 ∈ Pat(Tw)(s, s′).

Assume that the tree has the root 〈reduce(σ), w1 · · ·wm〉 with children Tw1 ,
. . . , Twm

, where m ≥ 3, σ = Pat(Tw1). Let k1 be the constant from the induction
hypothesis applied to Tw1 and k2 = (D + 1)n · |S|. Let k = max{k1, k2}. Let us
denote v1 = pump(re(Tw1), k), v = vk

1 = pump(re(Tw), k).
Assume that s

v−→D s′ realizes t. Then there must be a sequence of states
si for 1 ≤ i ≤ k + 1 such that si

v1−→D si+1 realizes ti, s1 = s, sk+1 = s′, and
t = t1 ◦ t2 ◦ · · · ◦ tk. First, we show by contradiction that there are indices i, j
such that i < j, si = sj and ti ◦ · · · ◦ tj−1 ∈ {0, r}n. Let us assume that for all

17

i < j such that si = sj , ti ◦ · · · ◦ tj−1 /∈ {0, r}n. Let us pick an ŝ such that
G = |{i|si = ŝ, 1 ≤ i ≤ k + 1}| is maximal. From the choice of k we have that
G > Dn. We show that there is a counter exceeding D along all paths witnessing
s

v−→ s′ realizing t. We know from our assumption (ti ◦ · · · ◦ tj−1 /∈ {0, r}n) and
from the de�nition of realizing that for all i, j such that si = sj = ŝ, the counter
values in any run over v cannot be identical in si and sj . There are D

n di�erent
con�gurations with all counters smaller than or equal to D. Since G > D, some
counter has to exceed D. This contradicts that s

v−→D s′ realizes t.

From the induction hypothesis we have that for all 1 ≤ i ≤ k, ti ∈ Pat(Tw1).
Let i and j satisfy the condition from the previous paragraph, i.e., i < j, si =
sj and ti ◦ · · · ◦ tj−1 ∈ {0, r}n. Because Pat(Tw1) is idempotent (follows from
Lemma 1), we have that ti ◦ · · · ◦ tj−1 ∈ Pat(Tw1)(si, sj) and thus ti ◦ · · · ◦ tj−1 ∈
core(Pat(Tw1))(si, sj). Also, t1 ◦ · · · ◦ ti−1 ∈ Pat(Tw1)(s, si) and tj ◦ · · · ◦ tk ∈
Pat(Tw1)(sj , s

′). From the de�nition of the function reduce, we can conclude
that t ∈ reduce(Pat(Tw1))(s, s

′).
ut

A special case are runs starting from the initial state.

Corollary 2. Given an R-automaton, for any w ∈ Σ+, if Pat(Tw)(s0, s) = ∅
then ∀D∃k such that there is no run 〈s0, (0, . . . , 0)〉 v−→D 〈s, (c1, . . . , cn)〉 where
v = pump(re(Tw), k).

3.4 Algorithm

To check the universality of an R-automaton A, we have to check all patterns σ
such that σ = Pat(Tw) for some w ∈ Σ+ and some factorization function. If there
is a σ such that for all sf ∈ F , σ(s0, sf) = ∅ then for all D ∈ N, LD(A) 6= Σ∗.
This gives us the following algorithm. Recall that σe denotes the unit of (P, •).

The algorithm uses a set of patterns P as the data structure. Given an R-
automaton A = 〈S,Σ,∆, s0, F 〉 on the input, it answers 'YES' or 'NO'. The set
P is initialized by P = {σ|σ = Run(a), a ∈ Σ} ∪ {σe}.

While |P | increases the algorithm performs the following operations:

� pick σ1, σ2 ∈ P and add σ1 • σ2 back to P .

� pick a σ ∈ P such that σ is idempotent and add reduce(σ) back to P .

If there is σ ∈ P such that for all sf ∈ F , σ(s0, sf) = ∅, answer 'NO',
otherwise, answer 'YES'.

Before we prove the correctness of the algorithm, we show that each pattern
obtained by the algorithm corresponds to some word and some factorization
function.

Lemma 7. For any σ ∈ P obtained by the algorithm there is a factorization
function and a word w such that σ = Pat(Tw).

18

Proof. Consider the tree labeled by the patterns de�ned inductively as follows.
The root is labeled by σ. If a node is labeled by σ′ which was created (for the �rst
time) by composing σ1 • σ2 then this node has two children labeled by σ1 and
σ2. If a node is labeled by σ′ which was created (for the �rst time) by reducing
σ1 then this node has one child labeled by σ1. The leaf labels have been added
in the initialization step. Clearly, is σ1 = σ2 are labels of two nodes in the tree
then their subtrees are identical.

Now we de�ne a partial function w : P −→ Σ+ which for each pattern in the
tree returns a word and if σ1 6= σ2 then w(σ1) 6= w(σ2). Such a labeling also
de�nes a factorization function which for w = w(σ) yields the tree Tw such that
σ = Pat(Tw).

We start from the leaves and move inductively up. During the whole construc-
tion, we maintain a counter c, which is initially set to c = 1. For each σ in a leaf,
w(σ) = a such that Run(a) = σ (if there are several, we assume some ordering
and pick the least one). If a node is labeled by σ′ and it has two children labeled
by σ1 and σ2 then w(σ′) = w(σ1) · w(σ2). If a node is labeled by σ′ and it has
one child labeled by σ1 then w(σ′) = (w(σ1))k such that |P|c < |w(σ′)| ≤ 2 · |P|c
and we increment c.

For two di�erent patterns such that at least one of them has a reduction in
its subtree, the words have to have a di�erent length . For two di�erent patterns
such that there is no reduction in their subtrees, the words have to be di�erent
because of the de�nition of Run and • (and all such words are shorter than |P|).

ut
The correctness is stated in the following theorem.

Theorem 3. The algorithm is correct and runs in 2-EXPSPACE.

Proof (Theorem 3). Clearly, the algorithm "checks" all possible σ's such that
there is a factorization function and a word w such that σ = Pat(Tw). Also, for
any σ obtained by the algorithm there is a factorization function and a word w
such that σ = Pat(Tw) (Lemma 7), with the exception of σe which corresponds
to w = ε (for which is the correctness clear).

If the algorithm obtains a σ such that σ(s0, sf) = ∅ for all sf ∈ F then let us
�x a factorization function and a word w such that σ = Pat(Tw). Let r = re(Tw).
From Corollary 2, for all D there is a k such that there is no accepting run over
pump(r, k) in D-semantics.

If for all patterns σ, σ(s0, sf) 6= ∅ for some sf ∈ F then we can �x a factor-
ization function satisfying Lemma 4. For all words, there is an accepting run in
8|P|

2
-semantics given by Corollary 1.

The complexity follows from the size of the monoid P. The algorithm needs
space |P| (the number of di�erent patterns). The size of P is 2(3n)·|S|2 (|S|2
di�erent pairs of states, 2(3n) di�erent sets of e�ects). Therefore, the algorithm
needs double exponential space.

ut

19

4 Limitedness

The presented method can be adapted to decide the limitedness problem for
R-automata, i.e., given an R-automaton A, is there a D ∈ N such that L(A) =
LD(A).

Theorem 4. For a given R-automaton A, the limitedness problem is decidable
in 2-EXPSPACE.

To decide the limitedness problem of an R-automaton A, we need to adapt
the basic concepts of the method. E�ects are elements of the set {0, 1, r, ω}n.
We extend ◦ by de�ning ω ◦ b = b ◦ ω = ω for all b ∈ {0, 1, r, ω}. Patterns are
then functions σ : (S × S) −→ 2{0,1,r,ω}n

. The de�nition of • remains the same
and patterns together with • form a �nite monoid.

For an e�ect t, let t̂ denote the result of replacing 1's in t by ω's. The function
core is modi�ed as follows. For each pattern σ, t̂ ∈ core(σ)(s, s′) if and only if
t ∈ σ(s, s′) and s = s′. For each σ, reduce(σ) <J σ, because reduce(σ) =
σ • core(σ) • σ (Lemma 2 in Appendix). This gives us the boundedness of the
height of the reduced factorization trees constructed with the new reduction
function.

It holds that Pat(Tw)(s, s′) 6= ∅ if and only if s
w−→ s′. Moreover, Lemma 5

and Lemma 6 hold if we restrict the resulting pattern Pat(Tw) to {0, 1, r} (for
all s, s′, we consider only Pat(Tw)(s, s′)∩{0, 1, r}n). Our proofs can be modi�ed
in a straightforward manner, since whenever an ω occurs in an e�ect it cannot
be overwritten any time later.

The condition for concluding non-limitedness of the input R-automaton in
the algorithm is changed to checking whether there is σ ∈ P such that the
following two conditions hold: (i) there is sf ∈ F , σ(s0, sf) 6= ∅ and (ii) for all
sf ∈ F , σ(s0, sf) ∩ {0, 1, r}n = ∅.

5 Büchi Universality

The universality problem is also decidable for R-automata with Büchi acceptance
conditions.

Theorem 5. For a given R-automaton A, the question whether there is D ∈ N
such that Lω

D(A) = Σω is decidable in 2-EXPSPACE.

To show this result, we need to extend patterns by accepting state infor-
mation. A pattern is now a function σ : S × S −→ 2{0,1}×{0,1,r}n

, where
for s, s′ and 〈a, t〉 ∈ σ(s, s′), the value of a encodes whether there is a path
from s to s′ realizing t which meets an accepting state. For instance, σ(s, s′) =
{〈0, (0, r)〉, 〈1, (1, 1)〉} means that there are two di�erent types of paths between
s and s′: they either realize (0, r) but do not visit an accepting state, or realize
(1, 1) and visit an accepting state. We de�ne the composition • by de�ning the
composition on the accepting state: 0 ◦ 0 = 0, 0 ◦ 1 = 1 ◦ 0 = 1 ◦ 1 = 1. The

20

set of patterns (denote again P) with • is a �nite monoid. We de�ne the func-
tion reduce in the same way as before, i.e., the accepting state information does
not play any role there. Clearly, reduce(σ) <J σ, so the reduced factorization
trees produced by reduce have bounded height. Lemma 5 and Lemma 6 also
hold, because (non)visiting an accepting state does not in�uence the runs in the
D-semantics.

This allows us to use the same algorithm as for the �nite word universality
problem, except for the condition for concluding non-universality. The condition
is whether there are σ1, σ2 ∈ P such that σ2 is idempotent and for all s such
that σ1(s0, s) 6= ∅ the following holds. If 〈a, t〉 ∈ σ2(s, s) then either a = 0 or
t /∈ {0, r}n.

Proof. Let us denote the new pattern function by PatB and the new function
which extracts a pattern from the runs in the D-semantics by RunB

D.

Let for an R-automaton, C = 8|P|
2
and for an ω-word w, w = w1 ·w2 ·w3 · · ·

be a split of this word such that all wi are �nite. For each wi we de�ne a
pattern σw1 which captures the e�ects of the corresponding fragments of all
in�nite runs over w in 2 · C-semantics. The choice of 2 · C is motivated by
the reasons explained below. Let for all 1 ≤ i, σwi be a pattern de�ned by
〈a, t〉 ∈ σwi(s, s

′) if and only if there is an in�nite run in 2 · C-semantics

〈s0, (0, . . . , 0)〉 w1···wi−1−→ 2·C 〈s, (c1, . . . , cn)〉 wi−→2·C 〈s′, (c′1, . . . , c′n)〉 wi+1···−→ 2·C such

that the fragment 〈s, (c1, . . . , cn)〉 wi−→ 〈s′, (c′1, . . . , c′n)〉 realizes t and a = 1 if
and only if this fragment contains an accepting state.

Assume that for all D, the R-automaton is not Büchi universal in the D-
semantics. Let w be a counterexample for D = 2 · |P| · C, i.e., w /∈ Lω

D(A). Let
us split w = w1 · w2 · w3 · · · so that all wi are �nite and σwi = σwj for all
2 ≤ i, j. Let us denote σ1 = σw1 and σ2 = σw2 .

Let l ∈ N be such that σl
2 is an idempotent (l ≤ |P‖). For all s, σl

2(s, s)
does not contain 〈1, (b1, . . . , bn)〉, where bi ∈ {0, r}. Otherwise, i.e., if there was
s, t ∈ {0, r}n such that 〈1, t〉 ∈ σl

2(s, s), there would be an accepting in�nite run
over w in the D-semantics, which would contradict the fact that w /∈ Lω

D(A).
This follows from the fact that all patterns were obtained in the 2 ·C-semantics
and l ≤ |P|.

It is not necessary that RunB
C(w2) v σ2, because the set of starting states

for RunB
C is S. Even if we restrict the set of starting states to L(σ2), denoted

RunB
C(w2)′, the relation RunB

C(w2)′ v σ2 does not have to hold. This is because
a fragment of a run over w2 in 2 · C-semantics could have started from a state
with high counter values and RunB

C starts from zeros. However, if we restrict
the set of starting states to the states which are in 2 · C-semantics reachable

after reading w1 with counter values smaller than C, denote ˆRun
B

C(w2), then
ˆRun

B

C(w2) v σ2 holds, because now RunB
C starts from zeros and is limited by C,

whereas σ2 contains all runs which start from counter values smaller than C and
they are limited by 2 · C.

From Lemma 5 we know that there is a factorization function such that
σ3 = PatB(Tw1) v RunB

C(w1) and σ4 = PatB(Tw2) v RunB
C(w2). Let m be such

21

that σm
4 is idempotent. Note that σm

4 v σl
2. We know that if σ3 • σm

4 (s0, s) 6= ∅
then σm

4 (s, s) does not contain 〈1, (b1, . . . , bn)〉, where bi ∈ {0, r}. Therefore,
from Lemma 6 we know that for any factorization function it holds that for all
D there is a k such that pump(re(Tw1), k) · (pump(re(Tw2), k))

ω /∈ Lω
D(A).

ut

6 Non-emptiness

The language emptiness problems can be decided much easier. The following
theorem follows easily from an observation that for an R-automaton A, JAK is
bisimilar to A taken as a �nite automaton (without counters).

Theorem 6. For a given R-automaton A, the question whether there is D ∈ N
such that LD(A) 6= ∅ is decidable in NLOGSPACE.

To show the Büchi case, one has to �nd an accepting loop which for each
counter either contains an r or contains only 0's. This information can be com-
puted using an abstraction of the reachability information.

Theorem 7. For a given R-automaton A, the question whether there is D ∈ N
such that Lω

D(A) 6= ∅ is decidable in PSPACE.

A reachability abstraction C is a set of the elements from {0, 1, r}n (a set of
n-tuples of 0's, 1's, and r's). For a given R-automaton A and states s, s′ of A,
we use Cs,s′ to denote a reachability abstraction de�ned as follows: t ∈ Cs,s′ if

and only if there is w ∈ Σ+ such that s
w−→ s′ realizes t.

In particular, if s′ is not reachable from s then Cs,s′ = ∅. If t ∈ Cs,s and
t ∈ {0, r}n then there is a loop such that for a su�ciently big D the loop can be
iterated unboundedly many times. Clearly, there are only �nitely many di�erent
reachability abstractions (for a �xed number of counters). We can compute them
for all pairs of states of an R-automaton by dynamic programming (computing
Cs,s′ with paths restricted to k steps for all pairs of states with increasing k
until a �xed point is reached). Then, the non-emptiness problem for in�nite
words translates to checking whether there is an accepting state s ∈ F such that
Cs0,s 6= ∅ and there is a t ∈ Cs,s such that t ∈ {0, r}n.

The complexity follows from the fact that the non-deterministic reachability
procedure has to remember the value 0, 1, or r for every counter.

7 Conclusions

We have de�ned R-automata � �nite automata extended with unbounded coun-
ters which can be left unchanged, incremented, or reset along the transitions.
As the main result, we have shown that the following problem is decidable in
2-EXPSPACE. Given an R-automaton, is there a bound such that all words are
accepted by runs along which the counters do not exceed this bound? We have
also extended this result to R-automata with Büchi acceptance conditions.

22

As a future work, one can consider the (bounded) universality or limitedness
question to vector addition systems (VASS) or reset vector addition systems
(R-VASS), where the latter form a superclass of R-automata. The limitedness
problem can be shown undecidable for R-VASS for both �nite word and ω-word
case, while it is an open question for VASS. The universality problem can be
shown to be undecidable for R-VASS for ω-word case, in other cases it is open.

References

[AKY07] P. A. Abdulla, P. Krcal, and W. Yi. Sampled universality of timed automata.
In Proc. of FOSSACS'07, volume 4423 of LNCS, pages 2�16. Springer�Verlag,
2007.

[BC06] Mikolaj Boja«czyk and Thomas Colcombet. Bounds in omega-regularity. In
LICS'06, pages 285�296. IEEE Computer Society Press, 2006.

[CL08] Thomas Colcombet and Christof Löding. The non-deterministic Mostowski
hierarchy and distance-parity automata. In ICALP'08, volume 5126 of LNCS,
pages 398�409. Springer�Verlag, 2008.

[Col07] Thomas Colcombet. Factorisation forests for in�nite words. In FCT'07,
volume 4639 of LNCS, pages 226�237. Springer�Verlag, 2007.

[Has82] Kosaburo Hashiguchi. Limitedness theorem on �nite automata with distance
functions. Journal of Computer and System Sciences, 24(2):233�244, 1982.

[Has90] Kosaburo Hashiguchi. Improved limitedness theorems on �nite automata with
distance functions. Theoretical Computer Science, 72(1):27�38, 1990.

[Kir05] Daniel Kirsten. Distance desert automata and the star height problem. In-

formatique Theorique et Applications, 39(3):455�509, 2005.
[KP05] Pavel Krcal and Radek Pelanek. On sampled semantics of timed systems. In

Proc. of FSTTCS'05, volume 3821 of LNCS, pages 310�321. Springer�Verlag,
2005.

[Leu91] Hing Leung. Limitedness theorem on �nite automata with distance functions:
an algebraic proof. Theoretical Computer Science, 81(1):137�145, 1991.

[Sim90] Imre Simon. Factorization forests of �nite height. Theoretical Computer

Science, 72(1):65�94, 1990.
[Sim94] Imre Simon. On semigroups of matrices over the tropical semiring. Informa-

tique Theorique et Applications, 28(3-4):277�294, 1994.

23

