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2 Università di Genova, Italy
giorio@disi.unige.it

Abstract. We investigate model checking of a computation model called
Constrained Multiset Rewriting Systems (CMRS). A CMRS operates on
configurations which are multisets of monadic predicate symbols, each
with an argument ranging over the natural numbers. The transition re-
lation is defined by a finite set of rewriting rules which are conditioned
by simple inequalities on variables and constants. This model is able to
specify systems with an arbitrary number of components where the in-
ternal state of a component may contain values ranging over the natural
numbers. We show that CMRS are strictly more powerful than two ex-
isting related models namely that of Petri nets and relational automata.
We prove decidability of the coverability problem, and undecidability of
repeated reachability and configuration reachability for CMRS. Further-
more, we show that decidability of coverability does not extend to some
natural extensions of the model, including the case where the predicates
are dyadic. We report on using a prototype implementation to verify
parameterized versions of a mutual exclusion and an authentication pro-
tocol.

1 Introduction

In the last decade there has been an extensive research effort to extend the
applicability of model checking to systems with infinite state spaces. There are
at least two reasons why a system may have an infinite state space. One reason is
that the system operates on unbounded data structures, such as real-valued clocks
in timed automata, stacks in push-down automata, queues in communicating
processes, integer variables in relational automata, markings in Petri nets, etc.
The second source of infiniteness is parameterization, where the description of
the system is parameterized by the number of components, and the aim is to
verify correctness regardless of the size of the system.

Most existing algorithms for verification of parameterized systems, e.g., the
ones in [19, 1, 8, 6] are designed to work in the special case where the individ-
ual components are finite-state processes. However, there are many examples
of parameterized systems in which an individual component cannot be faith-
fully modelled as a finite-state process. One important challenge is therefore to
consider parameterized systems in which the components themselves are infinite-
state. This challenge has recently been undertaken by a number of works. For



instance, the paper [7] considers programs with an arbitrary number of recursive
calls, modelled as Basic Parallel Processes (BPPs), where each call may also pass
an integer parameter to a subroutine. The papers [4, 3] consider parameterized
systems in which components are timed automata. Such systems contain both
sources of infiniteness, as they operate on an unbounded number of variables
each of which ranges over an unbounded domain.

In this paper, we consider a new class of such systems, which we call Con-
strained Multiset Rewriting Systems (CMRS). A CMRS operates on configura-
tions which are multisets of monadic predicate symbols, each with an argument
ranging over the natural numbers. Transitions between configurations are de-
fined by a finite set of rewriting rules. Each rule is conditioned by gap-order
formulas of the form x+ c < y, x = y, x < c, x > c, or x = c, where x and y are
variable ranging over the natural numbers and c is a natural number. This model
can capture the behaviour of parameterized systems in which the internal states
of individual components may contain values ranging over the natural numbers.
There are several examples of classes of protocols which can be modelled in this
manner, e.g. , mutual exclusion protocols where the natural number inside each
process is used to define the identity of the process, and authentication protocols
where the number is used to define the key assigned to the process.

In addition to the relevance of CMRS as a formalism for parameterized sys-
tems, they are also interesting as a computation model in their own right. For
instance, CMRS subsume several existing models for infinite-state systems such
as Petri nets and relational automata [11]. In fact, we show that CMRS are
strictly more powerful than both these models.

Our first result for CMRS is that the coverability problem is decidable for
CMRS. The algorithm for checking coverability is obtained by a non-trivial appli-
cation of a methodology based on the theory of well- and better-quasi orderings.
However, we prove that reachability and repeated reachability are undecidable.
The undecidability results are based on a “weak simulation” of 2-Counter Ma-
chines. Furthermore, we will show that coverability becomes undecidable for
some extensions of the basic model, e.g., for dyadic CMRS. Despite the unde-
cidability result, the algorithm for the monadic fragment can be generalized to
a (possibly non-terminating) symbolic procedure for CMRS models with n-ary
predicates.

We have implemented a prototype based on our algorithm. We have verified
parameterized versions of a mutual exclusion protocol in which the participants
have identities taken from an infinite domain; and an extended version of the
authentication protocol proposed in [27] for managing services in a distributed
system with mobile agents.

Related Work One of the earliest works on model checking of parameterized sys-
tems was reported by German and Sistla [18]. The paper considers systems with
unbounded numbers of finite-state processes, and reduces the problem to a cor-
responding one for Vector Addition Systems, a model which is computationally
equivalent to Petri nets. Another important line of research in this area has been
that of Regular Model Checking [19, 1, 8, 6], Regular model checking is a uniform



framework for the analysis of parameterized systems consisting of homogeneous
finite-state processes connected in linear or ring-formed topologies. In all these
works, the individual components are assumed to be finite-state, and therefore
they cannot handle the classes of systems we consider here.

The work [7] analyzes BPPs augmented with integer parameters. BPPs are
computationally weaker than Petri nets, and therefore also weaker than CMRS.
The papers [4, 3] consider parameterized systems of timed automata. However,
timed systems obviously exhibit behaviours, such as timed transitions, which
are not present in untimed systems, and vice versa. This is reflected in the
verification algorithms which are totally different in the two cases.

The constraints we consider in this paper correspond to the gap-order con-
straints introduced by Revesz in the deductive database language Dataloggap
[23, 24]. The language is defined over a fixed set of integer variables which rep-
resent the attribute of the database relation. Revesz defined a bottom-up query
evaluation algorithm for Dataloggap. In [17] Fribourg and Richardson applied
Revesz’s algorithm for verifying concurrent systems with finitely many compo-
nents and with a fixed number of integer variables, obtaining a model similar to
vector addition systems. More general constraint-based verification procedures
for systems with a fixed number of integer or real valued variables have been
studied, e.g., in [10, 15]. Relational automata [11] operate also on finite sets of
integer variables, where the transitions are guarded by the ordering of the vari-
ables. The main difference compared to the above works is that we deal with
systems with an arbitrary (rather than fixed) number of variables. In fact, we
show that this strictly increases the expressive power of the model, e.g. compared
to relational automata.

The paper [13] considers combining multiset rewriting with a generic con-
straint system. A scheme is presented for symbolic computation of sets of pre-
decessors. The method, instantiated on linear arithmetic constraints, has been
applied to verify properties of a parameterized version of the Ticket mutual
exclusion protocol, and to verify secrecy and authentication properties for time-
sensitive cryptographic protocols [9, 14]. Termination is not guaranteed in the
general setting of [13], and in particular no classes of systems and properties are
provided with decidable/undecidable properties. More concrete constraints such
as gap-orders, are crucial for efficient verification of the classes of protocols we
consider in this paper.

Our model shares some similarities with the MASPN model (an extension of
Petri Nets with mobility and authentication) studied in [27]. In MASPN tokens
are coloured with identifiers taken from an infinite discrete domain. Our model
can also be viewed as a coloured Petri net, where the colour of a token is defined
by its integer attribute. The main difference is that in [27] only equality between
variables is allowed (in addition to a mechanisms for generating new process
identifiers). Therefore, the language is not sufficiently expressive to encode gap-
order conditions of the form x + c < y. Secondly, although transition arcs can
be labelled with a variable, the variables of outcoming arcs are forced to occur
in the incoming arcs. Thus, the model cannot express the production of generic



values, a feature which we use, e.g., in modelling the authentication protocol
mentioned above.

Outline In the next Section, we introduce the model of CMRS. In order to sim-
plify the presentation, we consider first a restricted model where we only allow
conditions which compare variables. We introduce a coverability algorithm in
Section 3, and show how to compute each step of the algorithm in Section 4. In
Section 5 we prove that termination is guaranteed for the algorithm. In Section 6
we describe how to extend the coverability algorithm to the full model, where
we also allow comparisons with constants. In Section 7 we show undecidability
of reachability and repeated reachability, and also undecidability of coverabil-
ity for some extensions of the model (including the dyadic case). In Section 8
we compare the computational power of (monadic) CMRS with Petri nets and
relational automata. In Section 9 we describe our case studies. Finally, we give
some conclusions and directions for future research in Section 10.

We provide two appendices, one containing proofs of lemma and theorems,
and the other giving details of the case studies.

2 Constrained Multiset Rewriting

In this section we give preliminaries and definition of the CMRS model.

Preliminaries We let N denote the set of natural numbers. We assume a set V of
variables which range over the integers, and a set P of unary predicate symbols.
For a set A, we use A∗ and A⊗ to denote the sets of words and multisets over
A respectively. For a ∈ A and a multiset B over A we write B(a)to denote
the number of occurrences of a in B. Sometimes, we write multisets as lists,
so [1, 5, 5, 1, 1] represents a multiset B over N where B(1) = 3, B(5) = 2 and
B(x) = 0 for x 6= 1, 5. We use the usual relations and operations such as ≤,
+, and − on multisets. In particular, B2 	 B1 is the multiset B where B(a) =
B2(a)−B1(a) if B2(a) ≥ B1(a) while B(a) = 0 otherwise.

For a set V ⊆ V, a valuation Val of V is a mapping from V to N, and a
renaming Ren of V is a mapping from V to V. A renaming Ren need not be
injective, i.e., several variables may be renamed to the same variable by Ren.
We say that Ren is renaming to W if Ren(x) ∈ W for each x ∈ V . When the
set V is clear from the context, we do not mention it; simply saying valuation
(rather than valuation of V ) and renaming (rather than renaming of V )

Some time, we write the explicit definition of a renaming. For instance Ren =
(x1 7→ w1 , x2 7→ w2 , x3 7→ w3) stands for Ren(x1) = w1, Ren(x2) = w2, and
Ren(x3) = w3. We use a similar notation for valuations.

Constrained Multiset Rewriting Systems A condition is a finite conjunction of
formulas of the forms: x <c y or x = y, where x, y ∈ V and c ∈ N. Here x <c y
stands for x + c < y. Sometimes, we treat a condition ψ as set, and write e.g.
(x <c y) ∈ ψ to indicate that x <c y is one of the conjuncts in ψ. A term is of



the form p(x) where p ∈ P and x ∈ V. A ground term is of the form p(c) where
p ∈ P and c ∈ N. A Constrained Multiset Rewriting System (CMRS) S consists
of a finite set of rules each of the form:

L ; R : ψ

where L and R are multisets of terms, and ψ is a condition. We assume that ψ
is consistent (otherwise, the rule is never enabled).

For a condition ψ, we use Var(ψ) to denote the set of variables which occur
in ψ. For a valuation Val , we use Val(ψ) to denote the result of substituting
each variable x in ψ by Val(x). We use Val |= ψ to denote that Val(ψ) evaluates
to true. Also, for a renaming Ren, we define Ren(ψ) to be the condition we get
by replacing each x in ψ by Ren(x). For a multiset T of terms we define Var(T ),
Val(T ), and Ren(T ) in a similar manner. In particular, Ren(T ) and Val(T ) are
multisets of terms and ground terms respectively. For a rule ρ of the above form,
we define Var(ρ) = Var(L) ∪Var(R) ∪Var(ψ).

Configurations and Transitions A configuration is a multiset of ground terms.
The set of rules induces a transition relation −→ on configurations, where −→=⋃
ρ∈S

ρ−→, and
ρ−→ represents the effect of applying the rule ρ. More precisely,

for a rule ρ of the above form, we have γ1
ρ−→ γ2 if there is a valuation Val such

that the following three conditions are satisfied:

• Val |= ψ • γ1 ≥ Val(L) • γ2 = γ1 −Val(L) + Val(R)

We use
∗−→ to denote the reflexive transitive closure of −→. For a configuration

γ and a set Γ of configurations, we use γ
∗−→ Γ to denote that there is a γ′ ∈ Γ

with γ
∗−→ γ′. For a configuration γ and a predicate symbol p, we use γ

∗−→ p
to denote that p occurs in some γ′ with γ

∗−→ γ′.
A set Γ of configurations is said to be upward closed (with respect to multiset

ordering ≤), if γ ∈ Γ and γ′ ≥ γ implies γ′ ∈ Γ . For a configuration γ, we use
γ↑ to denote the upward closure of γ, i.e., γ↑= {γ′| γ ≤ γ′}.

Example The definition of the transition relation −→ interprets a rule of the
form given above as a collection of rewriting rules on ground terms. An instance
is obtained by taking a valuation which satisfies ψ. Consider the rule:

[p(x) , q(y)] ; [q(z) , r(x) , r(w)] : {x <2 y , x <4 z , z < w}

A valuation which satisfies the condition is Val(x) = 1, Val(y) = 4, Val(z) = 8,
Val(w) = 10, Therefore, we have a transition
[p(1), p(3), q(4)] −→ [p(3), q(8), r(1), r(10)]

Coverability The coverability problem is defined as follows:
Instance: A CMRS, an initial configuration γinit , and a final predicate symbol
pfin .

Question: γinit
∗−→ pfin ?

In Section 3 we present an algorithm which solves the predicate reachability
problem, and hence we have:



Theorem 1. The coverability problem is decidable for CMRS.

The coverability problem described above is equivalent to the problem of the
reachability of the upward closure (i.e. coverability) of a set of configurations.
Using standard techniques [26], we can show that checking several classes of
safety properties for CMRS can be reduced to the coverability problem.

3 Algorithm

In this section we give an overview of the algorithm for solving the coverability
problem based on the generic backward analysis algorithm presented in [2]. The
difficult challenge in applying this methodology is to invent a symbolic repre-
sentation (called constraints) which allows effective implementation of each step,
and which guarantees termination of the algorithm.

Constraints The algorithm operates on constraints, where each constraint φ char-
acterizes an infinite set [[φ]] of configurations. A constraint φ is of the form T : ψ
where T is a multiset of terms and ψ is a condition. The constraint characterizes
the (upward closed) set [[φ]] = {γ| ∃Val . (Val |= ψ) ∧ (Val(T ) ≤ γ)} of configu-
rations. Notice that if ψ is inconsistent, then [[φ]] is empty. Such a constraint can
be safely discarded in the reachability algorithm presented below. Therefore, we
assume in the sequel that all conditions in constraints are consistent. We define
Var(φ) = Var(T ) ∪Var(ψ).

Observe that the coverability problem can be reduced to constraint reacha-
bility. More precisely, γinit

∗−→ pfin is equivalent to γinit
∗−→ φfin where φfin is

the constraint [pfin(x)] : true.
For constraints φ1, φ2, we use φ1 v φ2 to denote that φ1 is entailed by

φ2, i.e., [[φ1]] ⊇ [[φ2]]. For a constraint φ, we define Pre(φ) to be a finite set
of constraints which characterize the configurations from which we can reach
a configuration in φ through the application of a single rule. In other words⋃
φ1∈Pre(φ)[[φ1]] = {γ| ∃γ′ ∈ [[φ]]. γ −→ γ′}.

Example Consider the constraint φ1 = [p(x1) , q(x2) , q(x3)] : {x1 <2

x2 , x2 <1 x3}, and the configurations γ1 = [p(2), q(8), q(5), p(1)] and γ2 =
[p(2), q(2), q(5), p(1)]. Then γ1 ∈ [[φ1]] and γ2 6∈ [[φ1]]. Consider the constraints
φ2 = [p(y1) , q(y2)] : {y1 < y2} and φ3 = [p(y1) , q(y2)] : {y1 <4 y2}. Then
φ2 v φ1 and φ3 6v φ1.

Symbolic Algorithm Given an instance of the coverability problem (Section 2),
defined by γinit and the constraint φfin corresponding to pfin , the symbolic algo-
rithm performs a fixpoint iteration starting from φfin and repeatedly applying
Pre on the generated constraints. The iteration stops if either (i) we generate
a constraint φ with γinit ∈ [[φ]]; or (ii) we reach a point where, for each newly
generated constraint φ, there is a constraint φ′ generated in a previous iteration
with φ′ v φ. We give a positive answer to the coverability problem in the first
case, while we give a negative answer in the second case.



We observe that, in order to be able to implement such an algorithm, we
need computability of (i) membership, (ii) entailment, and (iii) the function
Pre. The computability of these three relations is shown in Section 4 (Lemma 2).
These above three conditions are sufficient conditions for semi-decidability of the
problem. In Section 5 we also show that the algorithm is guaranteed to terminate.

4 Computability

In this section, we show computability of membership, entailment, and the pre-
decessor function for constraints. First, we define a normal form for constraints.
A constraint T : ψ is said to be in normal form whenever the condition ψ satisfies
the following requirements:

1. if (x <c1 y) ∈ ψ and (y <c2 z) ∈ ψ then (x <c3 z) ∈ ψ for some c3 with
c1 + c2 < c3.

2. if (x <c y) ∈ ψ and (y = z) ∈ ψ then (x <c z) ∈ ψ.
3. if (x <c y) ∈ ψ and (x = z) ∈ ψ then (z <c y) ∈ ψ.
4. if (x = y) ∈ ψ and (y = z) ∈ ψ then (x = z) ∈ ψ.
5. For each x, y ∈ V, at most one conjunct in ψ contains both x and y.
6. Var(ψ) ⊆ Var(T ).

Lemma 1. For each constraint φ we can effectively compute a constraint φnorm

such that φnorm is in normal form and such that [[φ]] = [[φnorm ]].

The normalization procedure consists of repeatedly adding conjuncts to ψ which
maintain properties 1-4 and removing conjuncts which violate property 5. When
the above procedure stabilizes, we remove all conjuncts in ψ containing vari-
ables not in Var(T ). Normalization can also be used to check consistency: the
constraint is consistent if and only if no inequalities of the form x <c x are
generated.

Lemma 2. Membership, entailment, and Pre are computable for constraints.

The full proof of the lemma is given in the appendix. The main concepts are the
following. For a constraint φ and a configuration γ, it follows by definition that
γ ∈ [[φ]] iff there is a valuation Val of Var(φ) such that Val(ψ) ∧ (γ ≥ Val(T )).
Computability follows since there are only finitely many valuations Val with
γ ≥ Val(T ).

Consider constraints φ1 = (T1 : ψ1) and φ2 = (T2 : ψ2) which are in normal
form (by Lemma 1 this is not a restriction). Let R be the set of renamings of
Var(T1) such that Ren(T1) ≤ T2. Then φ1 v φ2 is characterized by the formula
by

∀x1 · · ·x2.

(
ψ2 =⇒

∨
Ren∈R

Ren(ψ1)

)
Since the set R is finite, checking the formula amounts to checking the satisfia-
bility of a Boolean combination of formulas of the forms x = y or x <c y.



Let S be a CMRS and φ2 be a constraint. We define Pre(φ2) =
⋃
ρ∈S Preρ(φ2),

where Preρ(φ2) describes the effect of running the rule ρ backwards from the
configurations in φ2. Let ρ = (L; R : ψ) and φ2 = (T2 : ψ2). Let W be any set
of variables such that |W | = |Var(φ2) ∪Var(ρ)|. We define Preρ(φ2) to be the
set of constraints of the form T1 : ψ1, such that there are renamings Ren,Ren2

of Var(ρ) and Var(φ2) respectively to W , and

• T1 = Ren2(T2)	 Ren(R) + Ren(L) • ψ1 = Ren(ψ) ∧ Ren2(ψ2)

Example Consider the constraints

φ1 = [p(x1) , q(x2) , q(x3) , r(x4)] : {x1 <1 x2 , x2 <3 x4 , x1 < x3 , x1 <8 x4}
φ2 = [p(y1) , q(y2) , q(y3) , r(y4) , s(y5)] : {y1 <1 y3 , y2 <3 y3 , y1 < y4 , y2 <2 y4}

Then the set R = {Ren1,Ren2} where

Ren1 = (x1 7→ y1 , x2 7→ y2 , x3 7→ y3 , x4 7→ y4)
Ren2 = (x1 7→ y1 , x2 7→ y3 , x3 7→ y2 , x4 7→ y4)

Therefore, φ1 v φ2 is characterized by validity of the formula
y1 <1 y3
y2 <3 y3
y1 < y4
y2 <2 y4

 =⇒


y1 <1 y2
y2 <3 y4
y1 < y3
y1 <8 y4

 ∨

y1 <1 y3
y3 <3 y4
y1 < y2
y1 <8 y4


Consider the constraint φ = [q(x1) , s(x2) , r(x2)] : {x1 < x2} and

the rule ρ = [p(y1) , p(y3)] ; [q(y2) , r(y3)] : {y3 < y2}. Fix W =
{w1, w2, w3, w4, w5}, and define Ren2 = (x1 7→ w1 , x2 7→ w2),
Ren = (y1 7→ w3 , y2 7→ w1 , y3 7→ w4). Then one member of Preρ is given by
[s(w2) , r(w2) , p(w3) , p(w4)] : {w1 < w2 , w4 < w1}, which after nor-
malization becomes [s(w2) , r(w2) , p(w3) , p(w4)] : {w4 <1 w2}. Ob-
serve that (i) the normalization procedure may introduce new constants (1
in this case) which are not part of the original constraint; (ii) if we choose
Ren = (y1 7→ w3 , y2 7→ w1 , y3 7→ w2) then the resulting constraint will denote
an empty set (its conditions will be inconsistent); (iii) the size of constraints may
increase when computing Pre.

5 Termination

In [2] it is shown that the coverability algorithm is guaranteed to terminate in
case v is a well quasi-ordering (WQO). Following the methodology of [5], we
show that v in fact satisfies a stronger property than WQO; namely that it is
a better quasi-ordering (BQO). The challenging task in applying the method is
to find an “intermediate” class of constraints, here called flat constraints, and
then showing (i) that flat constraints are BQO; and (ii) that each constraint is
the union of a set of flat constraints.



5.1 WQOs and BQOs

A quasi-ordering or a QO for short, is a pair (A,�) where � is a reflexive and
transitive (binary) relation on a set A. A QO (A,�) is a well quasi-ordering or
a WQO for short, if for each infinite sequence a1, a2, a3, . . . of elements of A ,
there are i < j such that ai � aj . Given a QO (A,�), we define a QO (A∗,�∗)
on the set A∗ such that x1 x2 · · · xm �∗ y1 y2 · · · yn if and only if there is a
strictly monotone injection h form {1, . . . ,m} to {1, . . . , n} such that xi � yh(i)
for each i : 1 ≤ i ≤ m. A QO (A⊗,�⊗) on the set A⊗ can be defined in a
similar manner. We define the relation �P on the powerset P(A) of A, so that
A1 �P A2 if and only if ∀b ∈ A2 : ∃a ∈ A1 : a � b.

In the following lemma we state some properties of BQOs3 [5, 20].

Lemma 3. 1. Each BQO is WQO.
2. If A is finite, then (A,=) is BQO.
3. If (A,�) is BQO, then (A∗,�∗), (A⊗,�⊗), and

(
P(A),�P

)
are BQOs.

5.2 Flat Constraints

A flat constraint φfl is a of the form B0 d1 B1 d2 · · · dn Bn whereB0, B1, . . . , Bn ∈
P⊗ and d1, d2, . . . , dn ∈ N. In other words, a flat constraint is a word which alter-
natively contains multisets of predicate symbols and natural numbers, starting
and ending with a multiset of predicate symbols. Furthermore, we require that
the multisets B0, B1, . . . , Bn are all non-empty. For a configuration γ, we have
γ ∈ [[φfl ]] if there are natural c0, . . . , cn ∈ N such that (i) ci − ci−1 > di for
each i : 1 ≤ i ≤ n; and (ii) γ(p(ci)) ≥ Bi(p) for each predicate symbol p and
i : 0 ≤ i ≤ n.

We observe that Each Bi is a multiset over the finite set P. Therefore the Bi’s
are BQO under the multiset ordering ≤ by properties 2 and 3 in Lemma 3. By
a similar reasoning, the di’s are BQO under the standard ordering ≤ on natural
numbers. Since each flat constraint is a finite word of Bi’s and di’s , it follows
by property 3 that flat constraints are BQO under v. Finally v is WQO by
property 1. This gives the following.

Lemma 4. The entailment relation v is a BQO (and therefore also a WQO)
on flat constraints.

Example Consider the flat constraint φ1 = [p] 4 [q, r] 2 [r], and the configurations
γ1 = [p(1), q(7), r(7), r(11), q(3)], γ2 = [p(1), q(7), r(7), r(8), q(3)],
and γ3 = [p(1), q(7), r(8), r(11), q(3)]. Then γ1 ∈ [[φ1]] and γ2, γ3 6∈ [[φ1]].

Consider the flat constraints φ2 = [p] 2 [r] 1 [r], φ3 = [p] 5 [r], and
φ4 = [p] 10 [r]. Then φ2 v φ1, φ3 v φ1, and φ4 6v φ1.

3 The technical definition of BQOs is quite complicated and can be found in e.g. [5].
The actual definition is not needed for understanding the rest of the paper, and is
therefore omitted here.



5.3 Translation

Consider a constraint φ = T : ψ in normal form. A flattening F of Var(φ) is a
word of the form X0 d1 X1 d2 · · · dn Xn where d1, d2, . . . , dn ∈ N and the
following three conditions are satisfied:

– X0, X1, . . . , Xn is a partitioning of Var(φ).
– If (x = y) ∈ ψ then x, y ∈ Xi for some i : 1 ≤ i ≤ n.

– If (x <c y) ∈ ψ, x ∈ Xi, and y ∈ Xj then c ≤
(∑j

k=i+1 dk + 1
)

.

Intuitively, variables which are required to be equal by φ, are put in the same
Xi. Also, variables which are ordered according to φ, are placed sufficiently far
apart to cover the corresponding gap. The flattening φfl of φ induced by F is
a flat constraint B0 d1 B1 d2 · · · dn Bn such that Bi(p) =

∑
x∈Xi

T (p(x))
for each p ∈ P and i : 1 ≤ i ≤ n. Since φ is in normal form, it follows that
Var(T ) = Var(φ) and hence Bi is not empty for each i : 1 ≤ i ≤ n.

Example Consider the constraint

φ = [p(x1) , q(x2) , r(x3) , r(x4)] : {x1 <2 x2 , x1 <1 x3 , x2 <3 x4 , x1 <8 x4}

A flattening of the condition and the induced flat constraint is given by
{x1} 3 {x2, x3} 5 {x4} resp. [p] 3 [q, r] 5 [r].
Another one is given by {x1} 3 {x2} 5 {x3, x4} resp. [p] 3 [q] 5 [r, r].
On the other hand, {x1} 3 {x2} 3 {x3, x4} is not a flattening of the condition
of φ.

Lemma 5. For a constraint φ and a configuration γ, we have γ |= φ iff γ |= φfl

for some flattening φfl of φ.

From Lemma 3, Lemma 4, and Lemma 5, we get the following.

Lemma 6. The set of constraints is a BQO (and therefore also a WQO) under
entailment.

6 Adding Constants

In this section, we show how to extend our language, so that we can compare
variables with constants which are natural numbers. We do this in a stepwise
manner, showing how we can extend the definitions, lemmas , and algorithms of
the previous sections.

A condition is a finite conjunction of formulas of one of the forms x <c y,
x = y, c < x, x = c, or x < c, where x ∈ V and c ∈ N. Throughout the rest
of this section we assume a CMRS S. We let cmax be the maximum natural
number which occurs in any rule in S. A constraint is of the form T : ψ where
T is a multiset of terms and ψ is a condition. If (x = c) ∈ ψ or (x < c) ∈ ψ
then c ≤ cmax . In other words, constants which define values or upper bounds
of variables are in the range from 0 to cmax .



We can generalize the definition of normal form and then extend Lemma 2
(see proof of Theorem 2) for details. The crucial observation here is that con-
juncts of the form x = c or x < c which are added by the normalization procedure
satisfy the property that c ≤ cmax . This is reflected in the extended definition
of flat constraints which will now be of the form
D1 · · ·Dcmax d0 B0 d1 B1 d2 · · · dn Bn. Here B0, . . . , Bn ∈ P⊗ and
d0, d1, . . . , dn ∈ N are defined as before. We have also an additional part, where
D0, . . . , Dcmax are members of P⊗ and are used to encode the terms whose argu-
ments are in the interval from 0 to cmax . Using a similar reasoning to Section 5
we can show termination of the algorithm for the extended model. From this we
get the following.

Theorem 2. The coverability problem is decidable for CMRS with constants.

7 Undecidable Properties and Extensions

In this section, we show undecidability of a number of properties for CMRS.
Furthermore, we show that some natural extensions of the model imply unde-
cidability of the coverability problem.

Undecidable Properties First, we show undecidability of repeated reachability.
The problem is defined as follows
Instance: A CMRS S, an initial configuration γinit , and a rule ρ ∈ S.
Question: Is there an infinite sequence of transitions from γinit invoking ρ in-
finitely often?

The idea of the undecidability proof is that CMRS can weakly simulate 2-
counter machines. Weak simulation means that testing the value of one counter
is replaced by two operations: (i) resetting the value of the counter to zero; (ii)
reducing the value of the other counter by an arbitrary number. Mayr [21] shows
that repeated reachability is undecidable for weak (lossy) counter machines.
From this we get the following.

Theorem 3. Repeated Reachability is undecidable for CMRS.

From Theorem 3 it follows immediately that action-based LTL is undecidable
for CMRS. It is also possible to consider repeated predicate (rather than rule)
reachability. It is straightforward to show that the two problems can be reduced
to each other.

Next, we consider configuration reachability. This problem is formulated in
the same manner as coverability (Section 2), except that we now ask the question

whether γinit
∗−→ γfin? In other words, we ask about the reachability of a con-

figuration rather than a predicate symbol. Using a method similar to that used
by De Frutos et al [12] we can extend the proof of Theorem 3 to show undecid-
ability of configuration reachability. The idea is still to simulate a weak counter
machine. However, checking reachability of a concrete configuration gives the
additional power of being able to analyze the final configuration. In particular,



we will only accept computations where no losses (counter decrements in con-
nection with zero-testing) occur; thus effectively simulating a perfect (non-lossy)
counter machine.

Theorem 4. Configuration Reachability is undecidable for CMRS.

Undecidable Extensions First, we consider dyadic CMRS, in which predicate
symbols may have two arguments. We include binary predicate symbols, thus
allowing terms of the form p(x, y) where p ∈ P and x, y ∈ V. Configurations and
constraints can be extended in the obvious manner. Normalization, checking
membership, and checking entailment can be performed exactly in the same
manner as for the monadic case (Section 4). This yields a semi-algorithm for
checking coverability. However, the symbolic algorithm is no longer guaranteed
to terminate. In fact, we are able to show the following theorem by reduction
from the reachability problem for Turing machines.

Theorem 5. The coverability problem is undecidable for dyadic CMRS.

Small extensions of the constraint language can drastically change the ex-
pressive power of the resulting CMRS . For instance, adding conditions of the
form x− y ≤ c makes the model Turing-powerful. The reason is that conditions
like the above, together with the gap constraints, allow to check exact differences
between variables. This makes it possible to encode increment and decrement
operations. Since we can also check equality, we get the full power of counter
machines.

8 Related Models

In this section we show that the (monadic) CMRS model is strictly more powerful
than that two related models, namely that of Petri nets and relational automata
[11]. To compare the relative expressiveness of the models we will differentiate
them using language equivalence. We assume a finite alphabet Σ. For words
w,w′, we write w � w′ to denote that w is a (not necessarily contiguous) subword
of w′, and write wR to denote the reverse of w. We consider a particular language
over Σ, namely LPAL =

{
w1w2| w2 � wR1

}
. We will show that LPAL can be

recognized by a CMRS, but not by any Petri net or relational automaton.
To do that, we regard CMRS as language acceptors. We assume a CMRS

S, and fix an initial configuration γinit and an accepting predicate symbol pacc .
We also assume a labelling function λ from the rules of S to Σ. We define
L(S) to be the set of finite words a1a2 · · · an such that there is a sequence

γ0
ρ1−→ γ1

ρ2−→ γ2 · · ·
ρn−→ γn of transitions where (i) γ0 = γinit , (ii) pacc appears

in γn, and (iii) λ(ρi) = ai for each i : 1 ≤ i ≤ n. We say that L is a CMRS
language if there is a CMRS S with L = L(S).

Lemma 7. There is CMRS S with L(S) = LPAL.



Petri Nets We assume familiarity with the model of Petri nets. We consider a
Petri net N as a language acceptor and define L(N ) in a similar manner to
CMRS. More precisely, we fix an initial marking Minit , an accepting marking
Macc , and a labelling function from the transitions of N to Σ. Then, we define
define L(N ) by considering labels of transition sequences leading from Minit to
a marking which covers Macc .

For a Petri N , It is straightforward to derive a CMRS S with L(S) = L(A).
This follows since Petri nets are restricted CMRS which operate on an empty
set of variables. In [22], it is shown that the language consisting of words of the
form wwR cannot be accepted by a Petri net. In fact, it is straightforward to use
the same construction given in [22] to show that there is no Petri net N such
that L(N ) = LPAL. This, together with Lemma 7, implies the following.

Theorem 6. There exist CMRS languages which are not Petri net languages.

Relational Automata A relational automaton operates on a finite set of integer
variables, and is of the form (Q, δ) where Q and δ are finite sets of (local) states
and transitions respectively. A transition is a triple (q1, op, q2) where q1, q2 ∈ Q
and op is of one of the following three operations: (i) reading: read(x) reads a
new value of variable x, (ii) assignment: x := y assigns the value of variable y
to x; (ii) testing: x < y, x = y, x < c, x = c, and x > c are guards which
compare the values of variables x, y and the integer constant c. The language of
a relational automaton can be defined in the same manner as for the previous
models.

Given a relational automaton A, we can derive a CMRS S with L(S) = L(A).
The proof details are given in the appendix as part of the proof of Theorem 7.
The idea is to have a predicate symbol to encode each local state in A. Also, for
each variable x in A, we have a predicate symbol qx, where the argument of qx
encodes the value of x. Then each transition of A is encoded by a corresponding
rule in S. On the other hand, we show that there is no relational automaton A
such that L(A) = LPAL. This gives the following.

Theorem 7. There exist CMRS languages which are not relational automata
languages.

9 Case Studies

We have implemented a prototype based on our symbolic verification procedure
in SICStus Prolog. The prototype can be applied to monadic and non-monadic
CMRS (without guarantee of termination in the latter case). Here we report on
two case studies carried out through the prototype. More details can be found
in the appendix.

Mutual Exclusion This protocol is inspired by Fischer’s mutual exclusion pro-
tocol for timed systems [25]. Here, we present a version which achieves synchro-
nization through a shared variable rather than timing constraints. The goal of



the protocol is to guarantee mutual exclusion among an arbitrary number of
processes. Each process is in one of the states idle, waiting , and cs (critical sec-
tion). Each process reads from and writes to a shared variable v, whose value is
either ⊥ or the identity of one of the processes. The variable v may be in one of
two modes: v0 (which is the initial mode) and v1. Processes may dynamically be
created and deleted during the execution of the protocol. When a new process
is created, it is given a unique identity. A process can move from state idle to
waiting . In such a case, the variable v will be assigned the identity of that pro-
cess. The variable may change mode to v1. It is only then processes are allowed
to enter cs. More precisely, a process may cross from waiting to cs only if the
shared variable is in mode v1 and the identity of the process is the one carried
by v. Also, when the mode is v1, processes are prevented from changing state
to waiting . In case a process with the wrong identity tries to enter cs, it will
be returned to the state idle. Our CMRS model consists of 9 rules (shown in
the appendix). When running the prototype on this problem to prove mutual
exclusion, we obtain a fixpoint after 10 iterations generating 24 constraints in
1.5 seconds.

The FSC Authentication Protocol The FSC system is a protocol introduced in
[27] to specify the interaction between forwarded agents, service provider agents
and clients in a system in which processes are distributed over a finite set of
locations and in which processes can move from location to location. Communi-
cation may take place only between agents in the same location. The protocol
works under the assumption that only the forwarder agents know the locations
in which a service can be provided. Thus, as a first step, a client moves to the
location of the forwarder to send a request for a given service. The forwarder
assigns to the request a new identifier, and passes the identifier and the location
of the provider to the client. After this step, the forwarder moves to the location
of the provider, communicates the identifier of the request to the provider, and
then goes back to his home location. The provider stores the identifier and then
waits for a client to login, Clients use the information received by the forwarder
to move to the provider location, and then use the identifier received in the
first phase to login. The provider grants the service to a client only after having
matched the identifier received from the forwarder with that used by the client
to login.

For this protocol, we have defined two different CMRS models. The first model
is based on the assumption (present in the original version of the protocol) that
the set of locations is finite. This model uses only monadic predicates and con-
sists of 10 rules. The second model is parameterized on the number of locations,
identifiers, and agents, and uses dyadic predicates. In the monadic model with
one agent of each type, we computed a fixpoint after 22 iterations generating
3049 constraints. Adding one provider we reached a fixpoint after 29 iterations
computing more than 12000 constraints. For the model parameterized in all
dimensions, we computed a fixpoint after 22 iterations, generating about 8000
constraints. The last experiment shows that the property holds for any number of



forwarders, providers and clients. The execution time for the fully parameterized
version is 9479.6 seconds.

10 Conclusions and Future Work

We have considered multiset rewriting systems, where the elements of a multi-
set are uninterpreted predicate symbols. The predicates have arguments which
range over the natural numbers, and the rewriting rules are conditioned by sim-
ple arithmetical constraints. We provide a symbolic reachability algorithm for
solving the coverability problem. We have used a prototype based on the al-
gorithm to verify two non-trivial examples of protocols consisting of arbitrary
numbers of processes which contain integer variables. The results are promis-
ing, especially taking into consideration that no optimizations are performed on
the code or data structures. One direction for future work is to improve per-
formance through the incorporation of widening and acceleration techniques to
enhance the fixpoint iteration (e.g. [6]), and through the use of more efficient
data structures (e.g. [16]).

Our model can also be viewed as coloured Petri nets, where the colours of the
tokens are natural numbers, and where firing conditions may contain gap-orders.
We show that our model contains strictly the class of Petri net languages. The
criterion we use for accepting words is that of coverability. In a similar manner
to [22], we can define a hierarchy of accepting conditions including , e.g., exact
reachability. In fact, the relative power of the models remain regardless of the
chosen accepting conditions. This is also true if we choose other equivalence
relations, such as bisimulation or languages of infinite words.

The variables in the rewriting rules are interpreted over the natural numbers.
It is relevant to investigate other classes of interpretation domains such as the
rational numbers or reals.
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A Proof of Some Lemmas

Lemma 2

Computability of membership is obvious. We consider checking entailment and
computing Pre.

Checking Entailment We write F (φ1, φ2) to denote the formula

∀x1 · · ·x2.

(
ψ2 =⇒

∨
Ren∈R

Ren(ψ1)

)

We show that F (φ1, φ2) holds iff φ1 v φ2. Let φ1 = (T1 : ψ1) and φ2 = (T2 : ψ2).
Below we show both directions of the equivalence.

(if) Suppose that F (φ1, φ2) holds and γ ∈ [[φ2]]. We show that γ ∈ [[φ1]].

Since γ ∈ [[φ2]] it follows that there is a valuation Val2 of Var(φ2) such that
Val2 |= ψ2 and γ ≥ Val2(T2).

From this and the fact that F (φ1, φ2) holds, it follows that there is a renaming
of Var(φ1) such that T2 ≥ Ren(T1) and Val2 |= Ren(ψ1). Define the valuation
Val1 of Var(φ1) such that Val1(x) = Val2(Ren(x)). We have γ ≥ Val2(T2) ≥
Val2(Ren(T1)) = Val1(T1). Also, we know that Val2 |= Ren(ψ1) and hence
Val1 |= ψ1. This implies that γ ∈ [[φ1]].

(only if) Suppose that F (φ1, φ2) does not hold. We show that there is a γ
such that γ ∈ [[φ2]] and γ 6∈ [[φ1]].

Since F (φ1, φ2) does not hold, we know that there is a valuation Val2 of
Var(φ2) such that Val2 |= ψ2 and for each renaming Ren of Var(φ1) it is the
case that either Ren(T1) 6≤ T2 or Val2 6|= Ren(ψ1).

Define γ = Val2(T2). We show that γ 6∈ [[φ1]]. Take any valuation Val1 of
Var(φ1). Suppose that γ ≥ Val1(T1) and Val1 |= ψ1. We show that this leads
to a contradiction. Define h to be a partial mapping from N to Var(φ2) such
that h(c) = y for some y such that Val2(y) = c. If no such a y exists, the
value of h(c) is undefined. Define Ren to be the renaming of Var(φ1) where
Ren(x) = h(Val1(x)). Observe that Var(φ1) = Var(T1) by normality of φ1.
The function Ren is well-defined as follows: Val2(T2) = γ ≥ Val1(T1). There-
fore, if Val1(x) = c for some x ∈ Var(T1) and c ∈ N, then there exists a
y ∈ Var(T2) with Val2(y) = c. Notice that Val1(x) = Val2(Ren(x)) for each
x ∈ Var(T1). Furthermore, by the definition of Ren it follows that, for any
x1, x2 ∈ Var(φ1), if Val1(x1) = Val1(x2) then Ren(x1) = Ren(x2); hence
Val2(Ren(x1)) = Val2(Ren(x2)) implies Ren(x1) = Ren(x2). From this and the
fact that Val2(T2) ≥ Val1(T1) = Val2(Ren(T1)), it follows that T2 ≥ Ren(T1).
Since φ1 is in normal form, we know that Var(ψ1) ⊆ Var(T1). This means that
Val1(x) = Val2(Ren(x)) for each x ∈ Var(ψ1). From this and Val1 |= ψ1 we
get Val2 |= Ren(ψ1). This contradicts the fact that for each renaming Ren of
Var(φ1) we have either Ren(T1) 6≤ T2 or Val2 6|= Ren(ψ1).



Computing Pre For a set Φ of constraints we let [[Φ]] =
⋃
φ∈Φ[[φ]]. For a constraint

φ2 and a rule ρ ∈ S, let Φ1 = Preρ(φ2). We show that [[Φ1]] =
{
γ1| ∃γ2 ∈ [[φ2]]. γ1

ρ−→ γ2

}
We show the set inclusion in both directions.

[[Φ1]] ⊆
{
γ1| ∃γ2 ∈ [[φ2]]. γ1

ρ−→ γ2

}
: Suppose that γ1 ∈ [[Φ1]], i.e., there is

φ1 ∈ Φ1 such that γ1 ∈ [[φ1]]. We show that there is γ2 ∈ [[φ2]] such that γ1
ρ−→ γ2.

Since γ1 ∈ [[φ1]] we know that there is a valuation Val ′1 of Var(φ1) such that
Val ′1 |= ψ1 and γ1 ≥ Val ′1(T1). Let Val1 be any valuation of Ren(Var(ρ)) ∪
Ren2(Var(φ2)) such that Val ′1(x) = Val1(x) for each x ∈ Var(φ1). Since φ1 ∈
Preρ(φ2), there are renamings Ren,Ren2 of Var(ρ) and Var(φ2) such that T1 =
Ren2(T2)	Ren(R) + Ren(L) and ψ1 = Ren(ψ) ∧Ren2(ψ2). Define a valuation
Val of Var(ρ) such that Val(x) = Val1(Ren(x)) for each x ∈ Var(ρ). Also,
define a valuation Val2 of Var(φ2) such that Val(x) = Val2(Ren2(x)) for each
x ∈ Var(φ2). Let γ2 = γ1 −Val(L) + Val(R).

We know that Val1 |= ψ1. It follows that Val1 |= Ren(ψ) and hence Val |= ψ.
Also, we know that γ1 ≥ Val1(T1) ≥ Val1(Ren(L)) = Val(L). It follows that

γ1
ρ−→ γ2. It remains to show that γ2 ∈ [[φ2]].

Let T ′2 be such that Ren2(T ′2) = Ren2(T2)	 Ren(R), and let T ′′2 = T2 − T ′2.
Also, define R′′ such that Ren(R′′) = Ren2(T ′′2 ), and let R′ = R − R′′. Notice
that all these four multisets are well-defined. We have

γ2 =
γ1 −Val(L) + Val(R) ≥
Val1(T1)−Val(L) + Val(R) =
Val1(Ren2(T2)	 Ren(R) + Ren(L))−Val(L) + Val(R) =
Val1(Ren2(T2)	 Ren(R)) + Val(R) =
Val1(Ren2(T ′2)) + Val(R′) + Val(R′′) =
Val1(Ren2(T ′2)) + Val(R′) + Val1(Ren(R′′)) =
Val1(Ren2(T ′2)) + Val(R′) + Val1(Ren2(T ′′2 )) =
Val2(T ′2) + Val(R′) + Val2(T ′′2 ) =
Val2(T2) + Val(R′) ≥
Val2(T2)

In other words, γ2 ≥ Val2(T2). Also, we know that Val1 |= ψ1 and therefore
Val1 |= Ren2(ψ2) which means that Val2 |= ψ2. It follows that γ2 ∈ [[φ2]].{

γ1| ∃γ2 ∈ [[φ2]]. γ1
ρ−→ γ2

}
⊆ [[Φ1]]: Suppose that γ1

ρ−→ γ2 and γ2 ∈ [[φ2]].

We show that γ1 ∈ [[φ1]] for some φ1 ∈ Φ1.
Since γ2 ∈ [[φ2]], we know that there is a valuation Val2 of Var(φ2) such

that Val2 |= ψ2 and γ2 ≥ Val2(T2). Since γ1
ρ−→ γ2, we know that there is

a valuation of Var(ρ) such that Val |= ψ γ2 = γ1 − Val(L) + Val(R). Define
renamings Ren,Ren2 of Var(ρ) and Var(φ2) to W respectively such that:

– For x ∈ Var(ρ) and y ∈ Var(φ2), we have Ren(x) = Ren2(y) iff Val(x) =
Val2(y).

– For x, y ∈ Var(ρ) , we have Ren(x) = Ren(y) iff Val(x) = Val(y). A similar
condition holds in case x, y ∈ Var(φ2).



In other words, x and y are renamed identically iff they are assigned identical
values by either Val or Val2. The renamings Ren,Ren2 are well-defined since at
most |Var(φ2) ∪Var(ρ)| different values are assigned to the variables, and since
by definition we have |W | = |Var(φ2) ∪Var(ρ)|,

Define φ1 = (T1 : ψ1) where T1 = Ren2(T2) 	 Ren(R) + Ren(L) and ψ1 =
Ren(ψ) ∧ Ren2(ψ2). Below, we show that γ1 ∈ [[φ1]].

Define a valuation Val1 of Var(ρ) ∪ Var(φ2) such that Val1(y) = Val(x)
if Ren(x) = y and Val1(y) = Val2(x) if Ren2(x) = y. The valuation Val1 is
well-defined since Ren(x1) = Ren2(x2) implies Val(x1) = Val2(x2). We have

γ1 =
γ2 −Val(R) + Val(L) =
γ2 	Val(R) + Val(L) ≥
Val2(T2)	Val(R) + Val(L) =
Val1(Ren2(T2))	Val1(Ren(R)) + Val1(Ren(L)) =
Val1(Ren(T2)	 Ren(R) + Ren(L)) =
Val1(T1)

The equality in the second line above holds since γ2 = γ1 − Val(L) + Val(R).
This means that γ2 ≥ Val(R) and therefore γ2−Val(R) = γ2	Val(R). Also, the
next last inequality holds since, for each x1, x2 ∈ Var(Ren(ρ))∪Var(Ren2(φ2)),
Val1(x1) = Val1(x2) implies x1 = x2. Furthermore, since Val |= ψ and Val2 |=
ψ2, it follows that Val1 |= Ren(ψ) and Val1 |= Ren2(ψ2), and hence Val1 |= ψ1.
This implies that γ1 ∈ [[φ1]].

Lemma 4

Suppose that φfl = B0 d1 B1 d2 · · · dm Bm and φ′fl = B′0 d
′
1 B
′
1 d
′
2 · · · d′n B′n.

By definition it follows that φfl v φ′fl iff there is a strictly monotone injection h
from {1, . . . ,m} to {1, . . . , n} such that

– Bi ≤ B′h(i) for each i : 1 ≤ i ≤ m.

– di+1 ≤
(∑h(i+1)

j=h(i)+1 d
′
j

)
+ h(i+ 1)− h(i)− 1, for each i : 0 ≤ i < m.

The result follows from Lemma 3 as follows: Each Bi is a multiset over the finite
set P. Therefore the Bi’s are BQO under the multiset ordering ≤ by properties 2
and 3 in Lemma 3. By a similar reasoning, the di’s are BQO under the standard
ordering ≤ on natural numbers. Since each flat constraint is a finite word of Bi’s
and di’s , it follows by property 3 that flat constraints are BQO under v. Finally
v is WQO by property 1

Lemma 5

Let φ be of the form T : ψ. We show the implication in both directions.
(only if) Suppose that γ |= φ, i.e., there is a valuation Val such that Val |= ψ

and γ ≥ Val(T ). Let X0, . . . , Xn be sets of variables such that



– Var(φ) = X1 ∪ · · · ∪Xn, and
– If x ∈ Xi and y ∈ Xj then i ≤ j iff Val(x) ≤ Val(y).

Let di = Val(y) − Val(x) − 1 for some x ∈ Xi−1, y ∈ Xi. In other words,
we organize the variables in Var(φ) by their valuations according to Val . More
precisely, variables of the same value are put into the same Xi, while di de-
scribes the difference of value between variables in Xi−1 and Xi. We show that
X0 d1 X1 d2 · · · dn Xn is a flattening of Var(φ):

– Since Val assigns to each variable in Var(φ) a value, it follows thatX0, X1, . . . , Xn

is a partitioning of Var(φ).
– Suppose that (x = y) ∈ ψ. Since Val |= ψ it follows that Val(x) = Val(y).

By definition it follows that x and y will belong to the same Xi.
– Suppose that (x <c y) ∈ ψ. Since Val |= ψ it follows that Val(x)+c < Val(y).

By definition it follows that x ∈ Xi and y ∈ Xj for some i < j. Also, by

definition of di we know that Val(y)− Val(x) =
(∑j

k=i+1 dk

)
+ j − i. This

implies c ≤
(∑j

k=i+1 dk + 1
)

Let φfl = B0 d1 B1 d2 · · · dn Bn be the flattening of φ induced by F . We show
that γ |= φfl . Let c0, . . . , cn be such that ci = Val(x) for some x ∈ Xi.

– By definition, we know that ci−1 = Val(x) for some x ∈ Xi−1 and ci = Val(y)
for some x ∈ Xi. This means that ci− ci−1 = di+1 +1, i.e. , ci− ci−1 > di+1.

– γ(p(ci)) ≥
∑
x∈Xi

T (p(x)) = Bi(p).

(if) Let φfl = B0 d1 B1 d2 · · · dn Bn be a flattening of φ, induced by a
flattening F = X0 d1 X1 d2 · · · dn Xn of Var(φ). Suppose γ ∈ [[φfl ]]. We show
that γ ∈ [[φ]], i.e., we show that there is a valuation Val of Var(φ) such that
Val |= ψ and γ ≥ Val(T ).

Since γ ∈ [[φ]] if there are natural c1, . . . , cn ∈ N such that

– ci − ci−1 > di for each i : 1 ≤ i ≤ n; and
– γ(p(ci)) ≥ Bi(p) for each i : 0 ≤ i ≤ n.

Define Val such that Val(x) = ci if x ∈ Xi.
First, we show that Val |= ψ.

– If (x = y) ∈ ψ then, since F is a flattening of Var(φ), we know that x, y ∈ Xi

for some i : 1 ≤ i ≤ n. By definition of Val it follows that Val(x) = ci =
Val(y).

– If (x <c y) ∈ ψ then, since F is a flattening of Var(φ), we know that x ∈ Xi

and y ∈ Xj for some i < j. with c ≤
(∑j

k=i+1 dk + 1
)

. We also know that

cj − ci ≥
(∑j

k=i+1 dk

)
+ j − i. This means that cj − ci > c. By definition of

Val it follows that Val(y)−Val(x) = cj − ci > c.

Now, we show that γ ≥ Val(T ). By definition of Val we know that Val(T )(p(c)) =
0 if c 6= c0, . . . , cn. Otherwise, we have Val(T )(p(ci)) =

∑
x∈Xi

T (p(x)) =
Bi(p) ≤ γ(p(ci)).



Theorem 2

A constraint T : ψ is said to be in normal form if ψ satisfies the conditions of
Section 4, together with the following conditions:

– if (x <c1 y) ∈ ψ and (y < c2) ∈ ψ then (x < c3) ∈ ψ for some c3 with
c2 − c1 > c3.

– if (x <c1 y) ∈ ψ and (c2 < x) ∈ ψ then (c3 < y) ∈ ψ for some c3 with
c1 + c2 < c3.

– if (x <c1 y) ∈ ψ and (x = c2) ∈ ψ then (c1 + c2 < y) ∈ ψ.
– if (x <c1 y) ∈ ψ and (y = c2) ∈ ψ then (x < c2 − c1) ∈ ψ.
– if (x = y) ∈ ψ and (c < y) ∈ ψ then (c < x) ∈ ψ.
– if (x = y) ∈ ψ and (y = c) ∈ ψ then (x = c) ∈ ψ.
– if (x = y) ∈ ψ and (y < c) ∈ ψ then (x < c) ∈ ψ.

Lemma 1 still holds, i.e., for each constraint φ we can effectively compute a
constraint φnorm in normal form such that [[φ]] = [[φnorm ]]. Conjuncts of the
form x = c or x < c which are added by the normalization procedure satisfy the
property that c ≤ cmax .

Checking entailment and computing predecessors can be carried out in the
same manner as in Section 4. Again, conjuncts of the form x = c or x < c which
are added when computing Pre satisfy the condition that c ≤ cmax .

To prove termination, we modify the definition of flat constraints.
A flat constraint φfl is a of the form

D1 · · ·Dcmax d0 B0 d1 B1 d2 · · · dn Bn

where D0, . . . , Dcmax , B0, . . . , Bn ∈ P⊗ and d0, d1, . . . , dn ∈ N. Here we allow the
multisets D1 · · ·Dcmax to be empty. For a configuration γ we have γ ∈ [[φfl ]] if
there are natural c0, . . . , cn ∈ N such that the following conditions are satisfied:

– c0 > d0 + cmax , and ci − ci−1 > di for each i : 1 ≤ i ≤ n
– γ(p(i)) ≥ Di(p) for each predicate symbol p and i : 0 ≤ i ≤ cmax . Also,
γ(p(ci)) ≥ Bi(p) for each predicate symbol p and i : 0 ≤ i ≤ n.

For constraints

φfl = D1 · · ·Dcmax d0 B0 d1 B1 d2 · · · dm Bm

and
φ′fl = D1 · · ·Dcmax d0 B

′
0 d
′
1 B
′
1 d
′
2 · · · d′n B′n

it is the case that φfl v φ′fl iff there is a strictly monotone injection h form
{1, . . . ,m} to {1, . . . , n} such that the conditions of Section 5 are satisfied and
that Di ≤ D′i for each i : 1 ≤ i ≤ cmax .

Consider a constraint φ = T : ψ in normal form. A flattening F of Var(φ) is
a word of the form

Y0 Y1 · · · Ycmax X0 d1 X1 d2 · · · dn Xn

where X1, . . . , Xn and d1, . . . , dn satisfy the same conditions as in Section 5, and
the following additional conditions are satisfied:



– Y0, Y1, . . . , Ycmax , X0, X1, . . . , Xn is a partitioning of Var(φ).
– If (x = y) ∈ ψ then either x, y ∈ Yi for some i : 1 ≤ i ≤ cmax or x, y ∈ Xi

for some i : 1 ≤ i ≤ n.
– If (x <c y) ∈ ψ, then one of the following holds:

• x ∈ Xi, y ∈ Xj , and c ≤
(∑j

k=i+1 dk + 1
)

.

• x ∈ Yi, y ∈ Xj , and c ≤
(∑j

k=0 dk + 1
)

+ cmax − i.
• x ∈ Yi, y ∈ Yj , and c ≤ j − i.

– If (c < x) ∈ ψ then one of the following holds:

• x ∈ Xi and c ≤
(∑j

k=0 dk + 1
)

+ cmax − i.
• x ∈ Yi and c < i.

– If (x = c) ∈ ψ then x ∈ Yc.
– If (x < c) ∈ ψ then x ∈ Yi. fro some i < c.

The flattening φfl of φ induced by F is a flat constraintD1 · · ·Dcmax d0 B0 d1 B1 d2 · · · dn Bn
where Bi satisfies the same condition as in Section 5 and:

– Di(p) =
∑
x∈Yi

T (p(x)) for each p ∈ P and i : 1 ≤ i ≤ cmax .

In a similar manner to Lemma 5, we can show that each constraint can be
translated to the union of a finite set of flat constraints. The proof can be carried
out in a similar fashion, adding new cases corresponding to the additional types
of conjuncts in conditions. This implies that Lemma 6 holds also for the new
types of constraints introduced in this section.

Theorem 3 and Theorem 4

First,we prove Theorem 3.
We recall the model of a 2-counter machine (CM) which is pair (Q, δ), where

Q is a finite set of states, and δ is the transition function. A transition is of the
form (q1, op, q2), where q1, q2 ∈ Q, and op is either an increment (of the form
cnt1 ++ or cnt2 ++); a decrement (of the form cnt1−− or cnt2−−); or a zero-
testing (of the form cnt1 = 0? or cnt2 = 0?). A lossy counter machine (LCM)
is of the same form as a counter machine. The difference in semantics is in the
zero-testing operation. More precisely, the zero-testing of cnt1 is simulated by
resetting the value cnt1 to zero, and decreasing the value of cnt2 by an arbitrary
natural number (possibly 0). The zero-testing of cnt2 is performed in a similar
manner.

Assume an LCM M = (Q, δ). We shall construct a CMRS S which will
simulate M. The simulation of M occurs in a sequence of phases. During each
phase, S simulates increment and decrement transitions of M. Each phase is
indexed by a natural number which is incremented at the end of the phase. As
soon asM performs a zero-testing of a counter, S enters an intermediate stage.
After conclusion of the intermediate stage, a new phase is started and the index
phase is increased.

The set of predicates symbols in S is divided into three groups:



– Two nullary predicate symbols q and q′ for each q ∈ Q. We use q′ during
the intermediate stages of the simulation.

– Two predicate symbols cnt1 and cnt2, which encode the values of cnt1 and
cnt2 respectively.

– A unary predicate p whose argument carries the index of the current phase.
Furthermore, we use a predicate symbol p′ to store the index of the previous
phase during the intermediate stages of the simulation.

A configuration of S contains, during the a given phase of the simulation,
the following ground terms:

– A term of the form q which encodes the current state of M.
– A term of the form p(c) where c is the index of the current phase.
– Terms of the form cnt1(c) where c is the index of the current phase. The

number of such terms encodes the current value of cnt1. There are also a
number of terms of the form cnt1(d) where d is not equal to the the index of
the current phase. Such terms are redundant and do not affect the encoding.
Similar terms exist to encode cnt2.

An increment transition (q, cnt1 + +, q2) ∈ δ is simulated by a rule of the form

[q1 , p(x)] ; [q2 , p(x) , cnt1(x)] : true

We increase the value counter cnt1 by adding one more term whose predicate
symbol is cnt1 and whose argument is equal to the index of the current phase.

A decrement transition (q, cnt1 −−, q2) ∈ δ is simulated by a rule of the
form

[q1 , p(x) , cnt1(x)] ; [q2 , p(x)] : true

We decrease the value counter cnt1 by removing one of the corresponding terms
from the configuration. Observe that terms whose arguments are less than index
of the current phase are not used, and hence they do affect the encoding.

A transition (q, cnt1 = 0?, q2) ∈ δ is simulated by the following three rules:

[q1 , p(x) , p′(x)] ; [q′1 , p(y) , p′(x)] : x < y
[q′1 , cnt2(x) , p(y) , p′(x)] ; [q′1 , cnt2(y) , p(y) , p′(x)] : true

[q′1 , p(y) , p′(x)] ; [q2 , p(y) , p′(y)] : true

We enter the intermediate phase by changing from q1 to q′1. We store the cur-
rent index using p′, and generate a new index which is strictly larger than the
current one. This resets counter cnt1 since all terms in its encoding will now
have too small arguments. Finally, we change the arguments of (some of) the
terms encoding cnt2 to the new index. Here, not all such terms may receive new
arguments, and hence the value cnt2 may “unintentionally” be reduced. We use
redundant terms to refer to terms which have either cnt1 or cnt2 as predicate
symbol, and whose arguments are smaller than the current index,

Mayr shows in [21] undecidability of the repeated state reachability problem
for LCM: given a lossy counter machine, and two states qinit and qfin , check



whether there is a computation starting from qinit (with both counter values
being equal to zero) and visits qfin infinitely often.

Using an idea similar to that used by De Frutos et al [12] we can extend the
proof to show Theorem 4 as follows. The key observation here is that redundant
terms are not removed during the simulation procedure described above. This
means that any reachable configuration which does not contain redundant terms
are generated by computations of the perfect (non-lossy) counter machines. We
add the following rules to our CMRS:

[qfin , cnt1(x)] ; [q′fin ] : true

[q′fin , p(x) , cnt1(x)] ; [q′fin , p(x)] : true

[q′fin , p(x) , cnt2(x)] ; [q′fin , p(x)] : true

[q′fin , p(x)] ; [q′fin ] : true

In other words, if we reach a configuration where M is in qfin , then S initiates
a procedure where it moves to q′fin and then erases the terms corresponding to
the counters. However, we only remove such terms if there arguments are equal
to the index of the current phase. This implies that the configuration [q′fin ] in S
iff qfin is reachable in the perfect CM.

Theorem 5

We show undecidability by reducing the reachability problem for Turing Ma-
chines. Assume a Turing Machine T = (Q,Σ, δ) where Q is the set of states, Σ
is the alphabet (including the empty symbol ⊥), and δ is the transition func-
tion. Let qinit , qfin ∈ Q. Suppose that all executions of T start from qinit with an
empty tape. We construct an CMRS S and define an instance of the coverability
problem which has a positive answer if and only if qfin is reachable in T .

The set of predicate symbols in S consists of the following:

– A nullary predicate symbols q, for each q ∈ Q.
– Two binary predicate symbols a and a• for each a ∈ Σ.
– Two binary predicates start and start1 which are used to initiate the encod-

ing process.

We use the configurations of S to encode both the state and the tape of T . A
ground term a(c1, c2) (in a configuration of S) will encode one square of the
tape. Intuitively, the predicate symbol a represents the alphabet symbol in that
particular square. We use the arguments c1 and c2 to define the ordering of the
squares along the tape. More precisely, the left argument c1 is equal to the right
argument of the term corresponding the square to the left, while c2 is equal to
the left argument of the term corresponding the square to the right. Symbols of
the form a• indicate the current position of the head. In other words, a term of
the form a•(c, d) can be explained as above, except that we also know that the
head is pointing to the current square.

The CMRS S contains three groups of rules:



– Initialization Rules:

[start(x, y)] ; [⊥•(x, y) , start1(y, z)] : y < z
[start1(x, y)] ; [⊥(x, y) , start1(y, z)] : y < z
[start1(x, y)] ; qinit : true

The first rule generates the first empty square and let the rule point to it,
indicated by the predicate symbol ⊥•. The second rule generates an arbitrary
number of empty squares. These are modelled by terms whose predicate
symbol is ⊥. Observe that the values of the arguments are strictly increasing
(ensured by the condition y < z), and that the left argument of each square
is equal to the right argument of the square generated in the previous step.
The third rule of the group nondeterministically ends this procedure, and
generates the initial state of T starting the simulation phase.

– Simulation Rules: For each transition of the form (q1, a1/a2, H, q2) ∈ δ and
each a3 ∈ Σ, we have a rule:

[q1 , a
•
1(x, y) , a3(y, z)] ; [q1 , a2(x, y) , a•3(y, z)] : true

This rule changes the current state to q2, changes a1 to a2, and moves the
head one step to the right. A square recognizes its right number since its right
argument is equal to the left argument of the neighbour (encoded by having
the same variable y in the corresponding terms inside the rule). Notice the
ordering of the squares is not changed by the rule.
For each transition of the form (q1, a1/a2, L, q2) ∈ δ and each a3 ∈ Σ, we
have a rule:

[q1 , a3(x, y) , a•1(y, z)] ; [q2 , a
•
3(x, y) , a2(y, z)]

The rule can be explained in a similar manner to the one above.

Now, we define the required instance of the coverability problem by taking
γinit to be any configuration of the form [start(c1, c2)] with c1 < c2, and taking
γfin = [qfin ].

Lemma 7

We give a CMRS S with L(S) = LPAL. The set of predicate symbols which
appear in S consists of (i) a predicate symbol a for each a ∈ Σ, and (ii) two
special symbols guess and check . We have three sets of rules in S:

– For each a ∈ Σ, we have a rule which is labelled with a and which is of the
form

[guess(x)] ; [guess(y) , a(x)] : {x < y}

Rules of this form are used to guess the initial part w1 of the word. We keep
track of the ordering among symbols inside w1 through their arguments.
These arguments are strictly increasing by definition of the rule.



– A rule of the form:

[guess(x)] ; [check(x)] : {true}

This rule is used to switch mode from guessing to checking.

– For each a ∈ Σ, we have a rule which is labelled with a and which is of the
form

[check(y) , a(y)] ; [check(x)] : {x < y}

This rule is used to check whether the second part of the word is a subword of
wR1 . This is done by traversing the symbols in the reverse direction (following
their arguments backwards), possibly jumping over some of the symbols.

We define γinit = [r(0)] and pacc = check .

Theorem 7

Assume a relational automaton A = (Q, δ) which operates on a set X of vari-
ables. Fix initial and accepting states qinit , qacc ∈ Q. A variable state v is map-
ping form X to N. A configuration is of the form (q, v), where q ∈ Q and v
is a variable state. We define γinit to be (qinit , vinit) where vinit(x) = 0 for all
x ∈ X. A configuration γacc is said to be accepting if it is of the form (qacc , v).

For a transition ρ ∈ δ of the form (q1, op, q2), we let γ1
ρ−→ γ2 if γ1 = (q1, v1),

γ2 = (q2, v2), and one of the following holds:

– op is of the form read(x) and v2(y) = v1(y) for each y ∈ X − {x}.
– op is of the form y := x, v2(z) = v1(z) for each z ∈ X − {y}, and v2(y) =
v1(x).

– op is of the form x < y, v2 = v1, and v1(x) < v1(y). Other testing operations
are defined in a similar manner.

For configurations γ, γ′ and a sequence σ = ρ1 · · · ρn of transitions, we use γ
σ

=⇒
γ′ to denote that there are γ0, γ1, . . . , γn such that γ = γ0

ρ1−→ γ1
ρ2−→ γ2 · · ·

ρn−→
γn = γ′.

We assume a labelling function λ from transitions to the finite alphabet Σ.
We extend λ to sequences of transitions such that λ(ρ1 · · · ρn) = λ(ρ1) · · ·λ(ρn).
We define L(A) to be the set of finite words w such that there is a sequence σ
of transitions where

– γinit
σ

=⇒ γacc for some accepting configuration γacc ; and

– λ(σ) = w.

We perform the proof in two steps, namely we show that

– for each relational automaton A, there is a CMRS S with L(S) = L(A).

– there is no relational automaton A such that L(A) = LPAL.



For a relational automaton A we derive a CMRS S with L(S) = L(A). The
set of predicate symbols in S consists of the following: (i) for each q ∈ Q, there
is a nullary predicate symbol q in S; and (ii) for each variable x in A, there is
a predicate symbol qx in S. Furthermore, for each transition in A, labelled with
a ∈ Σ, there is a corresponding rule in S which is also labelled with a and which
has the following form:

– (q1, read(x), q2): [q1 , px(z)] ; [q2 , px(w)] : {true}
– (q1, x := y, q2): [q1 , px(z) , py(w)] ; [q2 , px(w) , py(w)] : {true}
– (q1, x < y, q2): [q1 , px(z) , py(w)] ; [q2 , px(z) , py(w)] : {z < w}

Other testing operations can be encoded in a similar manner.

Now, we show that there is no relational automaton A such that L(A) =
LPAL. First, we state some definitions and properties. To do that, we fix a
relational automaton A = (Q, δ) operating on a set of variables X. Let cmax be
the maximum natural number which appears in the transitions of A.

For a variable state v, we define index (v) of v to be a word of the form

X0 X1 · · · Xcmax d1 Xcmax+1 d2 Xcmax+2 d2 · · · dn Xcmax+n

where

– X0, . . . , Xcmax+n are disjoint subsets of X. Xi may not be empty if i > cmax .
– X = X0 ∪ · · · ∪Xcmax+n.
– d1, . . . , dn ∈ N
– x ∈ Xi for some i : 0 ≤ i ≤ cmax iff v(x) = i.
– if x ∈ Xi, y ∈ Xj , 1 ≤ i ≤ cmax , and cmax < j ≤ cmax + n then

v(y)− v(x) ≥
(∑j

k=cmax+1 dk + 1
)

+ cmax − i
– if x ∈ Xi, y ∈ Xj , and cmax < i, j ≤ cmax + n then v(y) − v(x) ≥(∑j

k=i+1 dk + 1
)

We define an ordering � on variable states such that v � v′ iff

index (v) = X0 X1 · · · Xcmax d1 Xcmax+1 d2 Xcmax+2 · · · dn Xcmax+n

index (v′) = X0 X1 · · · Xcmax d
′
1 Xcmax+1 d

′
2 Xcmax+2 · · · d′n Xcmax+n

and di ≤ d′i for each i : cmax +1 ≤ i ≤ cmax +n. We extend � to configurations
such that (q1, v1) � (q2, v2) if q1 = q2 and v1 � v2. Using a similar reasoning to
Lemma 4 we can show that � is a WQO.

To prove the theorem we need the following property: If γinit
σ

=⇒ γ1 then
γinit

σ
=⇒ γ2 for each γ2 with γ1 � γ2. We show this by induction on the length

of σ. The base case is trivial. For the induction step, suppose that γinit
σ

=⇒
γ′1

ρ−→ γ1. Let γ1 � γ2. We show that γinit
σ

=⇒ γ′2
ρ−→ γ2 for some γ′2. Let

γ′1 = (q′1, v
′
1), γ1 = (q1, v1), γ2 = (q1, v2), and ρ = (q′1, op, q1). We consider three

cases depending on the form op:



– If op is of the form read(x). Let

index (v′1) = X0 · · · Xcmax d1 Xcmax+1 · · · dn Xcmax+n

There are several cases depending on the set to which x belongs, before and
after performing the reading operation. We consider one of the cases (the
other cases can be explained in a similar manner), namely the case where
Xcmax+i = {x} and v1(x) = v′1(y) for some y ∈ Xj and i : 1 ≤ i < j < n. We
know that we can derive index (v1) from index (v′1) by replacing the sequence

Xcmax+i−1 di Xcmax+i di+1 Xcmax+i+1

by the sequence
Xcmax+i−1 di + di+1 Xcmax+i+1

and also replacing the set Xj by the set Xj∪{x}. Since γ1 � γ2 it follows that
index (v2) is of the same form as index (v1) except that each dk is replaced

some d′k with d′k ≥ dk. By the induction hypothesis, we know that γinit
σ

=⇒
γ′2 for each γ′2 with γ′1 � γ′2. Take any such a γ′2. Let γ′2 = (q′1, v

′
2). The

index of v′2 is of the same form as v′1 except that dk is replaced some d′′k
with d′′k ≥ dk. In particular, we can pick γ′2 such that d′′k = d′k for each

k : 1 ≤ k ≤ n. Obviously γ′2
ρ−→ γ2.

– op is of the form y := x. Similar to the above case.
– op is of the form x < y. By the induction hypothesis, we know that γinit

σ
=⇒

γ′2 for some γ′2 such that the indices of γ′1, γ
′
2, γ1, γ2 are related in a similar

manner as in the first case. Since γ′1 � γ′2 and v′1(x) < v′1(y) it follows that

v′2(x) < v′2(y) and hence γ′2
ρ−→ γ2.

Having shown the above property, we turn back to the main result. Suppose
that there is a relational automaton A which accepts LPAL. We show that we
get a contradiction. Take any symbols a, b ∈ Σ. Consider an infinite sequence
of words baab, b2aab2.b4aab4, . . .. All these words belong to LPAL and are hence
accepted by A. This means that there are configurations γ1, γ1acc , γ2, γ

2
acc , . . . and

sequences of transitions σ1, σ
′
1, σ2, σ

′
2, . . . such that for each i we have

– λ(ρi) = bia and λ(ρ′i) = abi.

– γinit
σi=⇒ γi

σ′
i=⇒ γiacc

– γiacc is accepting.

Since � is a WQO, it follows that there are j and k with j < k and γj � γk. This

means (by the property shown above) that γinit
σj

=⇒ γk and hence A accepts the
word bjaabk which is a contradiction



1. [ init ] → [ v0(X), initP (Id) ] : true
2. [ initP (Id) ] → [ idle(Id), initP (Next) ] : Next > Id
3. [ idle(X), v0(Y ) ] → [ waiting(X), v0(X) ] : true
4. [ v0(X) ] → [ v1(X) ] : true
5. [ waiting(X), v1(Y ) ] → [ idle(X), v1(Y ) ] : X > Y
6. [ waiting(X), v1(Y ) ] → [ idle(X), v1(Y ) ] : X < Y
7. [ waiting(X), v1(X) ] → [ cs(X), v1(X) ] : true
8. [ cs(X), v1(Y ) ] → [ idle(X), v0(Y ) ] : true
9. [ idle(X) ] → [ ] : true

Fig. 1. CMRS model of the Mutual Exclusion Protocol.

Details of Case Studies

Description of the Mutual Exclusion Protocol (Fig. 1)

In our CMRS model we use natural numbers to model process identities. A
process is represented by a term q(i) where q is the state and i is the identity
of the process. The shared variable is represented by a term of similar form.
Here q is the mode and i is the process identity currently assigned to it. The
resulting monadic CMRS model consists of the 9 rules shown in Fig. 1. Vio-
lations to mutual exclusion can be represented symbolically via the constraint
cs(X), cs(Y ) : true in which X and Y are unrelated. The initial configuration,
namely [init], is not part of the resulting sets of constraints. This proves that
mutual exclusion holds for any number of processes.

Rule 1 defines the initial configuration [init] of the system. Rule 2 dynami-
cally generates new processes with distinct identities. Rules 3 models the transi-
tion from idle to waiting for a process with identifier X. The value of the global
variable will now be updated to X. Rule 4 models the changing of mode to v1.
Rules 5 − 6 model the fact that the processes with “wrong identities” are sent
back to idle. Rule 7 models entering the critical section. The mode should be v1
and the identity of the process should be the same as the one held by the global
variable. Rule 8 models leaving the critical section. Here, the mode changes back
to v0. Rule 9 means that processes may be dynamically deleted.

Description of the FCS Models (Fig. 2 and Fig. 3)

For this protocol, we have defined two different CMRS models. In both models
we model identifiers using natural numbers. The first model (shown in Fig. 2) is
based on the original version of the protocol which assumes that the set of loca-
tions is finite. Monadic predicates like waitCi(id) can be used the to represent
an agent with control state waitC, residing in location i, and storing id in his
local memory. The resulting monadic model has 10 rules.

The second model (shown in Fig. 3) is parametric on the number of locations,
identifiers, and agents. For instance, the agent state waitCi(id) is represented
here as the dyadic predicate waitC(i, id).



1. [ idleFi, reqCi,k, last(C) ] → [ goFi,j(N), ackCi,j,k(N), last(L) ] : L > N > C
2. [ goFi,j(N) ] → [ passFj,i(N) ] : true
3. [ passFj,i(Id), idleSj ] → [ gohomeFj,i, waitSj , storeSj(Id) ] : true
4. [ gohomeFj,i ] → [ idleFi ] : true
5. [ waitSj , loginCj,k(Id) ] → [ checkSj(Id), authCj,k ] : true
6. [ checkSj(Id), storeSj(Id), waitCj,k ] → [ idleSj , used(Id), servedCj,k ] : true
7. [ idleCk ] → [ reqCi,k ] : true
8. [ ackCi,j,k(Id) ] → [ loginCj,k(Id) ] : true
9. [ authCj,k(Id) ] → [ waitCj,k(Id) ] : true
10. [ servedCj,k ] → [ idleCk ] : true

Fig. 2. Model for the FSC system.

For both models we have tested the coverability problem for the constraint
used(X), used(Y ) : X = Y with the aim of proving that each request identi-
fier can be used only once. The last experiments shows that the property holds
for any number of forwarders, providers and clients.

The forwarder can be in one of the following states idleFl, goFl,m, passFl,m,
and gohomeFl,m for l,m ∈ L. idleFi is the initial state of a forwarder residing in
location i. To define the forwarder agents, we have to make some assumptions on
the clients. More precisely, let us suppose that the predicate reqCi,k represents a
client (with home location k) requesting a service to the forwarder. Furthermore,
let ackCi,j,k(N) denote the state of the client after having received the provider
location j and the new identifier N . Rule (1) of Fig. 2 models the synchronization
of a forwarder with a client residing in the same location. As explained before,
we use last to ensure that the generated identifier is fresh. In state goFi,j(N)
the forwarder can move to location j via rule (2) that swaps i and j. Location
i is maintained in order to allow the forwarder to return home. Let us assume
that the service provider is initially in state idleSj . In state passFj,i(N) the
forwarder can pass the identifier to the provider. using rule (3). The provider
stores the identifier using predicate storeSj , and then waits for the login of a
client in state waitSj . Finally, the forwarder moves back to the home location
using rule (4).

Let us now discuss the authentication phase. We assume that clients have a
special transition from state loginCj,k(Id) to state authCj,k for the login phase.
When a client logins using an identifier Id : csdetails.tex, v1.42005/10/1922 :
14 : 06paroshExp the provider stores it using predicate checkSj(Id). This
step is modelled via rule (5). In state checkSj(Id) the server compares Id :
csdetails.tex, v1.42005/10/1922 : 14 : 06paroshExp with the identifier received
from the forwarder. If they coincide, then the provider grants the service to the
client in state waiting for it in state waitCj,k as shown in rule (6). The server
stores the used identifier in the predicate used(Id). Notice that equalities are
left implicit in all previous rules by allowing different atoms to share the same
variables.



1. [init] → [ last(N) ] 2. ε→ [ idleF (I) ] 3. ε→ [ idleS(J) ] 4. ε→ [ idleC(K) ]

5. [ idleF (I), reqC(I,K), last(C) ] →
[ goF (I, J,N), ackC(I, J,K,N), last(L) ] : L > N,N > C

6. [ goF (I, J,N) ] → [ passF (J, I,N) ] : true

7. [ passF (J, I, Id), idleS(J)] → [ gohomeF (J, I), waitS(J), storeS(J, Id) ] : true

8. [ gohomeF (J, I) ] → [ idleF (I) ] : true

9. [ waitS(J), loginC(J,K, Id) ] → [ checkS(J, Id), authC(J,K) ] : true

10. [ checkS(J, Id), storeS(J, Id), waitC(J,K) ] →
[ idleS(J), used(Id), servedC(J,K) ] : true

11. [ idleC(K) ] → [ reqC(I,K) ] : true

12. [ ackC(I, J,K, Id) ] → [ loginC(J,K, Id) ] : true

13. [ authC(J,K, Id) ] → [ waitC(J,K, Id) ] : true

14. [ servedC(J,K) ] → [ idleC(K) ] : true

Fig. 3. Generalized CMRS model for the FSC system of [27].

To complete the specification of a client we need to add rules to pass from the
initial state idleCk to the interaction with the forwarder and with the provider.
Rules 7-10 model a good client. The last rule allows a client to restart the pro-
tocol. A bad behaving client could partially execute the protocol blocking either
a forwarder or a provider.

Suppose that we consider only a finite number of agents as in [27], e.g., one for-
warder, one provider, and one client all residing in different locations. Then the
initial state configuration is the multiset γ0 = [idleFi, idleSj , idleCk, last(0)]. To
specify a system with an arbitrary number of clients in location k, we only have
to add the rule ε → [ idleCk ] and consider the simplified initial configuration
γ′0 = [idleFi, idleSj , last(0)].

The generalized model of the FCS system is shown in Fig. 3. The initial config-
uration is [init] (see rule 1). Rules 2 − 4 generate (any number of) forwarders,
providers and clients. In rules 2 − 5 non-determinism is used to model the se-
lection of the initial location or the location to which a client has to move. For
instance, variable I in rule 2 and variable J in rule 5 occur only in the right-hand
side, i.e., during a computation they can be assigned any value. This way we can
work with an arbitrary number of locations and providers. All other rules are a
natural generalization of our first model.


