
Monotonic Abstraction for Programs with
Multiply-Linked Structures?

Parosh Aziz Abdulla1, Jonathan Cederberg1, Tomáš Vojnar2

1 Uppsala University, Sweden.
2 FIT, Brno University of Technology, Czech Republic

Abstract. We investigate the use of monotonic abstraction and back-
ward reachability analysis as means of performing shape analysis on
programs with multiply pointed structures. By encoding the heap as
a vertex- and edge-labeled graph, we can model the low level behaviour
exhibited by programs written in the C programming language. Using
the notion of signatures, which are predicates that define sets of heaps,
we can check properties such as absence of null pointer dereference and
shape invariants. We report on the results from running a prototype
based on the method on several programs such as insertion into and
merging of doubly-linked lists.

1 Introduction

Dealing with programs manipulating dynamic pointer-linked data structures is
one of the most challenging tasks of automated verification since these data
structures are of unbounded size and may have the form of complex graphs.
As discussed below, various approaches to automated verification of dynamic
pointer-linked data structures are currently studied in the literature. One of these
approaches is based on using monotonic abstraction and backward reachability [4,
2]. This approach has been shown to be very successful in handling systems with
complex graph-structured configurations when verifying parameterized systems
[3]. However, in the area of verification of programs with dynamic linked data
structures, it has so far been applied only to relatively simple singly-linked data
structures.

In this paper, we investigate the use of monotonic abstraction and backward
reachability for verification of programs dealing with dynamic linked data struc-
tures with multiple selectors. In particular, we consider verification of sequential
programs written in a subset of the C language including its common control
statements as well as its pointer manipulating statements (apart from pointer
arithmetics and type casting). For simplicity, we restrict ourselves to data struc-
tures with two selectors. This restriction can, however, be easily lifted. We con-
sider verification of safety properties in the form of absence of null and dangling
pointer dereferences as well as preservation of shape invariants of the structures
being handled.

? The first two authors were supported by the Swedish UPMARC project, the third
author was supported by the COST OC10009 project of the Czech Ministry of
Education.

We represent heaps in the form of simple vertex- and edge-labeled graphs.
As is common in backward verification, our verification technique starts from
sets of bad configurations and checks whether some initial configurations are
backward reachable from them. For representing sets of bad configurations as
well as the sets of configurations backward reachable from them, we use the so-
called signatures which arise from heap graphs by deleting some of their nodes,
edges, or labels. Each signature represents an upward-closed set of heaps wrt.
a special pre-order on heaps and signatures. We show that the considered C
pointer manipulating statements can be approximated such that one can compute
predecessors of sets of heaps represented via signatures wrt. these statements.

We have implemented the proposed approach in a light-weight Java-based
prototype and tested it on several programs manipulating doubly-linked lists and
trees. The results show that monotonic abstraction and backward reachability
can indeed be successfully used for verification of programs with multiply-linked
dynamic data structures.

Related work. Several different approaches have been proposed for automated
verification of programs with dynamic linked data structures. The most-known
approaches include works based on monadic second-order logic on graph types [10],
3-valued predicate logic with transitive closure [14], separation logic [12, 11, 15,
6], other kinds of logics [16, 9], finite tree automata [5, 7], forest automata [8],
graph grammars [13], upward-closed sets [4, 2], as well as other formalisms.

As we have already indicated above, our work extends the approach of [4, 2]
from singly-linked to multiply-linked heaps. This extension has required a new
notion of signatures, a new pre-order on them, as well as new operations manip-
ulating them. Not counting [4, 2], the other existing works are based on other
formalisms than the one used here, and they use a forward reachability com-
putation whereas the present paper uses a backward reachability computation.
Apart from that, when comparing the approach followed in this work with the
other existing approaches, one of the most attractive features of our method is its
simplicity. This includes, for instance, a simple specification of undesirable heap
shapes in terms of signatures. Each such signature records some bad pattern
that should not appear in the heaps, and it is typically quite small (usually with
three or fewer nodes). Furthermore, our approach uses local and quite simple
reasoning on the graphs in order to compute predecessors of symbolically repre-
sented infinite sets of heaps1. Moreover, the abstraction used in our approach is
rather generic, not specialised for some fixed class of dynamic data structures.

Outline. In Section 2, we give some preliminaries and introduce our model for
describing heaps. We present the class of programs we consider in Section 3.
In Section 4, we introduce signatures as symbolic representations for infinite
sets of configurations. We show how to use signatures for specifying bad heap
patterns (that violate safety properties of the considered programs) in Section 5.

1 Approaches based on separation logic and forest automata also use local updates,
but the updates used here are still simpler.

In Section 6, we describe a symbolic backward reachability analysis algorithm
for checking safety properties. Next, we report on experiments with the proposed
method in Section 7. Finally, we give some conclusions and directions for future
work in Section 8.

2 Heaps

Preliminaries. For a partial function f : A→ B and a ∈ A, we write f(a) = ⊥
to signify that f is undefined at a. We take f [a 7→ b] to be the function f ′ such
that f ′(a) = b and f ′(x) = f(x) otherwise. We define the restriction of f to A′,
written f |A′ , as the function f ′ such that f ′(a) = f(a) if a ∈ A′, and f ′(a) = ⊥
if a 6∈ A′. Given b ∈ B, we write f−1(b) to denote the set {a ∈ A : f(a) = b}.

y

#

t2 x, t

1

2

1

2

1

2

1

2

y

#

x

t2 t

1

2

1

2

1

2

1

2

y

#

x

t2 t

1

2

1

2

1

2

1

2

Fig. 1. Heaps

Heaps. We model the dynamically allocated mem-
ory, also known as the heap, as a labeled graph. The
nodes of the graph represent memory cells, and the
edges represent how these nodes are linked by their
successor pointers. Each edge is labeled by a color, re-
flecting which of the possibly many successor pointers
of its source cell the edge is representing. In this work,
we—for simplicity—consider structures with two se-
lectors, denoted as 1 and 2 (instead of, e.g., next and
prev commonly used in doubly-linked lists or left

and right used in trees) only. The results can, how-
ever, be generalized to any number of selectors.

To model null pointers, we introduce a special
node called the null node, written #. Null succes-
sors are then modeled by making the corresponding
edge point to this node. When allocated memory is
relinquished by a program, any pointers previously
pointing to that memory become dangling. Dangling
pointers also arise when memory is freshly allocated
and not yet initialized. This situation is reflected in
our model by the introduction of another special node
called the dangling node, denoted as ∗. In the same
manner as for the null node, a pointer being dangling
is modeled by having the corresponding edge point to
the dangling node.

Furthermore, we model a program variable by la-
beling the node that a specific variable is pointing to
with the variable in question.

Three examples of heaps can be seen in Figure 1 (we will get back to what
they represent in Section 3). To avoid unnecessarily cluttering the pictures, the
special node ∗ has been left out. We will adopt the convention of omitting any

of the special nodes ∗ and # from pictures unless they are labeled or have edges
pointing to them.

Assume a finite set of program variables X and a set C = {1, 2} of edge
colors. Formally, a heap is a tuple (M,E, s, t, τ, λ) where

– M = M ∪{#, ∗} represents the finite set of allocated memory cells, together
with the two special nodes representing the null value and the dangling
pointer, respectively.

– E is a finite set of edges.
– The source function s : E → M is a total function that gives the source of

the edges.
– The target function t : E → M is a total function that gives the target of

the edges.
– The type function τ : E → C is a total function that gives the color of the

edges.
– λ : X → M is a total function that defines the positions of the program

variables.

We also require that the heaps obey the following invariant:

∀c ∈ C ∀m ∈M : |s−1(m) ∩ τ−1(c)| = 1.

The invariant states that among the edges going out from each cell there is
exactly one with color 1 and one with color 2. Note that as a consequence of
these invariants, each cell has exactly two outgoing edges. Therefore, each heap
h induces a function succh,c : M → M for each c ∈ C, which maps each cell
to its c-successor. For m ∈ M , succh,c(m) is formally defined as the m′ ∈ M
such that there is an edge e ∈ E with s(e) = m, t(e) = m′, and τ(e) = c. This
is indeed a function due to the fact that there must be exactly one such edge,
according to the specified invariants.

Auxiliary Operations on Heaps. We will now introduce some notation for
operations on heaps to be used in the following.

Assume a heap h = (M,E, s, t, τ, λ). For m ∈M , we write h	m to describe
the heap h′ where m has been deleted together with its two outgoing edges, and
any references to m are now dangling references. Formally, h 	m is defined as

the heap h′ = (M
′
, E′, s′, t′, τ ′, λ′) where M

′
= M \ {m}, E′ = E \ s−1(m),

s′ = s|E′ , t′ : E′ → M
′

is a function such that t′(e) = ∗ if e ∈ t−1(m) and
t′(e) = t(e) otherwise, τ ′ = τ |E′ , and λ′(x) = ∗ if x ∈ λ−1(m) and λ′(x) = λ(x)
otherwise. In a similar manner, for m′ 6∈M , we write h⊕m′ to mean the heap
where we have added a new cell as well as two new dangling outgoing edges.

Formally, h⊕m′ = (M
′
, E′, s′, t′, τ ′, λ) where M

′
= M ∪{m′}, E′ = E∪{e1, e2},

s′ = s[e1 7→ m′, e2 7→ m′], t′ = t[e1 7→ ∗, e2 7→ ∗] and τ ′ = τ [e1 7→ 1, e2 7→ 2]
for some e1, e2 6∈ E. By h.s[e 7→ m], we mean the heap identical to h, except
that the source function now maps e ∈ E to m ∈M . This is formally defined as
h.s[e 7→ m] = (M,E, s[e 7→ m], t, τ, λ). The definitions of h.t[e 7→ m], h.τ [e 7→
m], and h.λ[x 7→ m] are analogous.

3 Programming Language

In this section, we briefly present the class of programs which our analysis is
designed for. We also formalize the transition systems which are induced by
such programs.

In particular, our analysis and the prototype tool implementing it are de-
signed for sequential programs written in a subset of the C language. The con-
sidered subset contains the common control flow statements (like if, while,
for, etc.) and the C pointer manipulating statements, excluding pointer arith-
metics and type casting. As for the structures describing nodes of dynamic data
structures, we—for simplicity of the presentation as well as of the prototype
implementation—allow one or two selectors to be used only. However, one can
easily generalize the approach to more selectors. Statements manipulating data
other than pointers (e.g., integers, arrays, etc.) are ignored—or, in case of tests,
replaced by a non-deterministic choice. We allow non-recursive functions that
can be inlined2.

1 typedef struct DLL {

2 struct DLL *next;

3 struct DLL *prev;

4 int data;

5 } DLL;

6

7 DLL *merge(DLL *l1, DLL *l2) {

...

17 while(!(x==NULL)&&!(y==NULL)) {

18 if(x->data < y->data) {

19 t = x;

20 x = t->next;

21 } else {

22 t = y;

23 y = t->next;

24 }

25 t->prev = t2;

26 t2->next = t;

27 t2 = t;

28 }

...

Fig. 2. A program for merging doubly-linked lists

Figure 2 contains an ex-
ample code snippet written
in the considered C subset
(up to the tests on integer
data that will be replaced by
a non-deterministic choice for
the analysis). In this example,
the data structure DLL repre-
sents nodes of a doubly-linked
list with two successor point-
ers as well as a data value.
The function merge takes as
input two doubly-linked lists
and combines them into one
doubly-linked list3. In Fig-
ure 1, the result of executing
two of the statements in the
merge can be seen. From the
top graph, the middle is gen-
erated by executing the state-
ment at line 20. By then ex-
ecuting the statement at line
25, the bottom graph is gen-
erated. (Note that instead of

2 Alternatively, one could use function summaries, which we, however, not consider
here.

3 In fact, if the input lists are sorted, the output list will be sorted too, but this is
not of interest for our current analysis—let us, however, note that one can think of
extending the analysis to track ordering relations between data in a similar way as
in [2], which we consider as one of interesting possible directions for future work.

the next and prev selectors,
the figure uses selectors 1 and
2, respectively.)

Operational Semantics and the Induced Transition System. From a C
program, we can extract a control flow graph (PC, T) by standard techniques.
Here PC is a finite set of program counters, and T is a finite set of transitions.
A transition t is a tuple of the form (pc, op, pc′) where pc, pc′ ∈ PC, and op is
an operation manipulating the heap. The operation op is of one of the following
forms:

– x == y or x != y, which means that the program checks the stated condi-
tion.

– x = y, x = y.next(i), or x.next(i) = y, which are assignments function-
ing in the same way as assignments in the C language4.

– x = malloc() or free(x), which are allocation and deallocation of dynamic
memory, working in the same manner as in the C language.

When firing t, the program counter is updated from pc to pc′, and the heap is
modified according to op with the usual C semantics formalized below.

The induced transition system. We will now define the transition system (S,−→)
induced by a control flow graph (PC, T). The states of the transition system are
pairs (pc, h) where pc ∈ PC is the current location in the program, and h is a
heap. The transition relation −→ reflects the way that the program manipulates
the heap during program execution.

Given states s = (pc, h) and s′ = (pc′, h′) there is a transition from s to s′,

written s −→ s′, if there is a transition (pc, op, pc′) ∈ T such that h
op−→ h′. The

condition h
op−→ h′ holds if the operation op can be performed to change the

heap h into the heap h′. The definition of
op−→ is found below.

Assume two heaps h = (M,E, s, t, τ, λ) and h′ = (M
′
, E′, s′, t′, τ ′, λ′). We

say that h
op−→ h′ if one of the following is fulfilled:

– op is of the form x == y, λ(x) = λ(y) 6= ∗, and h = h′.5

– op is of the form x != y, λ(x) 6= λ(y), λ(x) 6= ∗, λ(y) 6= ∗, and h = h′.
– op is of the form x = y, λ(y) 6= ∗, and h′ = h.λ[x 7→ λ(y)].
– op is of the form x = y.next(i), λ(y) 6∈ {∗,#}, succh,i(λ(y)) 6= ∗, and
h′ = h.λ[x 7→ succh,i(λ(y))].

– op is of the form x.next(i) = y, λ(x) 6= ∗, λ(y) 6= ∗, and h′ = h.t[e 7→ λ(y)]
where e is the unique edge in E such that s(e) = λ(x) and τ(e) = i.

– op is of the form x = malloc() and there is a heap h1 such that h1 = h⊕m
and h′ = h1.λ[x 7→ m] for some m 6∈M .6

4 Here, next(i) refers to the i-th selector of the appropriate memory cell.
5 Note that the requirement that λ(x) and λ(y) are not dangling pointers are not

part of the standard C semantics. Comparing dangling pointers are, however, bad
practice and our tool therefore warns the user

6 Although the malloc operation may fail, we assume for simplicity of presentation
that it always succeeds.

– op is of the form free(x), λ(x) 6= ∗, and h′ = h	 λ(x).

4 Signatures

In this section, we introduce the notion of signatures which is a symbolic repre-
sentation of infinite sets of heaps.

Intuitively, a signature is a predicate describing a set of minimal conditions
that a heap has to fulfill to satisfy the predicate. It can be viewed as a heap with
some parts “missing”.

Formally, a signature is defined as a tuple (M,E, s, t, τ, λ) in the same way
as a heap, with the difference that we allow the τ and λ functions to be partial.
For signatures, we also require some invariants to be obeyed, but they are not
as strict as the invariants for heaps. More precisely, a signature has to obey the
following invariants:

1. ∀c ∈ C ∀m ∈M : |s−1(m) ∩ τ−1(c)| ≤ 1,
2. ∀m ∈M : |s−1(m)| ≤ 2.

These invariants say that a signature can have at most one outgoing edge of each
color in the set {1, 2}, and at most two outgoing edges in total. Note that heaps
are a special case of signatures, which means that each heap is also a signature.

Operations on signatures. We formalize the notion of a signature as a
predicate by introducing an ordering on signatures. First, we introduce some
additional notation for manipulating signatures. Recall that, for a heap h =
(M,E, s, t, τ, λ) and m ∈ M , h 	m is a heap identical to h except that m has
been deleted. As the formal definition of 	 carries over directly to signatures,
we will use it also for signatures.

Given a signature sig = (M,E, s, t, τ, λ), we define the removal of an edge
e ∈ E, written sig � e, as the signature (M,E′, s′, t′, τ ′, λ) where E′ = E \ {e},
s′ = s|E′ , t′ = t|E′ , and τ ′ = τ |E′ . Similarly, given m1 ∈ M , m2 ∈ M , and

c ∈ C, the addition of a c-edge from m1 to m2 is written sig� (m1
c→ m2). This

is formalized as sig � (m1
c→ m2) = (M,E′, s′, t′, τ ′, λ) where E′ = E ∪ {e′}

for some e′ 6∈ E, s′ = s[e′ 7→ m1], t′ = t[e′ 7→ m2], and τ ′ = τ [e′ 7→ c].
Note that the addition of edges might make the result violate the invariants for
signatures. However, we will always use it in such a way that the invariants are
preserved. Finally, for m 6∈ M , we define sig.(M := M ∪ {m}) as the signature
(M ∪ {m}, E, s, t, τ, λ).

Ordering on signatures. For a signature sig = (M,E, s, t, τ, λ) and m ∈
M , we say that m is unlabeled if λ−1(m) = ∅. We say that m is isolated if
m is unlabeled and also s−1(m) = ∅ and t−1(m) = ∅ both hold. We call m
simple when m is unlabeled and s−1(m) = {e1}, t−1(m) = {e2}, e1 6= e2, and
τ(e1) = τ(e2) all hold. Intuitively, an isolated cell has no touching edges, whereas
a simple cell has exactly one incoming and one outgoing edge of the same color.

For sig1 = (M1, E1, s1, t1, τ1, λ1) and sig2 = (M2, E2, s2, t2, τ2, λ2), we write
that sig1 � sig2 if one of the following is true:

– Isolated cell deletion. There is an isolated m ∈M2 s.t. sig1 = sig2 	m.
– Edge deletion. There is an edge e ∈ E2 such that sig1 = sig2 � e.
– Contraction. There is a simple cell m ∈M2, edges e1, e2 ∈ E2 with t2(e1) =
m, s2(e2) = m, τ(e1) = τ(e2), and a signature sig′ such that sig′ =
sig2.t[e1 7→ t(e2)] and sig1 = sig′ 	m.

– Edge decoloring. There is an edge e ∈ E2 such that sig1 = sig2.τ [e 7→ ⊥].
– Label deletion. There is a label x ∈ X such that sig1 = sig2.λ[x 7→ ⊥]).

We call the above operations ordering steps, and we say that a signature sig1
is smaller than a signature sig2 if there is a sequence of ordering steps from sig2
to sig1, written sig1 v sig2. Formally, v is the reflexive transitive closure of �.

The semantics of signatures. Using the ordering relation v defined above, we
can interpret each signature as a predicate. As previously noted, the intuition
is that a heap h satisfies a predicate sig if h contains at least the structural
information present in sig. We make this precise by saying that h satisfies sig,
written h ∈ JsigK, if sig v h. In other words, JsigK is the set of all heaps in the
upward closure of sig with respect to the ordering v. For a set S of signatures,
we define JSK =

⋃
s∈S JsK.

5 Bad Configurations

We will now show how to use the concept of signatures to specify bad states.
The main idea is to define a finite set of signatures characterizing the set of all
heaps that are not considered correct. Such a set of signatures is called the set
of bad patterns.

We present the notion on a concrete example, namely, the case of a program
that should produce a single acyclic doubly-linked list pointed to by a variable
x. In such a case, the following properties are required to hold at the end of the
program:

1. Starting from any allocated memory cell, if we follow the next(1) pointer
and then immediately the next(2) pointer, we should end up at the original
memory cell.

2. Likewise, starting from any allocated cell, if we follow the next(2) pointer
and then immediately the next(1) pointer, we should end up at the original
cell.

3. If we repeatedly follow a pointer of the same type starting from any allocated
cell, we should never end up where we started. In other words, no node is
reachable from itself in one or more steps using only one type of pointer.

4. The variable x is not dangling, and there are no dangling next pointers.
5. The variable x points to the beginning of the list.
6. There are no unreachable memory cells.

We call properties 1 and 2 Doubly-Linkedness, property 3 is called Non-Cyclicity,
property 4 is called Absence of Dangling Pointers, property 5 is called Pointing
to the Beginning of the List, and, finally, property 6 is called Absence of Garbage.

b1:
1 2

b2:
2 1

#b3:
1 2

#b4:
2 1

Doubly-Linkedness. As noted above, the set of bad states with
respect to a property p is characterized by a set of signatures
such that the union of their upward closure with respect to
v contains all heaps not fulfilling p. The property we want
to express is that following a pointer of one color and then
immediately following a pointer of the other color gets you
back to the same node. The bad patterns are then simply the
set {b1, b2, b3, b4}, shown to the right, as they describe exactly
the property of taking one step of each color and not ending
up where we started.

b5:

1

b6:

2
Non-Cyclicity. To describe all states that violate the prop-
erty of not being cyclic, is to describe exactly those states
that do have a cycle. Note that all the edges of the cycle
has to be of the same color. Therefore, the bad patterns
we get for non-cyclicity is the set {b5, b6}, depicted to the right.

∗
x

b7: b8: ∗
Absence of Dangling Pointers. To describe dangling point-
ers, two bad patterns suffice—namely, the pattern b7 de-
picted to the right stipulates that the variable x that should
point to the resulting list is not dangling, and the pattern b8 requires that there
is no dangling next pointer.

x
b9:

2
Pointing to the Beginning of the List. To describe that the
pointer variable x should point to the beginning of a list, one
bad pattern suffices—namely, the pattern b9 depicted to the right
(saying that the node pointed by x has a predecessor). Note that the pattern
does not prevent the resulting list from being empty.

#
x

b10:

#b11:
1

2

Absence of Garbage. To express that there should be no
garbage, the patterns b10 and b11 are needed. The b10 pat-
tern says that if the resulting list is empty, there should be
no allocated cell. The b11 pattern designed for non-empty lists
then builds on that we check the Doubly-Linkedness property
too. When we assume it to hold, the isolated node can never
be part of a well-formed list segment: Indeed, since the two edges in b11 are both
pointing to the null cell, any possible inclusion of the isolated node into the list
results in a pattern that is larger either than b1 or than b2.

Clearly, the above properties are common for many programs handling doubly-
linked lists (the name of the variable pointing to the resulting list can easily be
adjusted, and it is easy to cope with multiple resulting lists too). We now de-
scribe some more properties that can easily be expressed and checked in our
framework.

#
x

b12:
Absence of Null Pointer Dereferences. The bad pattern used to prove
absence of null pointer dereferences is b12. A particular feature of this
pattern is that it is duplicated many times. More precisely, for each
program statement of the form y = x.next(i) or x.next(i) = y, the pattern
is added to the starting set of bad states Sbad coupled with the program counter
just before the operation. In other words, we construct a state that we know
would result in a null pointer dereference if reached and try to prove that the
configuration is unreachable. The construction for dangling pointer dereferences
is analogous.

#b13:
Cyclicity. To encode that a doubly-linked list is cyclic, we use b13
as a bad pattern. Given that we already have Doubly-Linkedness,
we only need to enforce that the list is not terminated. This is
achieved by the existence of a null pointer in the list since such a pointer will
break the doubly-linkedness property. Note that this relies on the fact that the
result actually is a doubly-linked list.

b14:
b15:

b16:

Treeness. To violate the property of being a tree, the
data structure must have a cycle somewhere, two paths
to the same node, or two incoming edges to some node.
The bad patterns for trees are thus the set {b14, b15, b16}
depicted to the right.

A Remark on Garbage. Note that the treatment of
garbage presented above is not universal in the sense that
it is valid for all data structures. In particular, if the data structure under consid-
eration is a tree, garbage cannot expressed in our present framework. Intuitively,
there is only one path in each direction that ends with null in a doubly-linked
list, whereas a tree can have more paths to null. Thus a pattern like b11 is not
sufficient since the isolated node can still be incorporated into the tree in a valid
way. One way to solve this problem, which is a possible direction for future
work, is to add some concept of anti-edges which would forbid certain paths in
a structure from arising.

6 Reachability Analysis

In this section, we present the algorithm used for analysing the transition system
defined in Section 3. We do this by first introducing an abstract transition system
that has the property of being monotonic. Given this abstract system, we show
how to perform backward reachability analysis. Such analysis requires the ability
to compute the predecessors of a given set of states, all of which is described
below.

Monotonic abstraction. Given a transition system T = (S,−→) and an or-
dering v on S, we say that T is monotonic if the following holds. For any states

s1, s2 and s3 such that s1 v s2 and s1 −→ s3, we can always find a state s4 such
that s2 v s4 and s3 −→ s4.

The transition system defined in Section 3 does not exhibit this property.
We can, however, construct an over-approximation of our transition relation in
such a way that it becomes monotonic. This new transition system −→A is
constructed from −→ by using the state s3 above as our required s4. Formally,
s −→A s

′ iff there is an s′′ such that s′′ v s and s′′ −→ s′.
Since our abstraction generates an over-approximation of the original transi-

tion system, if it is shown that no bad pattern is reachable under this abstraction,
the result holds for the original program too. The inverse does not hold, and so
the analysis may generate false alarms, which, however, does not happen in our
experiments. Further, the analysis is not guaranteed to terminate in general.
However, it has terminated in all the experiments we have done with it (cf.
Section 7).

Auxiliary Operations on Signatures. To perform backward reachability
analysis, we need to compute the predecessor relation. We show how to com-
pute the set of predecessors for a given signature with respect to the abstract
transition relation −→A.

In order to compute pre, we define a number of auxiliary operations. These
operations consist of concretizations; they add “missing” components to a given
signature. The first operation adds a variable x. Intuitively, given a signature
sig, in which x is missing, we add x to all places in which x may occur in heaps
satisfying sig.

Let M# = M ∪ {#} and sig = (M,E, s, t, τ, λ). We define the set sig ↑
(λ(x) 6∈ {⊥, ∗}) to be the set of all signatures sig′ = (M

′
, E′, s′, t′, τ ′, λ′) s.t. one

of the following is true:

– λ(x) ∈ M# and sig = sig′. The variable is already present in sig, so no
changes need to be made.

– λ(x) = ⊥ and there is a cell m ∈ M# such that sig′ = sig.λ[x 7→ m]. We
add x to a cell that is explicitly represented in sig.

– λ(x) = ⊥, and there is a cell m 6∈ M and a signature sig1 such that sig1 =
sig.(M := M ∪ {m}) and sig′ = sig1.λ[x 7→ m]. We add x to a cell that
is missing in sig. Note that according to the definition of JsigK, there may
exist cells in h ∈ JsigK that are not explicitly represented in sig.

– λ(x) = ⊥, and there is a cell m 6∈ M , edges e1 ∈ E, e2 6∈ E and signatures
sig1, sig2 and sig3 such that sig1 = sig.(M := M ∪ {m}), sig2 = sig1 �

(m
τ(e1)→ t(e1)), sig3 = sig2.t[e1 7→ m] and sig′ = sig3.λ[x 7→ m]. We add

x to a cell that is not explicit in sig. The difference to the previous case is
that the missing cell lies between two explicit cells m1, m2 in sig, along an
edge between them.

We now define an operation that adds a missing edge between to specific
cells in a signature. Given cells m1 ∈ M,m2 ∈ M , we say that a signature sig′

is in the set sig↑(m1
c→ m2) if one of the following is true:

– There is an e ∈ E such that s(e) = m1, t(e) = m2, τ(e) = c and sig′ = sig.
The edge is already present, so no addition of edge is needed.

– There is an e ∈ E such that s(e) = m1, t(e) = m2, τ(e) = ⊥, there is no e′ ∈
E such that s(e′) = m1 and τ(e′) = c, and we have and sig′ = sig.τ [e 7→ c].
There is a decolored edge whose color we can update to c. To do this we
need to ensure that there is no such edge already.

– There is no e ∈ E such that s(e) = m1 and τ(e) = c, |s−1(m1)| ≤ 1 and

sig′ = sig � (m1
c→ m2). The edge is not present, and m1 does not already

have an outgoing edge of color c. We add the edge to the graph.

The third operation adds labels x and y to the signature in such a way that
they both label the same cell.

Formally, we say that a signature sig′ is in the set sig↑(λ(x) = λ(y)) if one
of the following is true:

– λ(x) ∈M#, λ(x) = λ(y) and sig′ = sig. Both labels are already present and
labeling the same cell, so no changes are needed.

– λ(y) = ⊥ and there is a sig1 ∈ sig ↑ (λ(x) 6∈ {⊥, ∗}) such that sig′ =
sig1.λ[y 7→ λ1(x)]. The label y is not present, so we add it to a signature
where x is guaranteed to be present.

– λ(x) = ⊥, λsig(y) ∈ M# and sig′ = sig.λ[x 7→ λ(y)]. The label x is not
present, so we add it to the cell that is labeled by y.

Computing predecessors. We will now describe how to compute the prede-
cessors of a signature sig and an operation op, written pre(op)(sig).

Assume a signature sig = (M,E, s, t, τ, λ). We define pre(x = malloc())(sig)
as the set sig′ of signatures such that there are signatures sig1 = (M1, E1, s1, t1, τ1, λ1),
sig2, and sig3 satisfying

– sig1 ∈ sig↑(λ(x) 6∈ {⊥, ∗}), there is no y ∈ X such that λ1(y) = λ1(x) and
no e ∈ E1 such that t1(e) = λ1(x),

– sig2 ∈ sig1↑(λ1(x)
1→ ∗),

– sig3 ∈ sig2↑(λ1(x)
2→ ∗), and

– sig′ = sig3 	 λ1(x).

We let pre(x = y)(sig) be the set sig′ of signatures such that there is a sig-
nature sig1 satisfying sig1 ∈ sig↑(λ(x) = λ(y)) and sig′ = sig1.λ[x 7→ ⊥].

Next, we define pre(x==y)(sig) to be the set of all sig′ s.t. sig′ ∈ sig ↑
(λ(x) = λ(y)). On the other hand, we define pre(x!=y)(sig) to be the set of all

sig′ = (M
′
, E′, s′, t′, τ ′, λ′) with λ′(x) 6= λ′(y) and such that there is a signature

sig1 ∈ sig↑(λ(x) 6∈ {⊥, ∗}) such that sig′ ∈ sig1↑(λ(y) 6∈ {⊥, ∗}).
Further, pre(x = y.next(i))(sig) is defined as the set of all signatures sig′ =

(M
′
, E′, s′, t′, τ ′, λ′) such that there are sig1, sig2 = (M2, E2, s2, t2, τ2, λ2), sig3

with

– sig1 = sig↑(λ(x) 6∈ {⊥, ∗}),

– sig2 = sig1↑(λ(x) 6∈ {⊥, ∗}),
– sig3 ∈ sig↑(λ2(y)

i→ λ2(x)), and
– sig′ = sig3.λ[x 7→ ⊥].

We let pre(x.next(i) = y)(sig) be the set of all sig′ = (M
′
, E′, s′, t′, τ ′, λ′)

such that there are sig1, sig2, sig3 = (M3, E3, s3, t3, τ3, λ3), and e ∈ E3 with

– sig1 = sig↑(λ(x) 6∈ {⊥, ∗}),
– sig2 = sig1↑(λ(x) 6∈ {⊥, ∗}),
– sig3 ∈ sig↑(λ2(x)

i→ λ2(y)),
– s3(e) = λ3(x), t3(e) = λ3(y), τ(e) = i, and
– sig′ = sig3 � e.

Finally, we define pre(free(x))(sig) to be the set of all sig′ = (M
′
, E′, s′, t′, τ ′, λ′)

such that there are sig1 = (M1, E1, s1, t1, τ1, λ1), sig2, and m 6∈M1 with

– M1 = M , E1 = E \ t−1(∗), s1 = s|E1 , t1 = t|E1 , τ1 = τ |E1 and λ1(x) = ⊥ if
λ(x) = ∗, λ1(x) = λ(x) otherwise,

– sig2 = sig1 ⊕m, and
– sig′ = sig2.λ[x 7→ m].

The Reachability Algorithm. We are now ready to describe the backward
reachability algorithm used for checking safety properties. Given a set Sbad of bad
patterns for the property under consideration, we compute the successive sets
S0, S1, S2, . . . , where S0 = Sbad and Si+1 =

⋃
s∈Si

pre(s). Whenever a signature
s is generated such that there is a previously generated s′ with s′ v s, we can
safely discard s from the analysis. When all the newly generated signatures are
discarded, the analysis is finished. The generated signatures at this point denote
all the heaps that can reach a bad heap using the approximate transition relation
−→A. If all the generated signatures characterize sets that are disjoint from the
set of initial states, the safety property holds.

Remark. As the configurations of the transition system are pairs consisting of a
heap and a control state, the set Sbad is a set of pairs where the control state is
a given state, typically the exit state in the control flow graph. This extension
is straightforward. For a more in depth discussion of monotonic abstraction and
backwards reachability, see [1].

7 Implementation and Experimental Results

We have implemented the above proposed method in a Java prototype. To im-
prove the analysis, we combined the backward reachability algorithm with a
light-weight flow-based alias analysis to prune the state space. This analysis
works by computing a set of necessary conditions on the program variables for
each program counter. Whenever we compute a new signature, we check whether

it intersects with the conditions for the corresponding program counter, and if
not, we discard the signature. Our experience with this was very positive, as the
two analyses seem to be complementary. In particular, programs with limited
branching seemed to benefit from the alias analysis.

We also used the result of the alias analysis to add additional information to
the signatures. More precisely, suppose that, the alias analysis has given us that
at a specific program counter pc, x and y must alias. Furthermore, suppose that
we compute a signature sig that is missing at least one of x and y at pc. We can
then safely replace sig with sig↑(λ(x) = λ(y))).

Table 1. Experimental results

Program Struct Time #Sig.
Traverse DLL 11.4 s 294
Insert DLL 3.5 s 121
Ordered Insert DLL 19.4 s 793
Merge DLL 6 min 40 s 8171
Reverse DLL 10.8 s 395
Search Tree 1.2 s 51
Insert Tree 6.8 s 241

In Table 1, we show re-
sults obtained from experiments
with our prototype. We consid-
ered programs traversing doubly-
linked lists, inserting into them
(at the beginning or according
to the value of the element be-
ing inserted—since the value is
abstracted away, this amounts
to insertion to a random place),
merging ordered doubly-linked
lists (the ordering is ignored), and reversing them. We also considered algo-
rithms for searching an element in a tree and for inserting new leaves into trees.
We ran the experiments using a PC with Intel Core 2 Duo 2.2 GHz and 2GB
RAM (using only one core as the implementation is completely serial). The table
shows the time it took to run the analysis, and the number of signatures com-
puted throughout the analysis. For each program manipulating doubly-linked
lists, we used the set {b1, b2, . . . , b11} as described in Section 5 as the set of bad
states to start the analysis from. For the programs manipulating trees, we used
the set {b14, b15, b16}.

The obtained results show that the proposed method can indeed successfully
handle non-trivial properties of non-trivial programs. Despite the high running
times for some of the examples, our experience gained from the prototype im-
plementation indicates that there is a lot of space for further optimizations as
discussed in the following section.

8 Conclusions and Future Work

We have proposed a method for using monotonic abstraction and backward
analysis for verification of programs manipulating multiply-linked dynamic data
structures. The most attractive feature of the method is its simplicity, concerning
the way the shape properties to be checked are specified as well as the abstrac-
tion and predecessor computation used. Moreover, the abstraction used in the
approach is rather generic, not specialised for some fixed class of dynamic data
structures. The proposed approach has been implemented and successfully tested
on several programs manipulating doubly-linked lists and trees.

An important direction for future work is to optimize the operations done
within the reachability algorithm. This especially concerns checking of entail-
ment on the heap signatures (e.g., using advanced hashing methods to decrease
the number of signatures being compared) and/or minimization of the number of
generated signatures (perhaps using a notion of a coarser ordering on signatures
that could be gradually refined to reach the current precision only if a need be).
It also seems interesting to parallelize the approach since there is a lot of space
for parallelization in it. We believe that such improvements are worth the effort
since the presented approach should—in principle—be applicable even for check-
ing complex properties of complex data structures such as skip lists which are
very hard to handle by other approaches without their significant modifications
and/or help from the users. Finally, it is also interesting to think of extending the
proposed approach with ways of handling non-pointer data, recursion, and/or
concurrency.

References

1. P.A. Abdulla. Well (and Better) Quasi-Ordered Transition Systems. Bulletin of
Symbolic Logic, 16:457–515, 2010.

2. P.A. Abdulla, M. Atto, J. Cederberg, and R. Ji: Automated Analysis of Data-
Dependent Programs with Dynamic Memory. In Proc. of ATVA’09, LNCS 5799,
Springer, 2009.

3. P.A. Abdulla, N. Ben Henda, G. Delzanno, and A. Rezine. Handling Parameterized
Systems with Non-atomic Global Conditions. In Proc. of VMCAI’08, LNCS 4905,
Springer, 2008.

4. P.A. Abdulla, A. Bouajjani, J. Cederberg, F. Haziza, and A. Rezine. Monotonic
Abstraction for Programs with Dynamic Memory Heaps. In Proc. of CAV’08,
LNCS 5123, Springer, 2008.

5. A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar. Abstract Regular Tree
Model Checking of Complex Dynamic Data Structures. In Proc. of SAS’06, LNCS
4134, Springer, 2006.

6. C. Calcagno, D. Distefano, P.W. O’Hearn, and H. Yang. Compositional Shape
Analysis by Means of Bi-abduction. In Proc. of POPL’09, ACM Press, 2009.

7. J.V. Deshmukh, E.A. Emerson, and P. Gupta. Automatic Verification of Parame-
terized Data Structures. In Proc. of TACAS’06, LNCS 3920, Springer, 2006.

8. P. Habermehl, L. Hoĺık, A. Rogalewicz, J. Šimáček, and T. Voj-
nar. Forest Automata for Verification of Heap Manipulation. Tech-
nical Report FIT-TR-2011-01, FIT BUT, Czech Republic, 2011.
http://www.fit.vutbr.cz/~isimacek/pub/FIT-TR-2011-01.pdf

9. P. Madhusudan, G. Parlato, and X. Qiu. Decidable Logics Combining Heap Struc-
tures and Data. In Proc. of POPL’11, ACM Press, 2011.

10. A. Møller and M. Schwartzbach. The Pointer Assertion Logic Engine. In Proc. of
PLDI’01, ACM Press, 2001.

11. H. H. Nguyen, C. David, S. Qin, and W. N. Chin Automated Verification of Shape
and Size Properties via Separation Logic. In Proc. of VMCAI’07, LNCS 4349,
Springer, 2007.

12. J.C. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures. In
Proc. of LICS’02, IEEE CS, 2002.

13. S. Rieger and T. Noll. Abstracting Complex Data Structures by Hyperedge Re-
placement. In Proc. of ICGT’08, LNCS 5214, Springer, 2008.

14. S. Sagiv, T.W. Reps, and R. Wilhelm. Parametric Shape Analysis via 3-valued
Logic. TOPLAS, 24(3), 2002.

15. H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. Distefano, and
P.W. O’Hearn. Scalable Shape Analysis for Systems Code. In Proc. of CAV’08,
LNCS 5123, Springer, 2008.

16. K. Zee, V. Kuncak, and M. Rinard. Full Functional Verification of Linked Data
Structures. In Proc. of PLDI’08, ACM Press, 2008.

