Well-Quasi-Orderings
Well-Quasi-Orderings

- Quasi-Orderings
- Well-Quasi-Orderings (WQOs)
- Very-Well-Quasi-Orderings
- Building WQOs
Quasi-Ordering

\[\langle A, \sqsubseteq \rangle \]

set

binary relation

quasi-order

reflexive

\[\forall a \in A : a \sqsubseteq a \]

transitive

\[\forall a, b, c \in A : (a \sqsubseteq b) \land (b \sqsubseteq c) \implies (a \sqsubseteq c) \]
Quasi-Ordering

\[\langle A, \sqsubseteq \rangle \]

set

quasi-order

binary relation

natural numbers

\[\langle \mathbb{N}, \leq \rangle \]

reflexive

\[\forall a \in A : a \sqsubseteq a \]

transitive

\[\forall a, b, c \in A : (a \sqsubseteq b) \land (b \sqsubseteq c) \Rightarrow (a \sqsubseteq c) \]

\[2 \leq 2 \]

\[2 \leq 4 \]

\[4 \leq 7 \]

\[2 \leq 7 \]
A quasi-order is a binary relation \(\preceq \) on a set \(A \) that satisfies the following properties:

- **Reflexivity**: For all \(a \in A \), \(a \preceq a \).
- **Transitivity**: For all \(a, b, c \in A \), if \(a \preceq b \) and \(b \preceq c \), then \(a \preceq c \).

This relation can also be characterized in terms of the properties:

- **Complete:** For all \(a, b \in A \), either \(a \preceq b \) or \(b \preceq a \).
- **Anti-symmetry:** For all \(a, b \in A \), if \(a \preceq b \) and \(b \preceq a \), then \(a = b \).

Examples of quasi-orders include:

- The \(\leq \) relation on the set of natural numbers \(\mathbb{N} \), which is reflexive, transitive, and complete.
- The \(\leq \) relation on the set of integers \(\mathbb{I} \), which is also reflexive, transitive, and complete.
- The \(= \) relation on the set of natural numbers \(\mathbb{N} \), which is reflexive, symmetric, and transitive.
- The \(= \) relation on the set of finite sets \(A \), which is reflexive, symmetric, and transitive.
Quasi-Ordering: \(\{a, b\} \subseteq \{a, b\}\)

set

\(\langle A, \subseteq \rangle\)

quasi-order

binary relation

reflexive

\(\forall a \in A: a \subseteq a\)

\(\forall a, b, c \in A: (a \subseteq b) \land (b \subseteq c) \implies (a \subseteq c)\)

transitive

\(\{a, b\} \subseteq \{a, b, c\}\)

finite sets over \(A\)

\(\langle 2^A, \subseteq \rangle\)

subset relation

\(\{a, b, c\} \subseteq \{a, b, c, d\}\)

\(\{a, b\} \subseteq \{a, b, c, d\}\)
Quasi-Ordering

\[\langle A, \sqsubseteq \rangle \]

- **Set**
- **Quasi-order**
- **Binary relation**
- **Reflexive**: \(\forall a \in A : a \sqsubseteq a \)
- **Transitive**: \(\forall a, b, c \in A : (a \sqsubseteq b) \land (b \sqsubseteq c) \Rightarrow (a \sqsubseteq c) \)

Finite multisets over \(A \):

\[A = \{a, b, c, d\} \]
\[[a, a, b, c] \sqsubseteq [a, a, a, b, c, c, d] \]
Quasi-Ordering

\[\langle A, \sqsubseteq \rangle \]

- **Set**: \(A \)
- **Quasi-order**: \(\sqsubseteq \)
- **Binary relation**
- **Reflexive**
 \[\forall a \in A : a \sqsubseteq a \]
- **Transitive**
 \[\forall a, b, c \in A : (a \sqsubseteq b) \land (b \sqsubseteq c) \implies (a \sqsubseteq c) \]

finite multisets over \(A \)

\[\langle A^\bullet, \sqsubseteq \rangle \]

Multiset ordering

finite set

\(A = \{a, b, c, d\} \)

\[[a, a, b, c] \sqsubseteq [a, a, a, b, c, c, d] \]
Quasi-Ordering

\(\langle A, \sqsubseteq \rangle \)

set

binary relation

quasi-order

reflexive

\(\forall a \in A : a \sqsubseteq a \)

transitive

\(\forall a, b, c \in A : (a \sqsubseteq b) \land (b \sqsubseteq c) \Rightarrow (a \sqsubseteq c) \)

finite multisets over \(A \)

\(\langle A^\ast, \sqsubseteq \rangle \)

finite set

multiset ordering

\(A = \{a, b, c, d\} \)

[\([a, a, b, c] \sqsubseteq [a, a, a, a, b, c, c, c, d]\)]
Quasi-Ordering

\(\langle A, \sqsubseteq \rangle \)

- set
- quasi-order
- binary relation

- finite multisets over \(A \)
- finite set
- multiset ordering

\(\forall a \in A : a \sqsubseteq a \) (reflexive)

\(\forall a, b, c \in A : (a \sqsubseteq b) \land (b \sqsubseteq c) \implies (a \sqsubseteq c) \) (transitive)

\(A = \{a, b, c, d\} \)

\([a, a, b, c] \sqsubseteq [a, a, a, b, c, c, d] \)
Quasi-Ordering

\[\langle A, \sqsubseteq \rangle \]

Set

Quasi-order

Binary relation

\[\forall a \in A : a \sqsubseteq a \]

Reflexive

\[\forall a, b, c \in A : (a \sqsubseteq b) \land (b \sqsubseteq c) \Rightarrow (a \sqsubseteq c) \]

Transitive

Finite set

Multiset ordering

Finite multisets over \(A \)

\[A = \{a, b, c, d\} \]

\[[a, a, b, c] \sqsubseteq [a, a, a, b, c, c, d] \]
Quasi-Ordering

\[a, a, b, c, d \] \sqsubseteq \[a, a, a, b, c, c, d \]

\[[2,1,1,0] \sqsubseteq [3,1,2,1] \]

\[a^2, b, c \] \sqsubseteq [a^3, b, c^2, d] \]

A = \{a, b, c, d\}

[\{a, a, b, c\} \sqsubseteq [\{a, a, a, b, c, c, d\]
Quasi-Ordering

\((A, \sqsubseteq)\) is a quasi-ordering if it is reflexive and transitive.

- Reflexive: \(\forall a \in A : a \sqsubseteq a\)
- Transitive: \(\forall a, b, c \in A : (a \sqsubseteq b) \land (b \sqsubseteq c) \Rightarrow (a \sqsubseteq c)\)

Finite sets and multisets over set \(A\):

- \(\langle A, \sqsubseteq \rangle\) is a binary relation.
- \(\langle A^\star, \sqsubseteq \rangle\) is a multiset ordering.
- \(\langle A^\ast, \sqsubseteq \rangle\) is a multiset ordering.
- \(m_1 \sqsubseteq m_2 : |m_1| \leq |m_2|\)
Well-Quasi-Orderings

- Quasi-Orderings
- Well-Quasi-Orderings (WQOs)
- Very-Well-Quasi-Orderings
- Building WQOs
Well-Quasi-Ordering

\(\langle A, \subseteq \rangle \)

quasi-order

well-quasi-order

good sequence

infinite sequence of elements from \(A \)

\(a_0, a_1, a_2, \ldots, a_i, \ldots, a_j, \ldots \)

\(\exists i, j : (i < j) \land (a_i \subseteq a_j) \)

WQO = all sequences are good

"... for any infinite sequence of elements in \(A \), there are two elements such that the later element is larger (wrt. \(\subseteq \)) than the earlier element ..."
Well-Quasi-Ordering

\[\langle A, \sqsubseteq \rangle \]

infinite sequence of elements from \(A \)

\[a_0, a_1, a_2, \ldots, a_i, \ldots, a_j, \ldots \]

\[\exists i, j : (i < j) \land (a_i \sqsubseteq a_j) \]

\[\langle \mathbb{N}, \leq \rangle \]

WQO = all sequences are good

natural numbers

9 7 5 4 3 0 8
Well-Quasi-Ordering

\[\langle A, \sqsubseteq \rangle \]

quasi-order

infinite sequence of elements from \(A \)

good sequence

\[a_0, a_1, a_2, \ldots, a_i, \ldots, a_j, \ldots \]

\[\exists i, j : (i < j) \land (a_i \sqsubseteq a_j) \]

bad sequence

\[\langle \mathbb{N}, \leq \rangle \quad \checkmark \]

\[\langle \mathbb{I}, \leq \rangle \quad \times \]

integers

\[9 \quad 7 \quad 0 \quad -2 \quad -5 \quad -10 \quad -15 \quad \ldots \]
Well-Quasi-Ordering

\[\langle A, \subseteq \rangle \]

quasi-order

infinite sequence of elements from A

good sequence

\[a_0, a_1, a_2, \ldots, a_i, \ldots, a_j, \ldots \]

\[\exists i, j : (i < j) \land (a_i \subseteq a_j) \]

bad sequence

\[\langle \mathbb{N}, \leq \rangle \]

\[\langle \mathbb{I}, \leq \rangle \]

\[\langle \mathbb{N}, = \rangle \]

natural numbers

[9, 7, 0, 6, 5, 10, 15, ...]
Well-Quasi-Ordering

\[\langle A, \sqsubseteq \rangle \]

\text{quasi-order}

\text{infinite sequence of elements from } A

\text{good sequence}

\exists i, j : (i < j) \land (a_i \sqsubseteq a_j)

\[a_0, a_1, a_2, \ldots, a_i, \ldots, a_j, \ldots \]

\[\langle \mathbb{N}, \leq \rangle \quad \checkmark \]
\[\langle \mathbb{I}, \leq \rangle \quad \times \]
\[\langle \mathbb{N}, = \rangle \quad \times \]

\text{finite set}

\[a \ b \ c \ b \]

\[A = \{a, b, c\} \]
Well-Quasi-Ordering

\[\langle A, \sqsubseteq \rangle \]

quasi-order

infinite sequence of elements from \(A \)

good sequence

\[a_0, a_1, a_2, \ldots, a_i, \ldots, a_j, \ldots \]

\[\exists i, j : (i < j) \land (a_i \sqsubseteq a_j) \]

finite multisets over \(A \)

finite set

multiset ordering

\[\langle A^\times, \sqsubseteq \rangle \]
Well-Quasi-Ordering

\[\langle A, \sqsubseteq \rangle \]

quasi-order

infinite sequence of elements from A

good sequence

\[a_0, a_1, a_2, \ldots, a_i, \ldots, a_j, \ldots \]

\[\exists i, j : (i < j) \land (a_i \sqsubseteq a_j) \]

finite multisets over A

finite set

multiset ordering

\[\langle A^\ast, \sqsubseteq \rangle \]

[\{a, a, b, b, b, b\} \in A^\ast]

\# a = 2

\# b = 4

A = \{a, b\}

(2, 4)
Well-Quasi-Ordering

\[\langle A, \sqsubseteq \rangle \]

quasi-order

infinite sequence of elements from \(A \)

\[\exists i, j : (i < j) \land (a_i \sqsubseteq a_j) \]

good sequence

finite multiset over \(A \)

finite set

multiset ordering

\[\langle A^\ast, \sqsubseteq \rangle \]

\[A = \{a, b\} \]

\[[a, a, b, b, b, b] \in A^\ast \]

\# a = 2

\# b = 4

(7,7) (11,4) (2,9) (13,2) (4,8) (0,12) (14,0)
forbidden

(11,4)

(7,7) (11,4) (2,9) (13,2) (4,8) (0,12) (14,0) …..
(7,7) (11,4) (2,9) (13,2) (4,8) (0,12) (14,0) …..
Dickson's Lemma, 1910

Multiset ordering 4 $(7,7)$ $(11,4)$ $(2,9)$ $(13,2)$ $(4,8)$ $(0,12)$ $(14,0)$

$A = \{a, b\}$

$[a, a, b, b, b, b] \in A^*$

$a = 2$

$b = 4$
A well-quasi-ordering is a quasi-order \(\langle A, \sqsubseteq \rangle \) on a set \(A \) that does not contain an infinite sequence of elements \(a_0, a_1, a_2, \ldots, a_i, \ldots \) such that for all \(i < j \) it holds that \(a_i \not\sqsubseteq a_j \).

Examples

- \(\langle \mathbb{N}, \leq \rangle \) is a well-ordering, not a well-quasi-ordering.
- \(\langle \mathbb{I}, \leq \rangle \) is a partial order, not a well-quasi-ordering.
- \(\langle \mathbb{N}, = \rangle \) is an equivalence relation, not a well-quasi-ordering.
- \(\langle A, = \rangle \) is a well-quasi-ordering if \(A \) is a finite set.
- \(\langle A^\ast, \leq \rangle \) is a well-quasi-ordering if \(A \) is a finite set and \(A^\ast \) is a finite set of multisets over \(A \) with \(\leq \) denoting multiset ordering.

Finite multisets over \(A \) with multiset ordering \(\leq \) is a well-quasi-ordering.
Well-Quasi-Orderings

- Quasi-Orderings
- Well-Quasi-Orderings (WQOs)
- Very-Well-Quasi-Orderings
- Building WQOs
Well-Quasi-Ordering

\[\langle A, \sqsubseteq \rangle \]

quasi-order

infinite sequence of elements from A

\[a_0, a_1, a_2, \ldots, a_i, \ldots, a_j, \ldots \]

\[\exists i, j : (i < j) \land (a_i \sqsubseteq a_j) \]

\[\sqsubseteq \]

good sequence

very good sequence

Very WQO = all sequences are very good

\[a_0, a_1, a_2, \ldots, a_{i_1}, \ldots, a_{i_2}, \ldots, a_{i_3}, \ldots \]

\[\sqsubseteq \]

\[\sqsubseteq \]

\[\sqsubseteq \]

\[\exists i_1, i_2, i_3, \ldots : (i_1 < i_2 < i_3 < \ldots) \land (a_{i_1} \sqsubseteq a_{i_2} \sqsubseteq a_{i_3} \sqsubseteq \cdots) \]
Well-Quasi-Ordering

WQO = very WQO? yes
- very WQO is WQO? yes (obvious)
- WQO is very WQO? more difficult yes

why?
Well-Quasi-Ordering

WQO = very WQO? yes
- very WQO is WQO? yes (obvious)
- WQO is very WQO? more difficult yes

\[\forall j > i : a_i \not\subset a_j \]

terminal

\[a_0 \ a_1 \ a_2 \ \ldots \ \ a_m \ a_{m+1} \ \ldots, \ a_n, \ \ldots \]
Well-Quasi-Ordering

WQO = very WQO? yes
- very WQO is WQO? yes (obvious)
- WQO is very WQO? more difficult yes

why?

∀j > i: a_i ∉ a_j

terminal

a_0 a_1 a_2 ... a_m a_{m+1} ... a_n ...
Well-Quasi-Ordering

WQO = very WQO? yes
 • very WQO is WQO? yes (obvious)
 • WQO is very WQO? more difficult yes

\[\forall j > i : a_i \not\subset a_j \]

terminal

\[a_0 \ a_1 \ a_2 \ \ldots \ \circ a_m \ a_{m+1} \ \ldots, \ \circ a_n, \ \ldots \]
WQO = very WQO? yes
• very WQO is WQO? yes (obvious)
• WQO is very WQO? more difficult yes
 • finitely many terminals why?

assume there are infinitely many terminals
Well-Quasi-Ordering

WQO = very WQO? yes
• very WQO is WQO? yes (obvious)
• WQO is very WQO? more difficult yes
 • finitely many terminals

why?

assume there are infinitely many terminals

bad sequence

$\forall j > i : a_i \not\subseteq a_j$

$a_0 \ a_1 \ a_2 \ \ldots \ a_{i_0} \ \ldots \ a_{i_1} \ \ldots \ a_{i_2} \ \ldots \ a_{i_3} \ \ldots$
Well-Quasi-Ordering

WQO = very WQO? yes
- very WQO is WQO? yes (obvious)
- WQO is very WQO? more difficult yes
 - finitely many terminals why?

assume there are infinitely many terminals

\[\forall j > i : a_i \not\sqsubseteq a_j \]

bad sequence

\[a_{i_0} \ a_{i_1} \]

\[a_0 \ a_1 \ a_2 \ \ldots \ a_{i_0} \ \ldots \ a_{i_1} \ \ldots \ a_{i_2} \ \ldots \ a_{i_3} \ \ldots \]
Well-Quasi-Ordering

WQO = very WQO? yes
 • very WQO is WQO? yes (obvious)
 • WQO is very WQO? more difficult yes
 • finitely many terminals why?

assume there are infinitely many terminals

bad sequence

\[a_{i_0} \ a_{i_1} \ a_{i_2} \]

\[\forall j > i : a_i \not\subseteq a_j \]

\[a_0 \ a_1 \ a_2 \ \ldots \ a_{i_0} \ \ldots \ a_{i_1} \ \ldots \ a_{i_2} \ \ldots \ a_{i_3} \ \ldots \]
Well-Quasi-Ordering

WQO = very WQO? yes
 • very WQO is WQO? yes (obvious)
 • WQO is very WQO? more difficult yes
 • finitely many terminals

assume there are infinitely many terminals

\(\forall j > i : a_i \not\sqsubseteq a_j \)

bad sequence

\(a_{i_0} \ a_{i_1} \ a_{i_2} \ a_{i_3} \ ... \)

\(a_0 \ a_1 \ a_2 \ ... \ a_{i_0} \ ... \ a_{i_1} \ ... \ a_{i_2} \ ... \ a_{i_3} \ ... \)
WQO = very WQO? yes
- very WQO is WQO? yes (obvious)
- WQO is very WQO? more difficult yes
 - finitely many terminals

very good sequence

∀j > i : a_i ∉ a_j

last terminal

a_0 a_1 a_2 ... a_m ...
Well-Quasi-Ordering

WQO = very WQO? yes
 • very WQO is WQO? yes (obvious)
 • WQO is very WQO? more difficult yes
 • finitely many terminals

very good sequence

\[b_0 \]

\[\forall j > i : a_i \not\subseteq a_j \]

last terminal

\[a_0 \ a_1 \ a_2 \ \ldots \ a_m \ \ldots \ b_0 \ \ldots \]
Well-Quasi-Ordering

\[b_0 \sqsubseteq b_1 \]

\[\forall j > i : a_i \nsubseteq a_j \]

very good sequence

WQO = very WQO? yes
- very WQO is WQO? yes (obvious)
- WQO is very WQO? more difficult yes
 - finitely many terminals

\[a_0 \ a_1 \ a_2 \ldots \ a_m \ldots \ b_0 \ldots \ b_1 \ldots \]
Well-Quasi-Ordering

WQO = very WQO? yes
- very WQO is WQO? yes (obvious)
- WQO is very WQO? more difficult yes
 - finitely many terminals

very good sequence

\[b_0 \subseteq b_1 \subseteq b_2 \subseteq \ldots \]

\[\forall j > i : a_i \not\subseteq a_j \]

last terminal

\[a_0 \ a_1 \ a_2 \ \ldots \ a_m \ \ldots \ b_0 \ \ldots \ b_1 \ \ldots \ b_2 \ \ldots \]
Well-Quasi-Ordering

WQO = very WQO? yes
- very WQO is WQO? yes (obvious)
- WQO is very WQO? more difficult yes

very good sequence

\[b_0 \sqsubseteq b_1 \sqsubseteq b_2 \sqsubseteq \ldots \]

\forall j > i : a_i \not\sqsubseteq a_j

last terminal

\[
\begin{array}{cccccccc}
 a_0 & a_1 & a_2 & \ldots & a_m & \ldots & b_0 & \ldots & b_1 & \ldots & b_2 & \ldots
\end{array}
\]
Well-Quasi-Orderings

- Quasi-Orderings
- Well-Quasi-Orderings (WQOs)
- Very-Well-Quasi-Orderings
- Building WQOs
Well-Quasi-Ordering

Higman’s Lemma

finite words over A

finite set

sub-word ordering

Subword Relation

$ab \sqsubseteq xaybz$

finite words

$\langle A^*, \sqsubseteq \rangle$

Higman’s Lemma

$\exists i, j : (i < j) \land (w_i \sqsubseteq w_j)$

$w_0, w_1, w_2, \ldots, w_i, \ldots, w_j, \ldots$
Well-Quasi-Ordering

Higman’s Lemma

Subword Relation

\(ab \sqsubseteq xaybz \)

“Proof”

\[
\begin{align*}
(x \sqsubseteq y) & \implies (a \cdot x \sqsubseteq a \cdot y) & (a \cdot x \not\sqsubseteq a \cdot y) & \implies (x \not\sqsubseteq y) \\
(x \sqsubseteq y) & \implies (x \sqsubseteq a \cdot y) & (x \not\sqsubseteq a \cdot y) & \implies (x \not\sqsubseteq y)
\end{align*}
\]
Well-Quasi-Ordering Higman's Lemma

Subword Relation

\[ab \sqsubseteq xaybz \]

"Proof"

\[(x \sqsubseteq y) \implies (a \cdot x \sqsubseteq a \cdot y) \]

\[(x \sqsubseteq y) \implies (x \sqsubseteq a \cdot y) \]

\[(a \cdot x \not\sqsubseteq a \cdot y) \implies (x \not\sqsubseteq y) \]

\[(x \not\sqsubseteq a \cdot y) \implies (x \not\sqsubseteq y) \]

\[cabc \sqsubseteq cachaca \]

\[abc \sqsubseteq acbaca \]
Well-Quasi-Ordering

Subword Relation

Higman’s Lemma

\[x \sqsubseteq y \implies (a \cdot x \sqsubseteq a \cdot y) \]

\[(a \cdot x \nsubseteq a \cdot y) \implies (x \nsubseteq y) \]

\[(x \sqsubseteq y) \implies (x \sqsubseteq a \cdot y) \]

\[(x \nsubseteq a \cdot y) \implies (x \nsubseteq y) \]
Well-Quasi-Ordering

Higman’s Lemma

$cabc \sqsubseteq cachbaca$

$abc \sqsubseteq acbaca$

$abc \sqsubseteq cachbaca$

$abc \not\sqsubseteq acacb$

WQO

Subword Relation

$ab \sqsubseteq xaybz$

“Proof”

$(x \sqsubseteq y) \implies (a \cdot x \sqsubseteq a \cdot y)$

$(a \cdot x \not\sqsubseteq a \cdot y) \implies (x \not\sqsubseteq y)$

$(x \sqsubseteq y) \implies (x \sqsubseteq a \cdot y)$

$(x \not\sqsubseteq a \cdot y) \implies (x \not\sqsubseteq y)$

$(x \not\sqsubseteq a \cdot y) \implies (x \not\sqsubseteq y)$
Well-Quasi-Ordering

Higman’s Lemma

Subword Relation

\[ab \sqsubseteq xaybz \]

“Proof”

\[
\begin{align*}
abc & \sqsubseteq cachaca \\
abc & \sqsubseteq cachaca \\
abc & \sqsubseteq cachaca \\
bc & \not\sqsubseteq cachb \\
abc & \not\sqsubseteq acachb \\
abc & \not\sqsubseteq cachb
\end{align*}
\]

\[
\begin{align*}
(x \sqsubseteq y) & \implies (a \cdot x \sqsubseteq a \cdot y) \\
(x \sqsubseteq y) & \implies (x \sqsubseteq a \cdot y) \\
(a \cdot x \not\sqsubseteq a \cdot y) & \implies (x \not\sqsubseteq y) \\
(x \not\sqsubseteq a \cdot y) & \implies (x \not\sqsubseteq y)
\end{align*}
\]
Well-Quasi-Ordering

"minimal" bad sequence:

\[w_1 \]

: a shortest word starting a bad sequence

Higman's Lemma

Subword Relation

Proof

\[\text{ab} \sqsubseteq \text{xayb} \]

WQO
Well-Quasi-Ordering

“minimal” bad sequence:

\(w_1 \) : a shortest word starting a bad sequence
\(w_2 \) : a shortest word \(v \) such that \(w_1 v \cdots \) is bad

Subword Relation

\(ab \sqsubseteq xaybz \)

\(w_1 \quad w_2 \quad \cdots \)
Well-Quasi-Ordering

"minimal" bad sequence:

\(w_1 \) : a shortest word starting a bad sequence
\(w_2 \) : a shortest word \(v \) such that \(w_1v \cdots \) is bad
\(w_3 \) : a shortest word \(v \) such that \(w_1w_2v \cdots \) is bad

Subword Relation

\[ab \sqsubseteq xaybzx \]

WQO

minimal bad sequence

\(w_1 \ w_2 \ w_3 \ \cdots \)
"minimal" bad sequence:

\(w_1 : \) a shortest word starting a bad sequence

\(w_2 : \) a shortest word \(v \) such that \(w_1 v \cdots \) is bad

\(w_3 : \) a shortest word \(v \) such that \(w_1 w_2 v \cdots \) is bad

\(w_n : \) a shortest word \(v \) such that \(w_1 w_2 w_3 \cdots w_{n-1} v \) is bad

\(w_1 \ w_2 \ w_3 \ \cdots \ w_n \)
Well-Quasi-Ordering

“minimal” bad sequence:

- w_1: a shortest word starting a bad sequence
- w_2: a shortest word v such that $w_1v\cdots$ is bad
- w_3: a shortest word v such that $w_1w_2v\cdots$ is bad
- w_n: a shortest word v such that $w_1w_2w_3\cdots w_{n-1}v$ is bad

Infinite many start with some “a”

$w_1 \ w_2 \ w_3 \ \cdots \ w_n \ a \cdot v_{i_1} \ \cdots \ a \cdot v_{i_2} \ \cdots \ a \cdot v_{i_3} \ \cdots$

Subword Relation

$ab \sqsubseteq xayb$
Well-Quasi-Ordering

Subword Relation

Well-Quasi-Ordering

“minimal” bad sequence:

\[w_1 : \text{a shortest word starting a bad sequence} \]
\[w_2 : \text{a shortest word } v \text{ such that } w_1 v \cdots \text{ is bad} \]
\[w_3 : \text{a shortest word } v \text{ such that } w_1 w_2 v \cdots \text{ is bad} \]
\[w_n : \text{a shortest word } v \text{ such that } w_1 w_2 w_3 \cdots w_{n-1} v \text{ is bad} \]
Well-Quasi-Ordering

“minimal” bad sequence:

w_1 : a shortest word starting a bad sequence

w_n : a shortest word w_n such that w_n is a bad sequence

Subword Relation

\[(x ⊑ y) \implies (a \cdot x \subseteq a \cdot y) \]
\[(a \cdot x \not\subseteq a \cdot y) \implies (x \not\subseteq y) \]

\[(x \subseteq y) \implies (x \subseteq a \cdot y) \]
\[(x \not\subseteq a \cdot y) \implies (x \not\subseteq y) \]

Well-Quasi-Ordering

Higman's Lemma
Well-Quasi-Ordering

“minimal” bad sequence:

\(w_1 \): a shortest word starting a bad sequence

\(w_2 \): a shortest word \(w \) such that \(w_1 \cdot w \) is bad

\(w_3 \): a shortest word \(w \) such that \(w_2 \cdot w \) is bad

\(\vdash \): a shortest word \(w \) such that \(w_n \cdot w \) is bad

Subword Relation

\(ab \sqsubseteq xaybz \)

WQO
Well-Quasi-Ordering

“minimal” bad sequence:

w_1: a shortest word starting a bad sequence

Well-a shortest word w such that $w_1 w_2 w_3 \ldots w_n$ is bad.

\[(x \sqsubseteq y) \implies (a \cdot x \sqsubseteq a \cdot y) \quad (a \cdot x \not\sqsubseteq a \cdot y) \implies (x \not\sqsubseteq y) \]

\[(x \sqsubseteq y) \implies (x \sqsubseteq a \cdot y) \quad (x \not\sqsubseteq a \cdot y) \implies (x \not\sqsubseteq y) \]

Subword Relation

Higman’s Lemma

\[ab \sqsubseteq xaybzx \]

WQO
Well-Quasi-Ordering

“minimal” bad sequence:

\(w_1 \): a shortest word starting a bad sequence
\(w_2 \): a shortest word \(\nu \) such that \(w_1 \nu \cdot \cdot \cdot \) is bad
\(w_3 \): a shortest word \(\nu \) such that \(w_1 w_2 \nu \cdot \cdot \cdot \) is bad
\(w_n \): a shortest word \(\nu \) such that \(w_1 w_2 w_3 \cdot \cdot \cdot w_{n-1} \nu \) is bad

Higman’s Lemma

Subword Relation

\[ab \sqsubseteq xayb\]
Well-Quasi-Ordering

Higman’s Lemma

“minimal” bad sequence:

\(w_1\) : a shortest word starting a bad sequence
\(w_2\) : a shortest word \(v\) such that \(w_1v\ldots\) is bad
\(w_3\) : a shortest word \(v\) such that \(w_1w_2v\ldots\) is bad
\(w_n\) : a shortest word \(v\) such that \(w_1w_2w_3\ldots w_{n-1}v\) is bad

Subword Relation

\(ab \sqsubseteq xaybz\)

WQO

minimal bad sequence

infinite sequence

infinitely many start with some “a”

bad sequence

contradiction
Well-Quasi-Ordering

\[\langle A, \sqsubseteq \rangle \quad \text{wqo} \quad \langle A^*, \sqsubseteq^* \rangle \quad \text{wqo?} \]

Set of finite words over \(A \)

\[a_1 a_2 \cdots a_n \sqsubseteq^* x_0 b_1 x_1 b_2 x_2 \cdots x_{n-1} b_n x_n \]

if

\[a_1 \sqsubseteq b_1 \quad a_2 \sqsubseteq b_2 \quad \cdots \quad a_n \sqsubseteq b_n \]

\[\langle \mathbb{N}, \leq \rangle \quad \langle \mathbb{N}^*, \leq^* \rangle \]

\[175 \leq^* 0329368 \]
“minimal” bad sequence:

\[w_1 : \text{a shortest word starting a bad sequence} \]
“minimal” bad sequence:

\(w_1 \) : a shortest word starting a bad sequence

\(w_2 \) : a shortest word \(v \) such that \(w_1 v \cdots \) is bad
“minimal” bad sequence:

\(w_1 \) : a shortest word starting a bad sequence

\(w_2 \) : a shortest word \(v \) such that \(w_1 v \cdots \) is bad

\(w_3 \) : a shortest word \(v \) such that \(w_1 w_2 v \cdots \) is bad

\[w_1 \quad w_2 \quad w_3 \quad \cdots \]
“minimal” bad sequence:

- w_1: a shortest word starting a bad sequence
- w_2: a shortest word v such that $w_1v\cdots$ is bad
- w_3: a shortest word v such that $w_1w_2v\cdots$ is bad
- w_n: a shortest word v such that $w_1w_2w_3\cdots w_{n-1}v$ is bad

$w_1\ w_2\ w_3\ \cdots\ \cdots\ w_n\ \cdots$
Well-Quasi-Ordering

Higman’s Lemma

“minimal” bad sequence:

\(w_1 \): a shortest word starting a bad sequence
\(w_2 \): a shortest word \(v \) such that \(w_1 v \cdots \) is bad
\(w_3 \): a shortest word \(v \) such that \(w_1 w_2 v \cdots \) is bad
\(w_n \): a shortest word \(v \) such that \(w_1 w_2 w_3 \cdots w_{n-1} v \) is bad

Minimal bad sequence → Infinite sequence → Very WQO
“minimal” bad sequence:

- w_1 : a shortest word starting a bad sequence
- v_1 : a shortest word such that $w_1 \cdot v_1$ is bad
- w_2 : a shortest word such that $w_2 \cdot v_2$ is bad
- w_3 : a shortest word such that $w_3 \cdot v_3$ is bad

Well-Quasi-Ordering (WQO):

\[
(x \sqsubseteq y) \land (a \sqsubseteq b) \implies (a \cdot x \sqsubseteq b \cdot y)
\]

\[
(x \sqsubseteq y) \implies (x \sqsubseteq a \cdot y)
\]
“minimal” bad sequence:

\[w_1 : \text{a shortest word starting a bad sequence} \]
\[w_2 : \text{a shortest word } v \text{ such that } w_1v\cdots \text{ is bad} \]
\[w_3 : \text{a shortest word } v \text{ such that } w_1w_2v\cdots \text{ is bad} \]
\[w_n : \text{a shortest word } v \text{ such that } w_1w_2w_3\cdots w_{n-1}v \text{ is bad} \]
Well-Quasi-Ordering

“minimal” bad sequence:

\(w_1\) : a shortest word starting a bad sequence

\(w_2\) : a shortest word \(v\) such that \(w_1v\cdots\) is bad

\(w_3\) : a shortest word \(v\) such that \(w_1w_2v\cdots\) is bad

\(w_n\) : a shortest word \(v\) such that \(w_1w_2w_3\cdots w_{n-1}v\) is bad

Higman’s Lemma

\(a_1 \sqsubseteq a_2 \sqsubseteq a_3 \sqsubseteq \cdots\)

contradiction
Well-Quasi-Ordering

\[\langle A, \sqsubseteq \rangle \]

WQO

\[\langle A^*, \sqsubseteq^* \rangle \]

\[\langle A^\otimes, \sqsubseteq^\otimes \rangle \]

set of finite multisets over \(A \)
Well-Quasi-Ordering

\[(A, \sqsubseteq)\]

\[\langle A, \sqsubseteq \rangle\]

\[\langle A^*, \sqsubseteq^* \rangle\]

\[\langle A^\otimes, \sqsubseteq^\otimes \rangle\]

\[\langle A^k, \sqsubseteq^k \rangle\]

set of vectors of length \(k\) over \(A\)

\[\langle A_1 \times A_2 \times \cdots \times A_k, \sqsubseteq^k \rangle\]
Well-Quasi-Ordering

\(\langle A, \subseteq \rangle \)

wqo

\(\langle A^*, \subseteq^* \rangle \) ✓

\(\langle A^\ast, \subseteq^\ast \rangle \) ✓

\(\langle A^k, \subseteq^k \rangle \) ✓

\(\langle 2^A, \subseteq^{2A} \rangle \) ✓

set of finite sets over \(A \)
Well-Quasi-Ordering

\[\langle A^*, \subseteq^* \rangle \]

\[\langle A^\otimes, \subseteq^\otimes \rangle \]

\[\langle A^k, \subseteq^k \rangle \]

\[\langle 2^A, \subseteq 2^A \rangle \]

\[\langle A, \subseteq \rangle \]

\[\text{wqo} \]

set of finite words over \(A \)

set of finite multisets over \(A \)

set of vectors of length \(k \) over \(A \)

set of finite sets over \(A \)
Well-Quasi-Ordering

- \(\langle A^*, \subseteq^* \rangle\)
- \(\langle A^\otimes, \subseteq^\otimes \rangle\)
- \(\langle A^k, \subseteq^k \rangle\)
- \(\langle 2^A \subseteq 2^A \rangle\)

natural numbers: \(\langle \mathbb{N}, \leq \rangle\)

finite set: \(\langle A, = \rangle\)

standard ordering

subword relation
Well-Quasi-Ordering

\(\langle A^*, \leq^* \rangle \)
\(\langle A^\otimes, \leq^\otimes \rangle \)
\(\langle A^k, \leq^k \rangle \)
\(\langle 2^A \subseteq 2^A \rangle \)

\(\langle \mathbb{N}, \leq \rangle \)
\(\langle A, = \rangle \)

\(\langle \mathbb{N}^\otimes, \leq^\otimes \rangle \)

Graph with nodes labeled 2, 3, 5, 7, 1, 6, 4 connected with arrows.
Well-Quasi-Ordering

\[\langle \mathbb{N}^\ast, (\leq^\ast)^\ast \rangle \]

\[\langle \mathbb{N}, \leq \rangle \]

\[\langle A, = \rangle \]

\[\langle A^\ast, \sqsubseteq^\ast \rangle \]

\[\langle A^\ast, \sqsubseteq^\ast \rangle \]

\[\langle A^k, \sqsubseteq^k \rangle \]

\[\langle 2^A \sqsubseteq 2^A \rangle \]
Well-Quasi-Orderings

- Quasi-Orderings
- Well-Quasi-Orderings (WQOs)
- Very-Well-Quasi-Orderings
- Building WQOs