Timed Petri Nets

Signatures

1 5
6 3
2 0

1 5
2 6
3 0

ω

Time
Timed Petri Nets

Signatures

1

5

6

3

0

2

1

2

3

5

ω

6

0

ω

time
Timed Petri Nets
Signatures

1 5 6 3 0

! 1 5 6 3 0

time

! 1 5 6 3 0

time
Timed Petri Nets

Signatures
Timed Petri Nets

Signatures

\[\begin{array}{cccc}
1 & 2 & 6 & 3 \\
5 & \omega & 6 & 0 \\
\end{array}\]

\[\begin{array}{cccc}
4 & 1 & 2 & 6 \\
0 & 5 & \omega & 6 \\
\end{array}\]
Timed Petri Nets

Signatures

![Diagram of Timed Petri Nets]
Timed Petri Nets

Signatures
$c_1 \equiv c_2 : \quad \text{sig}(c_1) = \text{sig}(c_2)$
Timed Petri Nets

Equivalence

\(c_1 \equiv c_2 : \)

\[\operatorname{sig}(c_1) = \operatorname{sig}(c_2) \]
Timed Petri Nets
Equivalence

\[c_1 \equiv c_2 : \quad \text{sig}(c_1) = \text{sig}(c_2) \]
$c_1 \trianglerighteq c_2$:

$\exists c_3. (c_1 \equiv c_3) \land (c_3 \subseteq c_2)$
Timed Petri Nets

Ordering

$c_1 \sqsubseteq c_2 :$

$\exists c_3. (c_1 \equiv c_3) \land (c_3 \subseteq c_2)$
Timed Petri Nets

Ordering

$c_1 \sqsubseteq c_2 :\exists c_3. \ (c_1 \equiv c_3) \land (c_3 \subseteq c_2)$
Timed Petri Nets

Ordering

$\exists c_3. (c_1 \equiv c_3) \land (c_3 \subseteq c_2)$
Timed Petri Nets

Ordering

$c_1 \sqsubseteq c_2 :\exists c_3. (c_1 \equiv c_3) \land (c_3 \subseteq c_2)$

c_1

\[
\begin{array}{cccccc}
5.0 & 1.7 & 8.2 & 4.7 & 3.2 & 6.5 & 1.0 \\
\end{array}
\]

c_2

\[
\begin{array}{cccccc}
5.0 & 3.2 & 2.5 & 4.8 & 3.1 & 6.6 & 1.0 \\
1.8 & 9.1 & 9.1 & 1.1 & 9.9 & 6.6 \\
\end{array}
\]

c_3

\[
\begin{array}{cccccc}
5.0 & 4.8 & 3.1 & 6.6 & 1.0 \\
1.8 & 9.1 & 9.1 & 1.1 & 9.9 & 6.6 \\
\end{array}
\]
Timed Petri Nets

Ordering

\[c_1 \supseteq c_2 : \exists c_3. (c_1 \equiv c_3) \land (c_3 \subseteq c_2) \]
Timed Petri Nets
Ordering

\[
\forall c_3. (c_1 \equiv c_3) \land (c_3 \subseteq c_2)
\]
Timed Petri Nets

Ordering

$c_1 \sqsubseteq c_2 : \exists c_3. (c_1 \equiv c_3) \land (c_3 \subseteq c_2)$
\[c_1 \sqsubseteq c_2 : \exists c_3. (c_1 \equiv c_3) \land (c_3 \subseteq c_2) \]
$s_1 \subseteq s_2$: Derive s_1 from s_2 by:

- removing elements from multisets
- removing multisets
Derive s_1 from s_2 by:

- removing elements from multisets
- removing multisets
$s_1 \subseteq s_2$: Derive s_1 from s_2 by:
- removing elements from multisets
- removing multisets
Derive s_1 from s_2 by:

- removing elements from multisets
- removing multisets
Derive s_1 from s_2 by:

- removing elements from multisets
- removing multisets
$s_1 \subseteq s_2$: Derive s_1 from s_2 by:

- removing elements from multisets
- removing multisets

\begin{align*}
\text{s}_1 &:& \text{1} \ 5 \ \omega \ 4 \ 3 \ 6 \ 0 \ 1 \ 2 \\
\text{s}_2 &:& \text{1} \ 2 \ 4 \ 3 \ 6 \ 0 \ 1 \ 2
\end{align*}
Timed Petri Nets

Ordering

\[c \models s \quad : \\
\exists c'. (c' \subseteq c) \land (\text{sig}(c') = s) \]
\[c \models s : \exists c'. (c' \subseteq c) \land (\text{sig}(c') = s) \]
\(\exists c'. (c' \subseteq c) \land (\text{sig}(c') = s) \)

\[
\begin{bmatrix}
5.0 & 1.7 & 8.2 & 4.7 & 3.2 & 6.5 & 1.0 \\
1.8 & 9.1 & 9.1 & 1.1 & 9.9 & 6.6
\end{bmatrix}
\]
c' \models s : \exists c'. (c' \subseteq c) \land (\text{sig}(c') = s)

\text{c' \models s} : \exists c'. (c' \subseteq c) \land (\text{sig}(c') = s)
Timed Petri Nets

- Model
 - Configurations
 - Ordering
 - Monotonicity
 - Upward Closed Sets
 - Backward Reachability

- Transitions
 - Computing Predecessors
Timed Petri Nets

- Model
 - Configurations
 - Ordering
- Monotonicity
 - Upward Closed Sets
 - Computing Predecessors
- Backward Reachability
Timed Petri Nets

Denotation

\[[s] = \{ c \mid c \models s \} \]
Denotation

\[[s] = \{ c | c \models s \} \]
\[[s] = \{ c \mid c \models s \} \]
Timed Petri Nets

Denotation

\[[s] = \{ c \mid c \models s \} \]
Timed Petri Nets

Denotation

\[[s] = \{c \mid c \models s \} \]
Timed Petri Nets

Denotation

\[[s] = \{ c \mid c \models s \} \]
$[s] = \{ c \mid c \models s \}$

Property:

- Infinite
- Upward closed wrt. \subseteq
Timed Petri Nets

Denotation

\[[s] = \{ c \mid c \models s \} \]

infinite

upward closed wrt. \(\subseteq \)

\[s_1 \subseteq s_2 \]

implies

\[[s_2] \subseteq [s_1] \]
Timed Petri Nets

- Model
 - Configurations
 - Ordering
 - Monotonicity
 - Upward Closed Sets
 - Backward Reachability

- Transitions
 - Computing Predecessors
Timed Petri Nets

- Model
- Configurations
- Monotoncity
- Upward Closed Sets
- Backward Reachability

- Transitions
- Ordering
- Computing Predecessors
Timed Petri Nets

Monotonicity

\[5.0 \ 1.7 \ 8.2 \ 4.7 \ 3.2 \ 6.5 \ 1.0 \]

\[5.0 \ 3.2 \ 2.5 \ 4.8 \ 3.1 \ 6.6 \ 1.0 \]

\[1.8 \ 9.1 \ 9.1 \ 1.1 \ 9.9 \ 6.6 \]
Timed Petri Nets

Monotonicity

time = 0.3

\[[5.0, 1.7, 8.2, 4.7, 3.2, 6.5, 1.0] \rightarrow [5.3, 2.0, 8.5, 5.0, 3.5, 6.8, 1.3] \]
Timed Petri Nets

Monotonicity

time = 0.3

5.0 1.7 8.2 4.7 3.2 6.5 1.0

5.3 2.0 8.5 5.0 3.5 6.8 1.3

time = 0.2

5.0 3.2 2.5 4.8 3.1 6.6 1.0

1.8 9.1 9.1 1.1 9.9 6.6

5.2 3.4 2.7 5.0 3.3 6.8 1.2

2.0 9.3 9.3 1.3 10.1 6.8
Timed Petri Nets

Computing Predecessors

\[
\text{time} = 0.3
\]

\[
\begin{array}{cccccccc}
5.0 & 1.7 & 8.2 & 4.7 & 3.2 & 6.5 & 1.0 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
5.3 & 2.0 & 8.5 & 5.0 & 3.5 & 6.8 & 1.3 \\
\end{array}
\]

\[
\text{time} = 0.2
\]

\[
\begin{array}{cccccccc}
5.0 & 3.2 & 2.5 & 4.8 & 3.1 & 6.6 & 1.0 \\
1.8 & 9.1 & 9.1 & 1.1 & 9.9 & 6.6 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
5.2 & 3.4 & 2.7 & 5.0 & 3.3 & 6.8 & 1.2 \\
2.0 & 9.3 & 9.3 & 1.3 & 10.1 & 6.8 \\
\end{array}
\]
Timed Petri Nets

Model

Configurations

Ordering

Transitions

Monotonicity

Upward Closed Sets

Computing Predecessors

Backward Reachability
Timed Petri Nets

Model

Ordering

Transitions

Monotonicity

Upward Closed Sets

Computing Predecessors

Backward Reachability
Computing Predecessors

P_{time}
Timed Petri Nets

Computing Predecessors

\[\text{Pre}_{\text{time}} \]
Timed Petri Nets

Computing Predecessors

\[\text{\textit{Pre}}_{\text{time}} = \text{\textit{Pre}}_{\text{time}} \]
Timed Petri Nets

Computing Predecessors

Pre\textsubscript{time}

=
Timed Petri Nets

Computing Predecessors

\[\text{Pre}_{\text{time}} = \]
Timed Petri Nets

Computing Predecessors

$\text{Pre}_{\text{time}} = 0$
Timed Petri Nets

Computing Predecessors

$\text{Pre}_{\text{time}} = \omega$

$\begin{array}{c}
1 & & 0 & & 4 \\
& & 4 & & \\
& & 1 & & 0 \\
6 & & 2 & & \omega
\end{array}$

$\begin{array}{c}
1 & & 0 & & 4 \\
& & 4 & & \\
& & 1 & & 0 \\
6 & & 2 & & \omega
\end{array}$
Computing Predecessors

$P_{\text{time}} = \omega$
Time Petri Nets
Computing Predecessors

\[\mathbf{P}_{\text{time}} = \mathbf{0} \]
Timed Petri Nets

Computing Predecessors

$Pre_{time} = \omega$
Timed Petri Nets

Computing Predecessors

\[\omega = 0 \]
Timed Petri Nets

Computing Predecessors

Pre_{time}

$= \omega$

$= \omega$
Timed Petri Nets

Computing Predecessors

Pre_{time}

Diagram showing the computing of predecessors in Timed Petri Nets.
Timed Petri Nets

Computing Predecessors

\(Pre_{time} \)

\[
\begin{array}{cccc}
2 & 6 & 1 & 0 \\
\omega & 4 & 4 & \omega \\
\end{array}
\]
Timed Petri Nets

Computing Predecessors
Timed Petri Nets

Computing Predecessors

\[\text{Pre}_{\text{disc}} \]
Timed Petri Nets

Computing Predecessors

$\text{Pred}_{\text{disc}}$

$\begin{array}{cccc}
1 & 2 & 2 & 0 \\
5 & \omega & 6 & 4
\end{array}$

$\begin{array}{cccc}
1 & 2 & 6 & 1 \\
5 & \omega & 4 & 1
\end{array}$

$t_1[1..3)$

$[0..1)$

$[2..5)$
Timed Petri Nets

Computing Predecessors

Predisc
Timed Petri Nets

Model

Configurations

Ordering

Transitions

Monotonicity

Upward Closed Sets

Computing Predecessors

Backward Reachability
Timed Petri Nets

Model

Configurations

Ordering

Transitions

Monotonicity

Upward Closed Sets

Computing Predecessors

Backward Reachability
Timed Petri Nets

Backward Reachability
Timed Petri Nets
Backward Reachability

time
Timed Petri Nets
Backward Reachability
Timed Petri Nets
Backward Reachability
Timed Petri Nets - Backward Reachability

- Transition time: t_1, t_2

- Places and transitions connected by arcs.
Timed Petri Nets

Backward Reachability
Timed Petri Nets
Backward Reachability
symbolic representation = finite words over finite multisets

Termination: finite words over finite multisets well quasi-ordered