
Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Mechanizing Game-Based Proofs of Security Protocols

Bruno Blanchet

INRIA, École Normale Supérieure, CNRS, Paris
blanchet@di.ens.fr

August 2011

Bruno Blanchet (INRIA) CryptoVerif August 2011 1 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Preliminary information

Exercises available on my home page:

http://www.di.ens.fr/~blanchet

For the last two exercises, installing CryptoVerif on your notebook
would be useful.
Can be downloaded from my home page.

Bruno Blanchet (INRIA) CryptoVerif August 2011 2 / 90

http://www.di.ens.fr/~blanchet

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Outline

1 Introduction: verification of security protocols in the computational
model

2 Using CryptoVerif

3 Proof technique: game transformations, proof strategy
4 Two examples:

Encrypt-then-MAC
FDH

5 Conclusion, future directions

Bruno Blanchet (INRIA) CryptoVerif August 2011 3 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Communications over a secure network

secure network

B (Bob)A (Alice)

Bruno Blanchet (INRIA) CryptoVerif August 2011 4 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Communications over an insecure network

insecure network

B (Bob)A (Alice)

C (attacker)

A talks to B on an insecure network
⇒ need for cryptography in order to make communications secure

for instance, encrypt messages to preserve secrets.

Bruno Blanchet (INRIA) CryptoVerif August 2011 5 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Some cryptographic primitives

Cryptographic primitives

Algorithms that are frequently used to build computer security systems.
These routines include, but are not limited to, encryption and signature
functions.

based on slides by Stéphanie Delaune

Bruno Blanchet (INRIA) CryptoVerif August 2011 6 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Some cryptographic primitives

Cryptographic primitives

Algorithms that are frequently used to build computer security systems.
These routines include, but are not limited to, encryption and signature
functions.

Symmetric encryption

encryption decryption

−→ Examples: Caesar encryption, DES, AES, . . .

based on slides by Stéphanie Delaune

Bruno Blanchet (INRIA) CryptoVerif August 2011 6 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Some cryptographic primitives

Cryptographic primitives

Algorithms that are frequently used to build computer security systems.
These routines include, but are not limited to, encryption and signature
functions.

Asymmetric encryption

encryption decryption

public key private key

−→ Examples: RSA, El Gamal, . . .

based on slides by Stéphanie Delaune

Bruno Blanchet (INRIA) CryptoVerif August 2011 6 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Some cryptographic primitives

Cryptographic primitives

Algorithms that are frequently used to build computer security systems.
These routines include, but are not limited to, encryption and signature
functions.

Signature

signature verification

private key public key

−→ Examples: RSA, . . .

based on slides by Stéphanie Delaune

Bruno Blanchet (INRIA) CryptoVerif August 2011 6 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Examples

Many protocols exist, for various goals:

secure channels: SSH (Secure SHell);
SSL (Secure Socket Layer), renamed TLS (Transport Layer
Security);
IPsec

e-voting

contract signing

certified email

wifi (WEP/WPA/WPA2)

banking

mobile phones

. . .

Bruno Blanchet (INRIA) CryptoVerif August 2011 7 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Why verify security protocols ?

The verification of security protocols has been and is still a very active
research area.

Their design is error prone.

Security errors are not detected by testing:
they appear only in the presence of an adversary.

Errors can have serious consequences.

Bruno Blanchet (INRIA) CryptoVerif August 2011 8 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Models of protocols

Active attacker:

the attacker can intercept all messages sent on the network

he can compute messages

he can send messages on the network

Bruno Blanchet (INRIA) CryptoVerif August 2011 9 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Models of protocols: the formal model

The formal model or “Dolev-Yao model” is due to Needham and
Schroeder [1978] and Dolev and Yao [1983].

The cryptographic primitives are blackboxes.

The messages are terms on these primitives.

The attacker is restricted to compute only using these primitives.
⇒ perfect cryptography assumption

One can add equations between primitives, but in any case, one makes
the hypothesis that the only equalities are those given by these equations.

This model makes automatic proofs relatively easy (AVISPA, ProVerif,
. . .).

Bruno Blanchet (INRIA) CryptoVerif August 2011 10 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Models of protocols: the computational model

The computational model has been developed at the beginning of the
1980’s by Goldwasser, Micali, Rivest, Yao, and others.

The messages are bitstrings.

The cryptographic primitives are functions on bitstrings.

The attacker is any probabilistic (polynomial-time) Turing machine.

This model is much more realistic than the formal model, but until
recently proofs were only manual.

Bruno Blanchet (INRIA) CryptoVerif August 2011 11 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Models of protocols: side channels

The computational model is still just a model, which does not exactly
match reality.

In particular, it ignores side channels:

timing

power consumption

noise

physical attacks against smart cards

which can give additional information.

We will still focus on the computational model.

Bruno Blanchet (INRIA) CryptoVerif August 2011 12 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Obtaining proofs in the computational model

Two approaches for the automatic proof of cryptographic
protocols in a computational model:

Indirect approach:

1) Make a Dolev-Yao proof.
2) Use a theorem that shows the soundness of the Dolev-Yao
approach with respect to the computational model.

Approach pioneered by Abadi&Rogaway [2000]; many works since
then.

Direct approach:

Design automatic tools for proving protocols in the
computational model.

Approach pioneered by Laud [2004].

Bruno Blanchet (INRIA) CryptoVerif August 2011 13 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Direct versus indirect approach

The indirect approach allows more reuse of previous work,
but it has limitations:

Hypotheses have to be added to make sure that the computational
and Dolev-Yao models coincide.

The allowed cryptographic primitives are often limited, and only
ideal, not very practical primitives can be used.

Using the Dolev-Yao model is actually a (big) detour;
The computational definitions of primitives fit the
computational security properties to prove.
They do not fit the Dolev-Yao model.

We decided to focus on the direct approach.

Bruno Blanchet (INRIA) CryptoVerif August 2011 14 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Proofs by sequences of games

Proofs in the computational model are typically proofs by sequences of
games [Shoup, Bellare&Rogaway]:

The first game is the real protocol.

One goes from one game to the next by syntactic transformations or
by applying the definition of security of a cryptographic primitive.
The difference of probability between consecutive games is negligible.

The last game is “ideal”: the security property is obvious from the
form of the game.
(The advantage of the adversary is 0 for this game.)

Game 0

Protocol
to prove

←→
p1

negligible

Game 1 ←→
p2

negligible

. . .
←→
pn

negligible

Game n

Property
obvious

Bruno Blanchet (INRIA) CryptoVerif August 2011 15 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Mechanizing proofs by sequences of games

CryptoVerif

Will be the main topic of this course
A similar tool has been built by Ts̆ahhirov and Laud [2007], using a
different game representation (dependency graph).

CertiCrypt

F7 and typing

Bruno Blanchet (INRIA) CryptoVerif August 2011 16 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Mechanizing proofs by sequences of games

CryptoVerif

CertiCrypt, see http://software.imdea.org/~szanella/

Machine-checked cryptographic proofs in Coq
Interesting case studies, e.g. OAEP
Good for proving primitives: can prove complex mathematical
theorems
Requires a lot of human effort
Improved by EasyCrypt: generates CertiCrypt proofs from proof
sketches (sequence of games and hints)

F7 and typing

Bruno Blanchet (INRIA) CryptoVerif August 2011 16 / 90

http://software.imdea.org/~szanella/

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Mechanizing proofs by sequences of games

CryptoVerif

CertiCrypt

F7 and typing, see Fournet et al

Use a type system to determine whether a game transformation can
be applied.
If yes, apply the game transformation, and repeat.
Allows the verification of implementations of protocols.

Another typing approach is computationally-sound type systems:
if the protocol is well-typed, it is secure in the computational model.

Bruno Blanchet (INRIA) CryptoVerif August 2011 16 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

CryptoVerif, http://www.cryptoverif.ens.fr/

CryptoVerif is an automatic prover that:

generates proofs by sequences of games.

proves secrecy and correspondence properties.

provides a generic method for specifying properties of
cryptographic primitives which handles MACs (message
authentication codes), symmetric encryption,
public-key encryption, signatures, hash functions,
Diffie-Hellman key agreements, . . .

works for N sessions (polynomial in the security parameter), with an
active adversary.

gives a bound on the probability of an attack (exact security).

Bruno Blanchet (INRIA) CryptoVerif August 2011 17 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Input and output of the tool

1 Prepare the input file containing

the specification of the protocol to study (initial game),
the security assumptions on the cryptographic primitives,
the security properties to prove.

2 Run CryptoVerif
3 CryptoVerif outputs

the sequence of games that leads to the proof,
a succinct explanation of the transformations performed between
games,
an upper bound of the probability of success of an attack.

Bruno Blanchet (INRIA) CryptoVerif August 2011 18 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Process calculus for games

Games are formalized in a process calculus:

It is adapted from the pi calculus.

The semantics is purely probabilistic (no non-determinism).

The runtime of processes is bounded:

bounded number of copies of processes,
bounded length of messages on channels.

Extension to arrays.

Bruno Blanchet (INRIA) CryptoVerif August 2011 19 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Process calculus for games: terms

Terms represent computations on messages (bitstrings).

M ::= terms
x , y , z , x [M1, . . . ,Mn] variable
f (M1, . . . ,Mn) function application

Function symbols f correspond to functions computable by deterministic
Turing machines that always terminate.

Bruno Blanchet (INRIA) CryptoVerif August 2011 20 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Process calculus for games: processes

Q ::= input process
0 end
Q | Q ′ parallel composition
!i≤NQ replication N times
newChannel c ;Q restriction for channels
c(x1 : T1, . . . , xm : Tm);P input

P ::= output process
yield end
c〈M1, . . . ,Mm〉;Q output
event e(M1, . . . ,Mm);P event
new x : T ;P random number generation (uniform)
let x : T = M in P assignment
if M then P else P ′ conditional
find j ≤ N suchthat defined(x [j], . . .) ∧M then P else P ′

array lookup
Bruno Blanchet (INRIA) CryptoVerif August 2011 21 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Example: 1. symmetric encryption

We consider a probabilistic, length-revealing encryption scheme.

Definition (Symmetric encryption scheme SE)

(Randomized) key generation function kgen.

(Randomized) encryption function enc(m, k , r ′) takes as input a
message m, a key k , and random coins r ′.

Decryption function dec(c , k) such that

dec(enc(m, kgen(r), r ′), kgen(r)) = i⊥(m)

The decryption returns a bitstring or ⊥:

⊥ when decryption fails,

the cleartext when decryption succeeds.

The injection i⊥ maps a bitstring to the same bitstring in bitstring∪ {⊥}.

Bruno Blanchet (INRIA) CryptoVerif August 2011 22 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Example: 2. MAC

Definition (Message Authentication Code scheme MAC)

(Randomized) key generation function mkgen.

MAC function mac(m, k) takes as input a message m and a key k .

Verification function verify(m, k , t) such that

verify(m, k ,mac(m, k)) = true.

A MAC is essentially a keyed hash function.

A MAC guarantees the integrity and authenticity of the message because
only someone who knows the secret key can build the MAC.

Bruno Blanchet (INRIA) CryptoVerif August 2011 23 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Example: 3. encrypt-then-MAC

We define an authenticated encryption scheme by the encrypt-then-MAC
construction:

enc ′(m, (k ,mk), r ′′) = e,mac(e,mk) where e = enc(m, k , r ′′).

A basic example of protocol using encrypt-then-MAC:

A and B initially share an encryption key k and a MAC key mk .

A sends to B a fresh key k ′ encrypted under authenticated
encryption, implemented as encrypt-then-MAC.

A→ B : e = enc(k ′, k , r ′′),mac(e,mk) k ′ fresh

k ′ should remain secret.

Bruno Blanchet (INRIA) CryptoVerif August 2011 24 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Example: initialization

A→ B : e = enc(k ′, k , r ′′),mac(e,mk) k ′ fresh

Q0 = start();new r : keyseed ; let k : key = kgen(r) in

new r ′ : mkeyseed ; let mk : mkey = mkgen(r ′) in c〈〉; (QA | QB)

Initialization of keys:

1 The process Q0 waits for a message on channel start to start
running.
The adversary triggers this process.

2 Q0 generates encryption and MAC keys, k and mk respectively,
using the key generation algorithms kgen and mkgen.

3 Q0 returns control to the adversary by the output c〈〉.
QA and QB represent the actions of A and B (see next slides).

Bruno Blanchet (INRIA) CryptoVerif August 2011 25 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Example: role of A

A→ B : e = enc(k ′, k , r ′′),mac(e,mk) k ′ fresh

QA = !i≤ncA();new k ′ : key ;new r ′′ : coins;

let e : bitstring = enc(k2b(k ′), k , r ′′) in

cA〈e,mac(e,mk)〉

Role of A:
1 !i≤n represents n copies, indexed by i ∈ [1, n]

The protocol can be run n times (polynomial in the security
parameter).

2 The process is triggered when a message is sent on cA by the
adversary.

3 The process chooses a fresh key k ′ and sends the message on
channel cA.

Bruno Blanchet (INRIA) CryptoVerif August 2011 26 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Example: role of B

A→ B : e = enc(k ′, k , r ′′),mac(e,mk) k ′ fresh

QB = !i
′≤ncB(e

′ : bitstring ,ma : macstring);

if verify(e ′,mk ,ma) then

let i⊥(k2b(k
′′)) = dec(e ′, k) in cB〈〉

Role of B :

1 n copies, as for QA.

2 The process QB waits for the message on channel cB .

3 It verifies the MAC, decrypts, and stores the key in k ′′.

Bruno Blanchet (INRIA) CryptoVerif August 2011 27 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Example: summary of the initial game

A→ B : e = enc(k ′, k , r ′′),mac(e,mk) k ′ fresh

Q0 = start();new r : keyseed ; let k : key = kgen(r) in

new r ′ : mkeyseed ; let mk : mkey = mkgen(r ′) in c〈〉; (QA | QB)

QA = !i≤ncA();new k ′ : key ;new r ′′ : coins;

let e : bitstring = enc(k2b(k ′), k , r ′′) in

cA〈e,mac(e,mk)〉

QB = !i
′≤ncB(e

′ : bitstring ,ma : macstring);

if verify(e ′,mk ,ma) then

let i⊥(k2b(k
′′)) = dec(e ′, k) in cB〈〉

Bruno Blanchet (INRIA) CryptoVerif August 2011 28 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Security assumptions on primitives

The most frequent cryptographic primitives are already specified in a
library. The user can use them without redefining them.

In the example:

The MAC is UF-CMA (unforgeable under chosen message attacks).
An adversary that has access to the MAC and verification oracles has a

negligible probability of forging a MAC (for a message on which the MAC

oracle has not been called).

Bruno Blanchet (INRIA) CryptoVerif August 2011 29 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Security assumptions on primitives

The most frequent cryptographic primitives are already specified in a
library. The user can use them without redefining them.

In the example:

The MAC is UF-CMA (unforgeable under chosen message attacks).
An adversary that has access to the MAC and verification oracles has a

negligible probability of forging a MAC (for a message on which the MAC

oracle has not been called).

The encryption is IND-CPA (indistinguishable under chosen
plaintext attacks).
An adversary has a negligible probability of distinguishing the encryption of

two messages of the same length.

Bruno Blanchet (INRIA) CryptoVerif August 2011 29 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Security assumptions on primitives

The most frequent cryptographic primitives are already specified in a
library. The user can use them without redefining them.

In the example:

The MAC is UF-CMA (unforgeable under chosen message attacks).
An adversary that has access to the MAC and verification oracles has a

negligible probability of forging a MAC (for a message on which the MAC

oracle has not been called).

The encryption is IND-CPA (indistinguishable under chosen
plaintext attacks).
An adversary has a negligible probability of distinguishing the encryption of

two messages of the same length.

All keys have the same length: forall y : key ;Z (k2b(y)) = Zk .

Bruno Blanchet (INRIA) CryptoVerif August 2011 29 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Security properties to prove

In the example:

One-session secrecy of k ′′: each k ′′ is indistinguishable from a
random number.

Secrecy of k ′′: the k ′′ are indistinguishable from independent
random numbers.

Bruno Blanchet (INRIA) CryptoVerif August 2011 30 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Demo

CryptoVerif input file: enc-then-MAC.cv

library of primitives

run CryptoVerif

output

Bruno Blanchet (INRIA) CryptoVerif August 2011 31 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Arrays

Arrays replace lists often used in cryptographic proofs.

They avoid the need for explicit list insertion instructions, which would
be hard to guess for an automatic tool.

A variable defined under a replication is implicitly an array:

QA = !i≤ncA();new k ′[i] : key ;new r ′′[i] : coins;

let e[i] : bitstring = enc(k2b(k ′[i]), k , r ′′[i]) in

cA〈e[i],mac(e[i],mk)〉

Requirements:

Only variables with the current indices can be assigned.

Variables may be defined at several places, but only one
definition can be executed for the same indices.
(if . . . then let x = M in P else let x = M ′ in P ′ is ok)

So each array cell can be assigned at most once.
Bruno Blanchet (INRIA) CryptoVerif August 2011 32 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Arrays (continued)

find performs an array lookup:

!i≤N . . . let x = M in P

| !i
′≤N′

c(y : T)find j ≤ N suchthat defined(x [j]) ∧ y = x [j] then . . .

Note that find is here used outside the scope of x .

This is the only way of getting access to values of variables in other
sessions.

When several array elements satisfy the condition of the find,
the returned index is chosen randomly, with uniform probability.

Bruno Blanchet (INRIA) CryptoVerif August 2011 33 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Indistinguishability as observational equivalence

Two processes (games) Q1, Q2 are observationally equivalent when the
adversary has a negligible probability of distinguishing them: Q1 ≈ Q2.

The adversary is represented by an acceptable evaluation context
C ::= [] C | Q Q | C newChannel c ;C .

C [Q] may execute events, collected in a sequence E .
A distinguisher D takes as input E and returns true or false.

Example: D(E) = true if and only if e ∈ E .

Pr[C [Q] D] is the probability that C [Q] executes E such that
D(E) = true.

Definition (Indistinguishability)

We write Q ≈V
p Q ′ when, for all evaluation contexts C acceptable for Q

and Q ′ with public variables V and all distinguishers D,

|Pr[C [Q] D]− Pr[C [Q ′] D]| ≤ p(C ,D).

Bruno Blanchet (INRIA) CryptoVerif August 2011 34 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Indistinguishability as observational equivalence

Lemma

1 Reflexivity: Q ≈V
0 Q.

2 Symmetry: ≈V
p is symmetric.

3 Transitivity: if Q ≈V
p Q ′ and Q ′ ≈V

p′ Q
′′, then Q ≈V

p+p′ Q
′′.

4 Application of context: if Q ≈V
p Q ′ and C is an evaluation context

acceptable for Q and Q ′ with public variables V , then

C [Q] ≈V ′

p′ C [Q ′], where p′(C ′,D) = p(C ′[C []],D) and
V ′ ⊆ V ∪ var(C).

Bruno Blanchet (INRIA) CryptoVerif August 2011 35 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Proof technique

We transform a game G0 into an observationally equivalent one using:

observational equivalences L ≈p R given as axioms and that come
from security assumptions on primitives. These equivalences are
used inside a context:

G1 ≈0 C [L] ≈p′ C [R] ≈0 G2

syntactic transformations: simplification, expansion of assignments,
. . .

We obtain a sequence of games G0 ≈p1 G1 ≈ . . . ≈pm Gm, which implies
G0 ≈p1+···+pm Gm.

If some trace property holds up to probability p in Gm, then it holds up
to probability p + p1 + · · ·+ pm in G0.

Bruno Blanchet (INRIA) CryptoVerif August 2011 36 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

MAC: definition of security (UF-CMA)

A MAC guarantees the integrity and authenticity of the message because
only someone who knows the secret key can build the MAC.
More formally, Succuf−cma

MAC (t, qm, qv , l) is negligible if t is polynomial in
the security parameter:

Definition (UnForgeability under Chosen Message Attacks, UF-CMA)

Succuf−cma
MAC (t, qm, qv , l) =

max
A

Pr

[

k
R
←mkgen; (m, t)← Amac(.,k),verify(.,k,.) : verify(m, k , t) ∧

m was never queried to the oracle mac(., k)

]

where A runs in time at most t,
calls mac(., k) at most qm times with messages of length at most l ,
calls verify(., k , .) at most qv times with messages of length at most l .

Bruno Blanchet (INRIA) CryptoVerif August 2011 37 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

MAC: intuition behind the CryptoVerif definition

By the previous definition, up to negligible probability,

the adversary cannot forge a correct MAC

so, assuming k
R
←mkgen is used only for generating and verifying

MACs, the verification of a MAC with verify(m, k , t) can succeed
only if m is in the list (array) of messages whose mac(·, k) has been
computed by the protocol

so we can replace a call to verify with an array lookup:
if the call to mac is mac(x , k), we replace verify(m, k , t) with

find j ≤ N suchthat defined(x [j]) ∧

(m = x [j]) ∧ verify(m, k , t) then true else false

Bruno Blanchet (INRIA) CryptoVerif August 2011 38 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

MAC: CryptoVerif definition

verify(m,mkgen(r),mac(m,mkgen(r))) = true

!N
′′

new r : mkeyseed ; (

!NOmac(x : bitstring) := mac(x ,mkgen(r)),

!N
′

Overify(m : bitstring , t : macstring) := verify(m,mkgen(r), t))

≈

!N
′′

new r : mkeyseed ; (

!NOmac(x : bitstring) := mac(x ,mkgen(r)),

!N
′

Overify(m : bitstring , t : macstring) :=

find j ≤ N suchthat defined(x [j]) ∧ (m = x [j]) ∧

verify(m,mkgen(r), t) then true else false)

Bruno Blanchet (INRIA) CryptoVerif August 2011 39 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

MAC: CryptoVerif definition

verify(m,mkgen(r),mac(m,mkgen(r))) = true

!N
′′

new r : mkeyseed ; (

!NOmac(x : bitstring) := mac(x ,mkgen(r)),

!N
′

Overify(m : bitstring , t : macstring) := verify(m,mkgen(r), t))

≈
N′′×Succuf−cma

MAC (time+(N′′−1)(time(mkgen)+N time(mac,maxl(x))+

N′ time(verify ,maxl(m)),N,N′,max(maxl(x),maxl(m)))

!N
′′

new r : mkeyseed ; (

!NOmac(x : bitstring) := mac ′(x ,mkgen′(r)),

!N
′

Overify(m : bitstring , t : macstring) :=

find j ≤ N suchthat defined(x [j]) ∧ (m = x [j]) ∧

verify ′(m,mkgen′(r), t) then true else false)

CryptoVerif understands such specifications of primitives.
They can be reused in the proof of many protocols.Bruno Blanchet (INRIA) CryptoVerif August 2011 39 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Exercise 1

The advantage of the adversary against strong unforgeability under
chosen message attacks (SUF-CMA) of MACs is:

Succsuf−cma
MAC (t, qm, qv , l) =

max
A

Pr

[

k
R
←mkgen; (m, t)← Amac(.,k),verify(.,k,.) : verify(m, k , t) ∧

t is not the result of calling the oracle mac(., k) on m

]

where A runs in time at most t,
calls mac(., k) at most qm times with messages of length at most l ,
calls verify(., k , .) at most qv times with messages of length at most l .

Represent SUF-CMA MACs in the CryptoVerif formalism.

Bruno Blanchet (INRIA) CryptoVerif August 2011 40 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Exercise 2

A signature scheme S consists of

a key generation algorithm (pk , sk)
R
← kgen

a signature algorithm sign(m, sk)

a verification algorithm verify(m, pk , s)

such that verify(m, pk , sign(m, sk)) = 1.
The advantage of the adversary against unforgeability under chosen
message attacks (UF-CMA) of signatures is:

Succuf−cma
S (t, qs , l) =

max
A

Pr

[

(pk , sk)
R
← kgen; (m, s)← Asign(.,sk)(pk) : verify(m, pk , s) ∧

m was never queried to the oracle sign(., sk)

]

where A runs in time at most t,
calls sign(., sk) at most qs times with messages of length at most l .
Represent UF-CMA signatures in the CryptoVerif formalism.

Bruno Blanchet (INRIA) CryptoVerif August 2011 41 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

MAC: using the CryptoVerif definition

CryptoVerif applies the previous rule automatically in any context,
perhaps containing several occurrences of mac and of verify :

Each occurrence of mac is replaced with mac ′.

Each occurrence of verify is replaced with a find that looks in all
arrays of computed MACs (one array for each occurrence of function
mac).

Bruno Blanchet (INRIA) CryptoVerif August 2011 42 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Symmetric encryption: definition of security (IND-CPA)

An adversary has a negligible probability of distinguishing the encryption
of two messages of the same length.

Definition (INDistinguishability under Chosen Plaintext Attacks,
IND-CPA)

Succind−cpa
SE (t, qe , l) =

max
A

2Pr
[

b
R
←{0, 1}; k

R
← kgen; b′ ← Aenc(LR(.,.,b),k) : b′ = b

]

− 1

where A runs in time at most t,
calls enc(LR(., ., b), k) at most qe times on messages of length at most l ,
LR(x , y , 0) = x , LR(x , y , 1) = y , and LR(x , y , b) is defined only when x

and y have the same length.

Bruno Blanchet (INRIA) CryptoVerif August 2011 43 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Symmetric encryption: CryptoVerif definition

dec(enc(m, kgen(r), r ′), kgen(r)) = i⊥(m)

!N
′

new r : keyseed ; !NOenc(x : bitstring) :=

new r ′ : coins; enc(x , kgen(r), r ′)

≈
N′×Succind−cpa

SE (time+(N′−1)(time(kgen)+N time(enc,maxl(x))+N time(Z ,maxl(x))),
N,maxl(x))

!N
′

new r : keyseed ; !NOenc(x : bitstring) :=

new r ′ : coins; enc ′(Z (x), kgen′(r), r ′)

Z (x) is the bitstring of the same length as x containing only zeroes (for
all x : nonce, Z (x) = Znonce, . . .).

Bruno Blanchet (INRIA) CryptoVerif August 2011 44 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Exercise 3

The advantage of the adversary against ciphertext integrity (INT-CTXT)
of a symmetric encryption scheme SE is:

Succint−ctxt
SE (t, qe , qd , le , ld) =

max
A

Pr

[

k
R
← kgen; c ← Aenc(.,k),dec(.,k) 6=⊥ : dec(c , k) 6= ⊥ ∧

c is not the result of a call to the enc(., k) oracle

]

where A runs in time at most t,
calls enc(., k) at most qe times with messages of length at most le ,
calls dec(., k) 6= ⊥ at most qd times with messages of length at most ld .

Represent INT-CTXT encryption in the CryptoVerif formalism.

Bruno Blanchet (INRIA) CryptoVerif August 2011 45 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Exercise 4

A public-key encryption scheme AE consists of

a key generation algorithm (pk , sk)
R
← kgen

a probabilistic encryption algorithm enc(m, pk)

a decryption algorithm dec(m, sk)

such that dec(enc(m, pk), sk) = m.
The advantage of the adversary against indistinguishability under
adaptive chosen-ciphertext attacks (IND-CCA2) is

Succind−cca2
AE (t, qd) =

max
A

2Pr











b
R
←{0, 1}; (pk , sk)

R
← kgen;

(m0,m1, s)← A
dec(.,sk)
1 (pk); y ← enc(mb, pk);

b′ ← A
dec(.,sk)
2 (m0,m1, s, y) : b

′ = b ∧
A2 has not called dec(., sk) on y











− 1

where A = (A1,A2) runs in time at most t and calls dec(., sk) at most
qd times. Represent IND-CCA2 encryption in the CryptoVerif formalism.

Bruno Blanchet (INRIA) CryptoVerif August 2011 46 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Syntactic transformations (1)

Expansion of assignments: replacing a variable with its value.
(Not completely trivial because of array references.)

Example

If mk is defined by
let mk = mkgen(r ′)

and there are no array references to mk , then mk is replaced with
mkgen(r ′) in the game and the definition of mk is removed.

Bruno Blanchet (INRIA) CryptoVerif August 2011 47 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Syntactic transformations (2)

Single assignment renaming: when a variable is assigned at several
places, rename it with a distinct name for each assignment.
(Not completely trivial because of array references.)

Example

start();new rA : Tr ; let kA = kgen(rA) in

new rB : Tr ; let kB = kgen(rB) in c〈〉; (QK | QS)

QK = !i≤nc(h : Th, k : Tk)

if h = A then let k ′ = kA else

if h = B then let k ′ = kB else let k ′ = k

QS = !i
′≤n′c ′(h′ : Th);

find j ≤ n suchthat defined(h[j], k ′[j]) ∧ h′ = h[j] thenP1(k
′[j])

elseP2

Bruno Blanchet (INRIA) CryptoVerif August 2011 48 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Syntactic transformations (2)

Single assignment renaming: when a variable is assigned at several
places, rename it with a distinct name for each assignment.
(Not completely trivial because of array references.)

Example

start();new rA : Tr ; let kA = kgen(rA) in

new rB : Tr ; let kB = kgen(rB) in c〈〉; (QK | QS)

QK = !i≤nc(h : Th, k : Tk)

if h = A then let k ′1 = kA else

if h = B then let k ′2 = kB else let k ′3 = k

QS = !i
′≤n′c ′(h′ : Th);

find j ≤ n suchthat defined(h[j], k ′1[j]) ∧ h′ = h[j] thenP1(k
′
1[j])

orfind j ≤ n suchthat defined(h[j], k ′2[j]) ∧ h′ = h[j] thenP1(k
′
2[j])

orfind j ≤ n suchthat defined(h[j], k ′3[j]) ∧ h′ = h[j] thenP1(k
′
3[j])

elseP2
Bruno Blanchet (INRIA) CryptoVerif August 2011 48 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Syntactic transformations (3)

Move new: move restrictions downwards in the game as much as
possible, when there is no array reference to them.
(Moving new x : T under a if or a find duplicates it.
A subsequent single assignment renaming will distinguish cases.)

Example

new x : nonce; if c then P1 else P2

becomes

if c then new x : nonce;P1 else new x : nonce;P2

Bruno Blanchet (INRIA) CryptoVerif August 2011 49 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Syntactic transformations (4)

Merge arrays: merge several variables x1, . . . , xn into a single
variable x1 when they are used for different indices (defined in
different branches of a test if or find).

Merge branches of if or find when they execute the same code, up
to renaming of variables with array accesses.

Bruno Blanchet (INRIA) CryptoVerif August 2011 50 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Syntactic transformations (5): manual transformations

Insert an instruction: insert a test to distinguish cases; insert a variable
definition; ...
Preserves the semantics of the game (e.g., the rest of the code is copied
in both branches of the inserted test).

Example

P becomes
if cond then P else P

Subsequent transformations can transform P differently, depending on
whether cond holds.

Bruno Blanchet (INRIA) CryptoVerif August 2011 51 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Syntactic transformations (6): manual transformations

Insert an event: to apply Shoup’s lemma.

A subprocess P becomes event e.
The probability of distinguishing the two games is the probability of
executing event e. It will be bound by a proof by sequences of games.

Replace a term with an equal term. CryptoVerif verifies that the
terms are really equal.

Bruno Blanchet (INRIA) CryptoVerif August 2011 52 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Simplification and elimination of collisions

CryptoVerif collects equalities that come from:

Assignments: let x = M in P implies that x = M in P

Tests: if M = N then P implies that M = N in P

Definitions of cryptographic primitives
When a find guarantees that x [j] is defined, equalities that hold at
definition of x also hold under the find (after substituting j for the
array indices at the definition of x)
Elimination of collisions: if x is created by new x : T , x [i] = x [j]
implies i = j , up to negligible probability (when T is large)

These equalities are combined to simplify terms.

When terms can be simplified, processes are simplified accordingly.
For instance:

If M simplifies to true, then if M then P1 else P2 simplifies P1.
If a condition of find simplifies to false, then the corresponding
branch is removed.

Bruno Blanchet (INRIA) CryptoVerif August 2011 53 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Proof of security properties: one-session secrecy

One-session secrecy: the adversary cannot distinguish any of the secrets
from a random number with one test query.

Definition (One-session secrecy)

Assume that the variable x of type T is defined in G under a single !i≤n.

G preserves the one-session secrecy of x up to probability p when, for all
evaluation contexts C acceptable for G | Qx with no public variables that
do not contain S, 2 Pr[C [G | Qx] DS]− 1 ≤ p(C) where

Qx = c0();new b : bool ; c0〈〉;

(c(j : [1, n]); if defined(x [j]) then

if b then c〈x [j]〉 else new y : T ; c〈y〉

| c ′(b′ : bool); if b = b′ then event S)

DS(E) = (S ∈ E), c0, c , c
′, b, b′, j , y , and S do not occur in G .

Bruno Blanchet (INRIA) CryptoVerif August 2011 54 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Proof of security properties: one-session secrecy

One-session secrecy: the adversary cannot distinguish any of the secrets
from a random number with one test query.

Criterion for proving one-session secrecy of x :
x is defined by new x [i] : T and there is a set of variables S such that
only variables in S depend on x .
The output messages and the control-flow do not depend on x .

Bruno Blanchet (INRIA) CryptoVerif August 2011 54 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Proof of security properties: secrecy

Secrecy: the adversary cannot distinguish the secrets from
independent random numbers with several test queries.

Criterion for proving secrecy of x : same as one-session secrecy, plus x [i]
and x [i ′] do not come from the same copy of the same restriction when
i 6= i ′.

Bruno Blanchet (INRIA) CryptoVerif August 2011 55 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Proof strategy: advice

One tries to execute each transformation given by the
definition of a cryptographic primitive.

When it fails, it tries to analyze why the transformation failed, and
suggests syntactic transformations that could make it work.

One tries to execute these syntactic transformations.
(If they fail, they may also suggest other syntactic
transformations, which are then executed.)

We retry the cryptographic transformation, and so on.

Bruno Blanchet (INRIA) CryptoVerif August 2011 56 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Proof of the example: initial game

Q0 = start();new r : keyseed ; let k : key = kgen(r) in

new r ′ : mkeyseed ; let mk : mkey = mkgen(r ′) in c〈〉; (QA | QB)

QA =!i≤ncA();new k ′ : key ;new r ′′ : coins;

let m : bitstring = enc(k2b(k ′), k , r ′′) in

cA〈m,mac(m,mk)〉

QB =!i
′≤ncB(m

′ : bitstring ,ma : macstring);

if verify(m′,mk ,ma) then

let i⊥(k2b(k
′′)) = dec(m′, k) in cB〈〉

Bruno Blanchet (INRIA) CryptoVerif August 2011 57 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Proof of the example: remove assignments mk

Q0 = start();new r : keyseed ; let k : key = kgen(r) in

new r ′ : mkeyseed ; c〈〉; (QA | QB)

QA =!i≤ncA();new k ′ : key ;new r ′′ : coins;

let m : bitstring = enc(k2b(k ′), k , r ′′) in

cA〈m,mac(m,mkgen(r ′))〉

QB =!i
′≤ncB(m

′ : bitstring ,ma : macstring);

if verify(m′,mkgen(r ′),ma) then

let i⊥(k2b(k
′′)) = dec(m′, k) in cB〈〉

Bruno Blanchet (INRIA) CryptoVerif August 2011 58 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Proof of the example: security of the MAC

Q0 = start();new r : keyseed ; let k : key = kgen(r) in

new r ′ : mkeyseed ; c〈〉; (QA | QB)

QA =!i≤ncA();new k ′ : key ;new r ′′ : coins;

let m : bitstring = enc(k2b(k ′), k , r ′′) in

cA〈m,mac ′(m,mkgen′(r ′))〉

QB =!i
′≤ncB(m

′ : bitstring ,ma : macstring);

find j ≤ n suchthat defined(m[j]) ∧m′ = m[j] ∧

verify ′(m′,mkgen′(r ′),ma) then

let i⊥(k2b(k
′′)) = dec(m′, k) in cB〈〉

Probability: Succuf−cma
MAC (time+ time(kgen) + n time(enc , length(key)) +

n time(dec ,maxl(m′)), n, n,max(maxl(m′),maxl(m))).
Bruno Blanchet (INRIA) CryptoVerif August 2011 59 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Proof of the example: simplify

Q0 = start();new r : keyseed ; let k : key = kgen(r) in

new r ′ : mkeyseed ; c〈〉; (QA | QB)

QA =!i≤ncA();new k ′ : key ;new r ′′ : coins;

let m : bitstring = enc(k2b(k ′), k , r ′′) in

cA〈m,mac ′(m,mkgen′(r ′))〉

QB =!i
′≤ncB(m

′ : bitstring ,ma : macstring);

find j ≤ n suchthat defined(m[j]) ∧m′ = m[j] ∧

verify ′(m′,mkgen′(r ′),ma) then

let k ′′ = k ′[j] in cB〈〉

dec(m′, k) = dec(enc(k2b(k ′[j]), k , r ′′[j]), k) = i⊥(k2b(k
′[j]))

Bruno Blanchet (INRIA) CryptoVerif August 2011 60 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Proof of the example: remove assignments k

Q0 = start();new r : keyseed ;new r ′ : mkeyseed ; c〈〉; (QA | QB)

QA =!i≤ncA();new k ′ : key ;new r ′′ : coins;

let m : bitstring = enc(k2b(k ′), kgen(r), r ′′) in

cA〈m,mac ′(m,mkgen′(r ′))〉

QB =!i
′≤ncB(m

′ : bitstring ,ma : macstring);

find j ≤ n suchthat defined(m[j]) ∧m′ = m[j] ∧

verify ′(m′,mkgen′(r ′),ma) then

let k ′′ = k ′[j] in cB〈〉

Bruno Blanchet (INRIA) CryptoVerif August 2011 61 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Proof of the example: security of the encryption

Q0 = start();new r : keyseed ;new r ′ : mkeyseed ; c〈〉; (QA | QB)

QA =!i≤ncA();new k ′ : key ;new r ′′ : coins;

let m : bitstring = enc ′(Z (k2b(k ′)), kgen′(r), r ′′) in

cA〈m,mac ′(m,mkgen′(r ′))〉

QB =!i
′≤ncB(m

′ : bitstring ,ma : macstring);

find j ≤ n suchthat defined(m[j]) ∧m′ = m[j] ∧

verify ′(m′,mkgen′(r ′),ma) then

let k ′′ = k ′[j] in cB〈〉

Probability: Succind−cpa
SE (time+ (n + n2)time(mkgen) +

n time(mac ,maxl(m)) + n2 time(verify ,maxl(m′)) +
n2 time(= bitstring ,maxl(m′),maxl(m)), n, length(key))

Bruno Blanchet (INRIA) CryptoVerif August 2011 62 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Proof of the example: security of the encryption

Q0 = start();new r : keyseed ;new r ′ : mkeyseed ; c〈〉; (QA | QB)

QA =!i≤ncA();new k ′ : key ;new r ′′ : coins;

let m : bitstring = enc ′(Z (k2b(k ′)), kgen′(r), r ′′) in

cA〈m,mac ′(m,mkgen′(r ′))〉

QB =!i
′≤ncB(m

′ : bitstring ,ma : macstring);

find j ≤ n suchthat defined(m[j]) ∧m′ = m[j] ∧

verify ′(m′,mkgen′(r ′),ma) then

let k ′′ = k ′[j] in cB〈〉

Better probability: Succind−cpa
SE (time+ (n + n2)time(mkgen) +

n time(mac ,maxl(m)) + n2 time(verify ,maxl(m′)) +
n2 time(= bitstring ,maxl(m′),maxl(m)), n, length(key))

Bruno Blanchet (INRIA) CryptoVerif August 2011 62 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Proof of the example: simplify

Q0 = start();new r : keyseed ;new r ′ : mkeyseed ; c〈〉; (QA | QB)

QA =!i≤ncA();new k ′ : key ;new r ′′ : coins;

let m : bitstring = enc ′(Zk , kgen
′(r), r ′′) in

cA〈m,mac ′(m,mkgen′(r ′))〉

QB =!i
′≤ncB(m

′ : bitstring ,ma : macstring);

find j ≤ n suchthat defined(m[j]) ∧m′ = m[j] ∧

verify ′(m′,mkgen′(r ′),ma) then

let k ′′ = k ′[j] in cB〈〉

Z (k2b(k ′)) = Zk

Bruno Blanchet (INRIA) CryptoVerif August 2011 63 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Proof of the example: secrecy

Q0 = start();new r : keyseed ;new r ′ : mkeyseed ; c〈〉; (QA | QB)

QA =!i≤ncA();new k ′ : key ;new r ′′ : coins;

let m : bitstring = enc ′(Zk , kgen
′(r), r ′′) in

cA〈m,mac ′(m,mkgen′(r ′))〉

QB =!i
′≤ncB(m

′ : bitstring ,ma : macstring);

find j ≤ n suchthat defined(m[j]) ∧m′ = m[j] ∧

verify ′(m′,mkgen′(r ′),ma) then

let k ′′ = k ′[j] in cB〈〉

Preserves the one-session secrecy of k ′′ but not its secrecy.

Bruno Blanchet (INRIA) CryptoVerif August 2011 64 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Final result

Adding the probabilities, we obtain:

Result

The probability that an adversary that runs in time at most t, that
executes n sessions of A and B and sends messages of length at most
lmB to B breaks the one-session secrecy of k ′′ is

2Succuf−cma
MAC (t ′1, n, n,max(lmB , lc)) + 2Succind−cpa

SE (t ′2, n, lk)

where t ′1 = t + time(kgen) + n time(enc , lk) + n time(dec , lmB)
t ′2 = t + (n + n2)time(mkgen) + n time(mac , lc) +

n2 time(verify , lmB) + n2 time(= bitstring , lmB , lc)
lk is the length of keys, lc the length of encryptions of keys.

The factor 2 comes from the definition of secrecy.

Bruno Blanchet (INRIA) CryptoVerif August 2011 65 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Exercise 5: preliminary definition

Definition (IND-CCA2 symmetric encryption)

A symmetric encryption scheme SE is indistinguishable under adaptive
chosen-ciphertext attacks (IND-CCA2) if and only if
Succind−cca2

SE (t, qe , qd , le , ld) is negligible when t is polynomial in the
security parameter:

Succind−cca2
SE (t, qe , qd , le , ld) =

max
A

2Pr











b
R
←{0, 1}; k

R
← kgen;

b′ ← Aenc(LR(.,.,b),k),dec(.,k) : b′ = b ∧
A has not called dec(., k) on the result of
enc(LR(., ., b), k)











− 1

where A runs in time at most t,
calls enc(LR(., ., b), k) at most qe times on messages of length at most le ,
calls dec(., k) at most qd times on messages of length at most ld .

Bruno Blanchet (INRIA) CryptoVerif August 2011 66 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Exercise 5

1 Show using CryptoVerif that, if the MAC scheme is SUF-CMA and
the encryption scheme is IND-CPA, then the encrypt-then-MAC
scheme is IND-CCA2.

2 Show using the same assumptions that the encrypt-then-MAC
scheme is INT-CTXT.

3 What happens if the MAC scheme is only UF-CMA?

Bruno Blanchet (INRIA) CryptoVerif August 2011 67 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Example of the FDH signature (joint work with D.
Pointcheval)

hash hash function (in the random oracle model)
f(pk ,m) one-way trapdoor permutation, with inverse invf(sk ,m).

We define a signature scheme as follows:

signature sign(m, sk) = invf(sk , hash(hk ,m))

verification verify(m, pk , s) = (f(pk , s) = hash(hk ,m))

Our goal is to show that this signature scheme is UF-CMA
(secure against existential forgery under chosen message attacks).

Bruno Blanchet (INRIA) CryptoVerif August 2011 68 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Formalizing the security of a signature scheme (1)

Key generation:

start();new r : keyseed ; let pk = pkgen(r) in let sk = skgen(r) in c0〈pk〉

Chooses a random seed uniformly in the set of bit-strings keyseed
(consisting of all bit-strings of a certain length), generates
a public key pk , a secret key sk , and outputs the public key.

Bruno Blanchet (INRIA) CryptoVerif August 2011 69 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Formalizing the security of a signature scheme (2)

Signature:
c1(m : bitstring); c2〈sign(sk ,m)〉

Bruno Blanchet (INRIA) CryptoVerif August 2011 70 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Formalizing the security of a signature scheme (2)

Signature:
c1(m : bitstring); c2〈sign(sk ,m)〉

This process can be called at most qS times:

!iS≤qS c1(m : bitstring); c2〈sign(sk ,m)〉

Bruno Blanchet (INRIA) CryptoVerif August 2011 70 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Formalizing the security of a signature scheme (2)

Signature:
c1(m : bitstring); c2〈sign(sk ,m)〉

This process can be called at most qS times:

!iS≤qS c1(m : bitstring); c2〈sign(sk ,m)〉

In fact, this is an abbreviation for:

!iS≤qS c1(m[iS] : bitstring); c2〈sign(sk ,m[iS])〉

The variables in repeated oracles are arrays, with one cell for each call, to
remember the values used in each oracle call.
These arrays are indexed with the call number iS .

Bruno Blanchet (INRIA) CryptoVerif August 2011 70 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Formalizing the security of a signature scheme (3)

Test:

c3(m′ : bitstring , s : D); if verify(m′, pk , s) then

find j ≤ qS suchthat defined(m[j]) ∧ (m′ = m[j])

then yield else event bad)

If s is a signature for m′ and the signed message m′ is not contained in
the array m of messages passed to signing oracle, then the signature is a
forgery, so we execute event bad.

Bruno Blanchet (INRIA) CryptoVerif August 2011 71 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Formalizing the security of a signature scheme (summary)

The signature and test oracles make sense only after the key generation
oracle has been called, hence a sequential composition.

The signature and test oracles are simultaneously available, hence a
parallel composition.

start();new r : keyseed ; let pk = pkgen(r) in let sk = skgen(r) in c0〈pk〉;

((* signature oracle *)

!iS≤qS c1(m : bitstring); c2〈sign(sk ,m)〉

| (* forged signature? *)

c3(m′ : bitstring , s : D); if verify(m′, pk , s) then

find j ≤ qS suchthat defined(m[j]) ∧ (m′ = m[j])

then yield else event bad)

The probability of executing event bad in this game is the probability of
forging a signature.

Bruno Blanchet (INRIA) CryptoVerif August 2011 72 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Application to the FDH signature scheme

We add a hash oracle because the adversary must be able to call the
random oracle (even though it cannot be implemented).

start(); new hk : hashkey ;new r : keyseed ;

let sk = skgen(r) in let pk = pkgen(r) in c0〈pk〉;

((* hash oracle *) !iH≤qHhc1(x : bitstring); hc2〈hash(hk , x)〉

| (* signature oracle *) !iS≤qS c1(m : bitstring); c2〈invf(sk , hash(hk ,m))〉

| (* forged signature? *)

c3(m′ : bitstring , s : D); if f(pk , s) = hash(hk ,m′) then

find j ≤ qS suchthat defined(m[j]) ∧ (m′ = m[j])

then yield else event bad)

Our goal is to bound the probability that event bad is executed in this
game.
This game is given as input to the prover in the syntax above.

Bruno Blanchet (INRIA) CryptoVerif August 2011 73 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

FDH: security of a hash function

A hash function is equivalent to a “random function”: a function that

returns a new random number when it is a called on a new
argument,

and returns the same result when it is called on the same argument.

!Nh new k : hashkey ; !NOhash(x : bitstring) := hash(k , x)
≈0

!Nh new k : hashkey ; !NOhash(x : bitstring) :=
find j ≤ N suchthat defined(x [j], r [j]) && (x = x [j])
then r [j]
else new r : D; r

Bruno Blanchet (INRIA) CryptoVerif August 2011 74 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

FDH: security of a hash function (optimized)

For a test r ′ = h(x ′), we can avoid computing h(x ′) explicitly:

if x ′ has been passed to the hash function previously, compare r ′

with the previous result;

otherwise, return false.

In the latter case, test indeed false, except when the fresh random
number h(x ′) collides with r ′ (probability 1/|D|).

!Nh new k : hashkey ;
(!NOhash(x : bitstring) := hash(k , x),
!NeqOeq(x ′ : bitstring ; r ′ : D) := r ′ = hash(k , x ′))

≈#Oeq/|D|

!Nh(!NOhash(x : bitstring) := find j ≤ N suchthat

defined(x [j], r [j]) && (x = x [j]) then r [j] else new r : D; r ,
!NeqOeq(x ′ : bitstring ; r ′ : D) := find j ≤ N suchthat

defined(x [j], r [j]) && (x ′ = x [j]) then r ′ = r [j] else false)

Bruno Blanchet (INRIA) CryptoVerif August 2011 75 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

FDH: one-wayness

The adversary inverts f when, given the public key pk = pkgen(r) and
the image of some x by f(pk , ·), it manages to find x (without having the
trapdoor).

The function f is one-way when the adversary has negligible probability of
inverting f.

Definition (One-wayness)

SuccowP (t) = max
A

Pr

[

r
R
← keyseed , pk ← pkgen(r), x

R
←D,

y ← f(pk , x), x ′ ← A(pk , y) : x = x ′

]

where A runs in time at most t.

Bruno Blanchet (INRIA) CryptoVerif August 2011 76 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

FDH: one-wayness

!Nk new r : keyseed ; (
Opk() := pkgen(r),
!Nf new x : D; (
Oy() := f(pkgen(r), x),
!N2Oeq(x ′ : D) := (x ′ = x),
Ox() := x))

≈Nk×Nf×Succow
P
(time+(Nk−1)×time(pkgen)+(#Oy−1)×time(f))

!Nk new r : keyseed ; (
Opk() := pkgen′(r),
!Nf new x : D; (
Oy() := f ′(pkgen′(r), x),
!N2Oeq(x ′ : D) := if defined(k) then x ′ = x else false,
Ox() := let k : bitstring = mark in x))

Bruno Blanchet (INRIA) CryptoVerif August 2011 77 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

FDH: other properties of one-way trapdoor permutations

invf is the inverse of f:

∀r : keyseed , x : D; invf(skgen(r), f(pkgen(r), x)) = x

f is injective:

∀k : key , x : D, x ′ : D; (f(k , x) = f(k , x ′)) = (x = x ′)

We can replace a uniformly distributed random number y with
f(pkgen(r), y ′) where y ′ is a uniformly distributed random number:

!Nk new r : keyseed ; (
Opk() := pkgen(r),
!Nf new y : D; (Oant() := invf(skgen(r), y),Oim() := y))
≈0

!Nk new r : keyseed ; (
Opk() := pkgen(r),
!Nf new x : D; (Oant() := x ,Oim() := f(pkgen(r), y)))

Bruno Blanchet (INRIA) CryptoVerif August 2011 78 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Demo

CryptoVerif input file: examples/fdh

library of primitives

run CryptoVerif

output

Bruno Blanchet (INRIA) CryptoVerif August 2011 79 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

FDH: initial game

start(); new hk : hashkey ;new r : keyseed ;
let sk : key = skgen(r) in
let pk : key = pkgen(r) in c0〈pk〉;
((* hash oracle *)

!iH≤qHhc1[iH](x : bitstring); hc2[iH]〈hash(hk , x)〉
| (* signature oracle *)

!iS≤qS c1[iS](m : bitstring); c2[iS]〈invf(sk , hash(hk ,m))〉
| (* forged signature? *)
c3(m′ : bitstring , s : D);
if f(pk , s) = hash(hk ,m′) then
find j ≤ qS suchthat defined(m[j]) && (m′ = m[j]) then
yield

else

event bad
)

Bruno Blanchet (INRIA) CryptoVerif August 2011 80 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

FDH step 1: apply the security of the hash function

Replace each occurrence of hash(M) with a lookup in the
arguments of previous calls to hash.

If M is found, return the same result as the previous result.

Otherwise, pick a new random number and return it.

For instance, hc2[iH]〈hash(hk , x)〉 is replaced with
find @i1 ≤ qS suchthat defined(m[@i1], r 32[@i1])

&& (x = m[@i1]) then hc2[iH]〈r 32[@i1]〉
orfind @i2 ≤ qH suchthat defined(x [@i2], r 34[@i2])

&& (x = x [@i2]) then hc2[iH]〈r 34[@i2]〉
else

new r 34 : D; hc2[iH]〈r 34〉

The test f(pk , s) = hash(hk ,m′) uses Oeq. Probability difference 1/|D|.

Bruno Blanchet (INRIA) CryptoVerif August 2011 81 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

FDH step 2: simplify

(* forged signature? *)
c3(m′ : bitstring , s : D);
find @i5 ≤ qS suchthat defined(m[@i5], r 32[@i5]) && (m′ = m[@i5]) then
if (f(pk , s) = r 32[@i5]) then
find j ≤ qS suchthat defined(m[j]) && (m′ = m[j]) then yield else event bad

orfind @i6 ≤ qH suchthat defined(x [@i6], r 34[@i6]) && (m′ = x [@i6]) then
if (f(pk , s) = r 34[@i6]) then
find j ≤ qS suchthat defined(m[j]) && (m′ = m[j]) then yield else event bad

else

if false then

find j ≤ qS suchthat defined(m[j]) && (m′ = m[j]) then yield else event bad

The red test always succeeds, so the blue part becomes yield.
The magenta part becomes yield.

Bruno Blanchet (INRIA) CryptoVerif August 2011 82 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

FDH step 3: substitute sk with its value

The variable sk is replaced with skgen(r), and the assignment
let sk : key = skgen(r) is removed.
This transformation is advised in order to able to apply the
permutation property.

Bruno Blanchet (INRIA) CryptoVerif August 2011 83 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

FDH step 4: permutation

(* signature oracle *)
!iS≤qS

c1[iS](m : bitstring);
find @i3 ≤ qS suchthat defined(m[@i3], r 32[@i3]) && (m = m[@i3]) then

c2[iS]〈invf(skgen(r), r 32[@i3])〉
orfind @i4 ≤ qH suchthat defined(x [@i4], r 34[@i4]) && (m = x [@i4]) then

c2[iS]〈invf(skgen(r), r 34[@i4])〉
else

new r 32 : D;

c2[iS]〈invf(skgen(r), r 32)〉

new r i : D becomes new y i : D,
invf(skgen(r), r i) becomes y i ,
r i becomes f(pkgen(r), y i)

Bruno Blanchet (INRIA) CryptoVerif August 2011 84 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

FDH step 5: simplify

(* forged signature? *)
c3(m′ : bitstring , s : D);
find @i5 ≤ qS suchthat defined(m[@i5], r 32[@i5]) && (m′ = m[@i5]) then
yield

orfind @i6 ≤ qH suchthat defined(x [@i6], r 34[@i6]) && (m′ = x [@i6]) then
if (f(pk , s) = f(pkgen(r), y 34[@i6])) then
find j ≤ qS suchthat defined(m[j]) && (m′ = m[j]) then yield else event bad

f(pk , s) = f(pkgen(r), y i) becomes s = y i ,
knowing pk = pkgen(r) and the injectivity of f :
∀k : key , x : D, x ′ : D; (f(k , x) = f(k , x ′)) = (x = x ′)

Bruno Blanchet (INRIA) CryptoVerif August 2011 85 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

FDH step 6: one-wayness

(* forged signature? *)
c3(m′ : bitstring , s : D);
find @i5 ≤ qS suchthat defined(m[@i5], r 32[@i5]) && (m′ = m[@i5]) then
yield

orfind @i6 ≤ qH suchthat defined(x [@i6], r 34[@i6]) && (m′ = x [@i6]) then
if s = y 34[@i6] then
find j ≤ qS suchthat defined(m[j]) && (m′ = m[j]) then yield else event bad

s = y i becomes find @j i ≤ qH suchthat defined(k i [@j i])
then s = y i else false,

In hash oracle, f(pkgen(r), y i) becomes f ′(pkgen′(r), y i),
In signature oracle, y i becomes let k i : bitstring = mark in y i .
Difference of probability: (qH + qS)Succ

ow
P (time+ (qH − 1)time(f)).

Bruno Blanchet (INRIA) CryptoVerif August 2011 86 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

FDH step 7: simplify

(* forged signature? *)
c3(m′ : bitstring , s : D);
find @i5 ≤ qS suchthat defined(m[@i5], r 32[@i5]) && (m′ = m[@i5]) then
yield

orfind @i6 ≤ qH suchthat defined(x [@i6], r 34[@i6]) && (m′ = x [@i6]) then
find @j 34 ≤ qS suchthat defined(k 34[@j 34]) && (@i4[@j 34] = @i6) then
if s = y 34[@i6] then
find j ≤ qS suchthat defined(m[j]) && (m′ = m[j]) then yield else event bad

The test in red always succeeds, so event bad disappears, which proves
the desired property.

Bruno Blanchet (INRIA) CryptoVerif August 2011 87 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

FDH step 7: simplify (2)

(* forged signature? *)
c3(m′ : bitstring , s : D);
. . .
orfind @i6 ≤ qH suchthat defined(x [@i6], r 34[@i6]) && (m′ = x [@i6]) then
find @j 34 ≤ qS suchthat defined(k 34[@j 34]) && (@i4[@j 34] = @i6) then
if s = y 34[@i6] then
find j ≤ qS suchthat defined(m[j]) && (m′ = m[j]) then yield else event bad

Definition of k 34:

!iS≤qS

c1[iS](m : bitstring);
. . .
orfind @i4 ≤ qH suchthat defined(x [@i4], y 34[@i4]) && (m = x [@i4]) then
let k 34 : bitstring = mark in . . .

When k 34[@j 34] is defined, m[@j 34] is defined and
m[@j 34] = x [@i4[@j 34]] = x [@i6] = m′

so the red test succeeds with j = @j 34.
Bruno Blanchet (INRIA) CryptoVerif August 2011 88 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

FDH: final result

Adding the probabilities, we obtain:

Result

The probability that an adversary that runs in time at most t and makes
qS signature queries and qH hash queries forges a FDH signature is at
most

1/|D|+ (qS + qH)Succ
ow
P (t + (qH − 1)time(f))

Bruno Blanchet (INRIA) CryptoVerif August 2011 89 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Exercise 6

Suppose that H is a hash function in the Random Oracle Model and that
f is a one-way trapdoor permutation.
Consider the encryption function Epk(x) = fpk(r)||H(r)⊕ x , where ||
denotes concatenation and ⊕ denotes exclusive or (Bellare & Rogaway,
CCS’93).

What is the decryption function?

Show using CryptoVerif that this public-key encryption scheme is
IND-CPA. (IND-CPA is defined like IND-CCA2 except that the
adversary does not have access to a decryption oracle.)

Bruno Blanchet (INRIA) CryptoVerif August 2011 90 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Experiments

Tested on the following protocols (original and corrected versions):
– Otway-Rees (shared-key)
– Yahalom (shared-key)
– Denning-Sacco (public-key)
– Woo-Lam shared-key and public-key
– Needham-Schroeder shared-key and public-key
Shared-key encryption is implemented as encrypt-then-MAC, using a
IND-CPA encryption scheme.
(For Otway-Rees, we also considered a SPRP encryption scheme,

a IND-CPA + INT-CTXT encryption scheme,
a IND-CCA2 + IND-PTXT encryption scheme.)

Public-key encryption is assumed to be IND-CCA2.
We prove secrecy of session keys and correspondence properties.

Bruno Blanchet (INRIA) CryptoVerif August 2011 91 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Results (1)

In most cases, the prover succeeds in proving the desired properties when
they hold, and obviously it always fails to prove them when they do not
hold.
Only cases in which the prover fails although the property holds:

Needham-Schroeder public-key when the exchanged key is the nonce
NA.

Needham-Schroeder shared-key: fails to prove that
NB [i] 6= NB [i

′]− 1 with overwhelming probability, where NB is a
nonce

Showing that the encryption scheme
E(m, r) = f (r)‖H(r)⊕m‖H ′(m, r) is IND-CCA2.

Bruno Blanchet (INRIA) CryptoVerif August 2011 92 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Results (2)

Some public-key protocols need manual proofs.
(Give the cryptographic proof steps and single assignment
renaming instructions.)

Runtime: 7 ms to 35 s, average: 5 s on a Pentium M 1.8 GHz.

Bruno Blanchet (INRIA) CryptoVerif August 2011 93 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Other case studies

Full domain hash signature (with David Pointcheval)
Encryption schemes of Bellare-Rogaway’93 (with David Pointcheval)

Kerberos V, with and without PKINIT (with Aaron D. Jaggard,
Andre Scedrov, and Joe-Kai Tsay).

OEKE (variant of Encrypted Key Exchange, with David
Pointcheval).

A part of an F# implementation of the TLS transport protocol
(Microsoft Research and MSR-INRIA).

Bruno Blanchet (INRIA) CryptoVerif August 2011 94 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Conclusion

CryptoVerif can automatically prove the security of primitives and
protocols.

The security assumptions are given as observational equivalences
(proved manually once).

The protocol or scheme to prove is specified in a process calculus.

The prover provides a sequence of indistinguishable games that lead
to the proof and a bound on the probability of an attack.

The user is allowed (but does not have) to interact with the prover
to make it follow a specific sequence of games.

Bruno Blanchet (INRIA) CryptoVerif August 2011 95 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Future work: CryptoVerif extensions

Support more primitives:

More equations, e.g. associativity for XOR
Primitives with internal state

Improvements in the proof strategy.
More precise manual hints?

More case studies.

Will suggest more extensions.

Certify CryptoVerif; combine it with CertiCrypt.

Bruno Blanchet (INRIA) CryptoVerif August 2011 96 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Future work: grand challenges

Proof of implementations of protocols in the computational model:

by analysis of existing implementations,
by generation of implementations from specifications.

Take into account side-channels.

Bruno Blanchet (INRIA) CryptoVerif August 2011 97 / 90

Introduction Using CryptoVerif Proof technique Encrypt-then-MAC FDH Conclusion

Acknowledgments

I warmly thank David Pointcheval for his advice and explanations of
the computational proofs of protocols. This project would not have
been possible without him.

This work was partly supported by the ANR project FormaCrypt
(ARA SSIA 2005).

This work is partly supported by the ANR project ProSe (VERSO
2010).

Bruno Blanchet (INRIA) CryptoVerif August 2011 98 / 90

	Introduction
	Using CryptoVerif
	Proof technique
	Encrypt-then-MAC
	FDH
	Conclusion

