Math308, Quiz 8, 03/28/14

First Name:
Last Name:

Table 1: Elementary Laplace Transforms

$f(t)=\mathcal{L}^{-1}[F(s)]$	$F(s)=\mathcal{L}[f(t)]$	$f(t)=\mathcal{L}^{-1}[F(s)]$	$F(s)=\mathcal{L}[f(t)]$
1	$\frac{1}{s} \quad s>0$	$\frac{t^{n}}{n!}$	$\frac{1}{s^{n+1}} \quad s>0$
$e^{-\alpha t}$	$\frac{1}{s+\alpha} \quad s>-\alpha$	$e^{-\alpha t} t^{n}$	$\frac{n!}{(s+\alpha)^{n+1}} \quad s>-\alpha$
$\sin (\omega t)$	$\frac{\omega}{s^{2}+\omega^{2}} \quad s>0$	$\cos (\omega t)$	$\frac{s}{s^{2}+\omega^{2}} \quad s>0$
$e^{\alpha t} \sin (\omega t)$	$\frac{\omega}{(s-\alpha)^{2}+\omega^{2}} \quad s>\alpha$	$e^{\alpha t} \cos (\omega t)$	$\frac{s-\alpha}{(s-\alpha)^{2}+\omega^{2}} \quad s>0$
$\sinh (\omega t)$	$\frac{\omega}{\frac{\omega}{s^{2}-\omega^{2}}} \quad s>\|\omega\|$	$\cosh (\omega t)$	$\frac{s}{s^{2}-\omega^{2}} \quad s>\|\omega\|$
$u_{\alpha}(t)$	$\frac{e^{-\alpha s}}{s} \quad s>0$	$\delta(t-\alpha)$	$e^{-\alpha s} \quad s>-\infty$

Theorem. Suppose that the functions $f, f^{\prime}, \ldots, f^{(n-1)}$ are continuous and that $f^{(n)}$ is piecewise continuous on any interval $0 \leq t \leq A$. Suppose that there exist constants K, a and M such that $|f(t)| \leq K e^{a t},\left|f^{\prime}(t)\right| \leq K e^{a t}, \ldots,\left|f^{(n-1)}(t)\right| \leq K e^{a t}$ for $t \geq M$. Then $\mathcal{L}\left[f^{(n)}(t)\right]$ exists for $s>a$ and given by

- $\mathcal{L}\left[f^{(n)}(t)\right]=s^{n} \mathcal{L}[f(t)]-s^{n-1} f(0)-\ldots-s f^{(n-2)}(0)-f^{(n-1)}(0)$.
- if $F(s)=\mathcal{L}[f(t)]$ for $s>a$, then $\mathcal{L}\left[u_{c}(t) f(t-c)\right]=e^{-c s} \mathcal{L}[f(t)]=e^{-c s} F(s)$ for $s>a, c>0$.
- if $f(t)=\mathcal{L}^{-1}[F(s)]$, then $u_{c}(t) f(t-c)=\mathcal{L}^{-1}\left[e^{-c s} F(s)\right]$.

Show all work!

Problem 1. 100\%. Use the Laplace transform to solve the following initial value problem:

$$
\begin{align*}
& y^{\prime \prime}-2 y^{\prime}+2 y=0 \\
& y(0)=0, \quad y^{\prime}(0)=1 \tag{1}
\end{align*}
$$

Solutions

By taking the Laplace transform of the equation we obtain

$$
\begin{equation*}
\mathcal{L}\left[y^{\prime \prime}\right]-2 \mathcal{L}\left[y^{\prime}\right]+2 \mathcal{L}[y]=0 . \tag{2}
\end{equation*}
$$

We use the above theorem to express $\mathcal{L}\left[y^{\prime \prime}\right]$ and $\mathcal{L}\left[y^{\prime}\right]$ in terms of $\mathcal{L}[y]$:

$$
\begin{equation*}
\left(s^{2} \mathcal{L}[y]-s y(0)-y^{\prime}(0)\right)-2(s \mathcal{L}[y]-y(0))+2 \mathcal{L}[y]=0, \tag{3}
\end{equation*}
$$

or we can simplify it as

$$
\left(s^{2}-2 s+2\right) \mathcal{L}[y]-(s-2) y(0)-y^{\prime}(0)=0 .
$$

And we now apply the initial conditions and find $\mathcal{L}[y]$:

$$
L[y]=\frac{1}{s^{2}-2 s+2},
$$

or

$$
L[y]=\frac{1}{(s-1)^{2}+1}
$$

Finally, the inverse Laplace transform of the right hand side is

$$
y=e^{t} \sin t
$$

