Math308, Quiz 8, 03/28/14

First Name:

Last Name:

$f(t) = \mathcal{L}^{-1}[F(s)]$	$F(s) = \mathcal{L}[f(t)]$	$f(t) = \mathcal{L}^{-1}[F(s)]$	$F(s) = \mathcal{L}[f(t)]$
1	$\frac{1}{s} s > 0$	$\frac{t^n}{n!}$	$\frac{1}{s^{n+1}} s > 0$
$e^{-\alpha t}$	$\frac{1}{s+\alpha} s > -\alpha$	$e^{-\alpha t}t^n$	$\frac{n!}{(s+\alpha)^{n+1}} s > -\alpha$
$\sin(\omega t)$	$\frac{\omega}{s^2 + \omega^2} s > 0$	$\cos(\omega t)$	$\frac{s}{s^2 + \omega^2} s > 0$
$e^{\alpha t}\sin(\omega t)$	$\frac{\omega}{(s-\alpha)^2 + \omega^2} s > \alpha$	$e^{\alpha t}\cos(\omega t)$	$\frac{s-\alpha}{(s-\alpha)^2+\omega^2} s>0$
$\sinh(\omega t)$	$\frac{\omega}{s^2 - \omega^2} s > \omega $	$\cosh(\omega t)$	$\frac{s}{s^2 - \omega^2} s > \omega $
$u_{lpha}(t)$	$\frac{e^{-\alpha s}}{s} s > 0$	$\delta(t-lpha)$	$e^{-\alpha s}$ $s > -\infty$

Table 1: Elementary Laplace Transforms

Theorem. Suppose that the functions $f, f', \ldots, f^{(n-1)}$ are continuous and that $f^{(n)}$ is piecewise continuous on any interval $0 \le t \le A$. Suppose that there exist constants K, a and M such that $|f(t)| \le Ke^{at}, |f'(t)| \le Ke^{at}, \ldots, |f^{(n-1)}(t)| \le Ke^{at}$ for $t \ge M$. Then $\mathcal{L}[f^{(n)}(t)]$ exists for s > a and given by

- $\mathcal{L}[f^{(n)}(t)] = s^n \mathcal{L}[f(t)] s^{n-1} f(0) \dots s f^{(n-2)}(0) f^{(n-1)}(0).$
- if $F(s) = \mathcal{L}[f(t)]$ for s > a, then $\mathcal{L}[u_c(t)f(t-c)] = e^{-cs}\mathcal{L}[f(t)] = e^{-cs}F(s)$ for s > a, c > 0.
- if $f(t) = \mathcal{L}^{-1}[F(s)]$, then $u_c(t)f(t-c) = \mathcal{L}^{-1}[e^{-cs}F(s)]$.

Show all work!

Problem 1. 100%. Use the Laplace transform to solve the following initial value problem: n'' = 2n' + 2n = 0

$$y'' - 2y' + 2y = 0$$

$$y(0) = 0, \quad y'(0) = 1.$$
(1)

Solutions

By taking the Laplace transform of the equation we obtain

$$\mathcal{L}[y''] - 2\mathcal{L}[y'] + 2\mathcal{L}[y] = 0.$$
⁽²⁾

We use the above theorem to express $\mathcal{L}[y'']$ and $\mathcal{L}[y']$ in terms of $\mathcal{L}[y]$:

$$\left(s^{2}\mathcal{L}[y] - sy(0) - y'(0)\right) - 2\left(s\mathcal{L}[y] - y(0)\right) + 2\mathcal{L}[y] = 0,$$
(3)

or we can simplify it as

$$(s^2 - 2s + 2) \mathcal{L}[y] - (s - 2)y(0) - y'(0) = 0.$$

And we now apply the initial conditions and find $\mathcal{L}[y]$:

$$L[y] = \frac{1}{s^2 - 2s + 2},$$

or

$$L[y] = \frac{1}{(s-1)^2 + 1}.$$

Finally, the inverse Laplace transform of the right hand side is

$$y = e^t \sin t.$$