Math308, Quiz 7, 03/21/14

First Name:
Last Name:
\qquad

Show all work!

Problem 1. 40%. Solve the following initial value problem:

$$
\begin{align*}
& u^{\prime \prime}+u=0 \\
& u(0)=0, \quad u^{\prime}(0)=1 \tag{1}
\end{align*}
$$

Problem 2. 50\%. Rewrite the general solution of (1) in the form

$$
u=R \cos \left(\omega_{0} t-\delta\right)
$$

Problem 3. 10\%. What happens to $u(t)$ when $t \rightarrow \infty$?

Solutions

Problem 1. The characteristic equation for problem (1) is

$$
r^{2}+1=0
$$

where its solution $r_{1}=-i$ and $r_{2}=i$. The general solution of (1) is then

$$
u(t)=A e^{-i t}+B e^{i t}=A \cos t+B \sin t .
$$

Next, we find the constants A and B using the initial data:

$$
\left.\begin{array}{r}
u(0)=0 \tag{2}\\
u^{\prime}(0)=1
\end{array}\right\} \Rightarrow\left\{\begin{array}{c}
A+0=0 \\
0+B=1
\end{array}\right.
$$

therefore the solution of the given initial value problem is

$$
u(t)=\sin t
$$

Problem 2. We have

$$
u=R \cos \left(\omega_{0} t-\delta\right)=R \cos \delta \cos \omega_{0} t+R \sin \delta \sin \omega_{0} t
$$

Now, by comparing to the exact solution $u(t)=\sin t$ we get that $\omega_{0}=1$ and

$$
\left\{\begin{array}{c}
R \cos \delta=0 \tag{3}\\
R \sin \delta=1
\end{array}\right.
$$

From here we get that $R=1$. To find δ we use the second equation of (3):

$$
\sin \delta=1
$$

for which the solution is $\delta=\frac{\pi}{2}$. Therefore, $u(t)=\sin t$ can be written as

$$
u=R \cos \left(\omega_{0} t-\delta\right)=\cos \left(t-\frac{\pi}{2}\right)
$$

Note, that you can also find δ by dividing the second equation to the first one:

$$
\tan \delta=\frac{1}{0} \Rightarrow \tan (\delta)=\infty
$$

which of course gives us that $\delta=\frac{\pi}{2}$.
Problem 3. The function $|u(t)|=|\sin (t)|=\left|\cos \left(t-\frac{\pi}{2}\right)\right|$ is bounded by $R=1$ so the limit is also bounded as $t \rightarrow \infty$, and since there is no damping the solution is a simple harmonic motion for any t.

