Math308, Quiz 6, 03/17/14

\qquad
\qquad

Show all work!

Problem 1. 100\%. Solve the following non-homogeneous differential equation:

$$
\begin{equation*}
y^{\prime \prime}+2 y^{\prime}+y=2 \cos t \tag{1}
\end{equation*}
$$

Solutions

Problem 1. a) First we find the general solution of corresponding homogeneous differential equation:

$$
\begin{equation*}
y^{\prime \prime}+2 y^{\prime}+y=0 \tag{2}
\end{equation*}
$$

The characteristic equation is

$$
\begin{equation*}
r^{2}+2 r+1=0 \tag{3}
\end{equation*}
$$

which has two repeated real roots: $r_{1,2}=-1$. Therefore, one solution of the homogeneous equation is $y_{1}(t)=e^{-t}$ and the second solution is $y_{2}=t e^{-t}$. The general solution of Equation (??) is then written as

$$
\begin{equation*}
y_{\mathrm{hom}}(t)=C_{1} e^{-t}+C_{2} t e^{-t} \tag{4}
\end{equation*}
$$

b) Let us now search for a particular solution of the non-homogeneous equation (1). The right hand side of (1) is a trigonometric function, thus we assume that $Y(t)=$ $A \sin t+B \cos t$, where A and B are constants to be determined. By inserting $Y(t)$ to Equation (1) we obtain:

$$
\begin{aligned}
Y(t)^{\prime \prime}+2 Y(t)^{\prime} & +Y(t) \\
& =(A \sin t+B \cos t)^{\prime \prime}+2(A \sin t+B \cos t)^{\prime}+(A \sin t+B \cos t) \\
& =-A \sin t-B \cos t+2 A \cos t-2 B \sin t+A \sin t+B \cos t \\
& =(-A-2 B+A) \sin t+(-B+2 A+B) \cos t \\
& =-2 B \sin t+2 A \cos t \\
& =2 \cos t
\end{aligned}
$$

Where by matching the coefficient we find that $A=1$ and $B=0$. Therefore,

$$
Y(t)=\sin t
$$

and the general solution of the non-homogeneous equation is

$$
\begin{equation*}
y_{\text {nonhom }}(t)=C_{1} e^{-t}+C_{2} t e^{-t}+\sin t . \tag{5}
\end{equation*}
$$

