Math308, Quiz 5, 02/21/14

First Name:
Last Name:

Show all work!

Consider the following initial value problem:

$$
\begin{align*}
& y^{\prime \prime}-6 y^{\prime}+5 y=0 \\
& y(0)=2, y^{\prime}(0)=6 \tag{1}
\end{align*}
$$

Problem 1. 90\%. Solve the problem.

Problem 2. 10\%. Find $\lim _{t \rightarrow \infty} y(t)$.

Solutions

Problem 1. First we write the characteristic equation that is obtained by assuming that the solution of (1) has the form of $y(t)=e^{r t}$:

$$
\begin{equation*}
r^{2}-6 r+5=0 \tag{2}
\end{equation*}
$$

We find that $r_{1}=1$ and $r_{2}=5$ are the roots of the characteristic equation. Therefore, the general solution of (1) is

$$
\begin{equation*}
y(t)=C_{1} e^{t}+C_{2} e^{5 t} . \tag{3}
\end{equation*}
$$

We now use the initial condition to find the constants in (3).

$$
\left.\begin{array}{r}
y(0)=2 \tag{4}\\
y^{\prime}(0)=6
\end{array}\right\} \Rightarrow\left\{\begin{array}{r}
C_{1}+C_{2}=2 \\
C_{1}+5 C_{2}=6
\end{array}\right.
$$

which is a linear system for C_{1} and C_{2}, that can be solved easily: $C_{1}=1, C_{2}=1$. Therefore, the solution of the initial value problem (1) is

$$
\begin{equation*}
y(t)=e^{t}+e^{5 t} . \tag{5}
\end{equation*}
$$

Problem 2. We have:

$$
\begin{equation*}
\lim _{t \rightarrow \infty} y(t)=\lim _{t \rightarrow \infty}\left(e^{t}+e^{5 t}\right)=+\infty \tag{6}
\end{equation*}
$$

So, the solution goes to infinity as t growth.

