Math308, Quiz 3, 02/07/14

\qquad
\qquad

Show all work!

Consider the following initial value problem:

$$
\begin{equation*}
(2 x-y) d x+(2 y-x) d y=0, \quad y(1)=0 . \tag{1}
\end{equation*}
$$

Problem 1. 20\%. Without solving the problem, show that (1) is exact.

Problem 2. 80\%. Solve the problem (1).

Solutions

Problem 1. Let us denote: $M(x, y)=2 x-y$ and $N(x, y)=2 y-x$. We check the condition of Theorem 2.6.1:

$$
M_{y}(x, y)=-1, \quad N_{x}(x, y)=-1
$$

Therefore, given equation is exact.
Problem 2. Since (1) is exact, thus there is a $\psi(x, y)$ such that

$$
\begin{aligned}
& \psi_{x}(x, y)=M(x, y)=2 x-y \\
& \psi_{y}(x, y)=N(x, y)=2 y-x
\end{aligned}
$$

Now, we integrate the first relation and obtain:

$$
\psi(x, y)=x^{2}-x y+h(y)
$$

The next step is to differentiate the last relation with respect to y and compare terms with the definition of $\psi_{y}(x, y)$:

$$
\psi_{y}(x, y)=-x+h^{\prime}(y)=2 y-x
$$

We see that it must be $h^{\prime}(y)=2 y$, which gives us $h(y)=y^{2}+C$. Therefore, the solution of (1) is the following expression:

$$
\psi(x, y)=C, \quad \text { or } x^{2}-x y+y^{2}=C .
$$

Now, let us apply the initial condition to find the constant C :

$$
y(1)=0 \quad \Rightarrow \quad 1^{2}-1 \cdot 0+0^{2}=C \quad \Rightarrow \quad C=1
$$

And we finally get the solution for the given initial value problem in implicit form:

$$
x^{2}-x y+y^{2}=1
$$

