Math308, Quiz 2, 01/31/14

\qquad
\qquad

Show all work!

Consider the following initial value problem:

$$
\begin{align*}
& y^{\prime}+\frac{1}{t} y=3 t^{2}+2 t, \quad t>0 \tag{1}\\
& y(1)=2
\end{align*}
$$

Problem 1. 20\%. Without solving the problem, show that (1) has a unique solution.

Problem 2. 80\%. Solve the problem (1).

Solutions

Problem 1. It is easy to see that functions $p(t)=\frac{1}{t}$ and $g(t)=3 t^{2}+2 t$ are continuous for $t>0$, and $t_{0}=1 \in(0, \infty)$. Therefore according to Theorem 2.4.1 of the book (1) has a unique solution.

Problem 2. Multiply the equation by a function $\mu(t)$:

$$
\begin{equation*}
\mu(t) \frac{d y}{d t}+\mu(t) \frac{1}{t} y=\mu(t)\left(3 t^{2}+2 t\right) . \tag{2}
\end{equation*}
$$

The left hand side of the last equation is identical to $\frac{d}{d t}(\mu(t) y)$ if

$$
\frac{d \mu(t)}{d t}=\mu(t) \frac{1}{t}
$$

which can be easily solved for $\mu(t)$:

$$
\frac{d \mu(t)}{\mu(t)}=\frac{1}{t} d t \quad \Rightarrow \ln |\mu(t)|=\ln |t|+C \quad \Rightarrow \mu(t)=C t
$$

Set $C=1$ for simplicity, then (2) becomes

$$
t \frac{d y}{d t}+y=t\left(3 t^{2}+2 t\right)
$$

or

$$
\frac{d}{d t}(t y)=3 t^{3}+2 t^{2}
$$

By integration we obtain:

$$
t y=\frac{3}{4} t^{4}+\frac{2}{3} t^{3}+C \quad \Rightarrow y=\frac{3}{4} t^{3}+\frac{2}{3} t^{2}+\frac{C}{t} .
$$

Now, using the initial data $y(1)=2$ we find the coefficient C :

$$
2=\frac{3}{4}+\frac{2}{3}+C \quad \Rightarrow C=\frac{7}{12} .
$$

Thus the desired solution to the initial value problem is

$$
y=\frac{3}{4} t^{3}+\frac{2}{3} t^{2}+\frac{7}{12 t} .
$$

