Math308, Quiz 1, 01/23/14

First Name:
Last Name:
\qquad

SHOW ALL WORK!

Problem 1. Given the differential equation:

$$
\begin{equation*}
y^{\prime \prime}+2 y^{\prime}-3 y=0 . \tag{1}
\end{equation*}
$$

(a) (20\%) Determine 1. the order, 2. the kind (i.e. PDE or ODE), 3. linear or nonlinearity of (1).
(b) (30%) Varify that $y_{1}(t)=e^{-3 t}$ is a solution of (1).

Problem 2. (50\%) Solve the following equation:

$$
\frac{d y}{d x}=\frac{x-e^{-x}}{y+e^{y}} .
$$

Solutions

Problem 1. (a) (20\%)

1. 2 nd order, since the highest derivative is $\frac{d^{2} y}{d t^{2}}$;
2. ODE, since only one ordinary derivative is used;
3. linear, since all terms depending on y are linear.
(b) (30%) Insert $y(t)=e^{-3 t}$ into (1) and get:

$$
\left(e^{-3 t}\right)^{\prime \prime}+2\left(e^{-3 t}\right)^{\prime}-3 e^{-3 t}=-3(-3) e^{-3 t}+2(-3) e^{-3 t}-3 e^{-3 t}=9 e^{-3 t}-9 e^{-3 t}=0
$$

Problem 2. (50\%)
First of all note that $y+e^{y} \neq 0$. Then, by multipling the equation by $\frac{d x}{y+e^{y}}$ we obtain that

$$
\left(y+e^{y}\right) d y=\left(x-e^{-x}\right) d x
$$

This equation is separable, so by method of direct integration we get

$$
\frac{y^{2}}{2}+e^{y}=\frac{x^{2}}{2}+e^{-x}+C
$$

where C is some arbitrary constant.

