Math308, Quiz 11, 04/25/14

First Name:
Last Name:

Show all work!

Problem 1. 80\%. Find the general solution of the system:

$$
\mathbf{x}^{\prime}=\left(\begin{array}{ll}
-2 & 1 \tag{1}\\
-5 & 4
\end{array}\right) \mathbf{x} .
$$

Problem 2. 20\%. Draw the phase portrait of the above system.

Solutions

Problem 1. We seek solutions of equation (1) of the form $\mathbf{x}=\xi e^{r t}$, where ξ is a vector and r is a scalar. Insert this form into the equation and get the following eigenvalue problem: Find an eigenvector ξ and eigenvalue r such that

$$
\left(\begin{array}{cc}
-2-r & 1 \tag{2}\\
-5 & 4-r
\end{array}\right) \xi=0
$$

The eigenvalues are found by setting the determinant of the last matrix to zero:

$$
\left|\begin{array}{cc}
-2-r & 1 \\
-5 & 4-r
\end{array}\right|=(-2-r)(4-r)+5=r^{2}-2 r-3=0
$$

which gives $r_{1}=-1, r_{2}=3$.
Corresponding eigenvectors can be found as follows:

1. $r_{1}=-1$

$$
\left(\begin{array}{cc}
-2-(-1) & 1 \\
-5 & 4-(-1)
\end{array}\right) \xi=0, \quad \Rightarrow\left(\begin{array}{cc}
-1 & 1 \\
-5 & 5
\end{array}\right) \xi=0
$$

or

$$
-\xi_{1}+\xi_{2}=0, \quad \Rightarrow \xi^{(1)}=\binom{1}{1}
$$

2. $r_{2}=3$

$$
\left(\begin{array}{cc}
-2-(3) & 1 \\
-5 & 4-(3)
\end{array}\right) \xi=0, \quad \Rightarrow\left(\begin{array}{cc}
-5 & 1 \\
-5 & 1
\end{array}\right) \xi=0
$$

or

$$
-5 \xi_{1}+\xi_{2}=0, \quad \Rightarrow \xi^{(2)}=\binom{1}{5} .
$$

The general solution of (1) then is

$$
\mathbf{x}(t)=C_{1}\binom{1}{1} e^{-t}+C_{2}\binom{1}{5} e^{3 t} .
$$

Problem 2.

