
Precise Thresholding
… or, a Small Matlab Package Called Abmask

Anders Brun
Centre for Image Analysis
Swedish University of Agricultural Sciences
Uppsala University

2

Basic Ideas…

•  Given a function u(x)
•  Thresholding:

if u(x) > 0: T(u(x)) = 1

else: T(u(x)) = 0

•  Soft version:
if u(x) > 0 inside pixel x: T(u(x)) = 1

else if u(x) <= 0 inside pixel x: T(u(x)) = 0
else: T(u(x)) in]0,1[

3

What is u(x) inside a pixel?

•  Function Value
•  Function Gradient

•  ü(x+dx) = u(x) + grad(u(x)) * dx

Linear Model

4

What is u(x) inside a pixel?

•  Cons: A linear model introduces a bias

•  Pros: We can estimate a precise “coverage“

5

abmask1

•  abmask1(u, softness)
•  In 1D we have partial coverage iff:

 |u’(x) / 2| > |u(x)|

•  Precise coverage from simple code:
fill = zeros(size(u));
fill((u - 0.5*gradx > 0) & (u + 0.5*gradx > 0)) = 1;
fill((u - 0.5*gradx < 0) & (u + 0.5*gradx < 0)) = 0;
idx = (u - 0.5*gradx > 0) & (u + 0.5*gradx < 0);
fill(idx) = (0.5*gradx(idx)-u(idx))./gradx(idx);
idx = (u - 0.5*gradx < 0) & (u + 0.5*gradx > 0);
fill(idx) = (0.5*gradx(idx)+u(idx))./gradx(idx);

6

abmask2

•  abmask2(u, softness)
•  In 2D we have / have not partial coverage if:

||grad u(x) / 2|| > |u(x)| or ||grad u(x) / sqrt(2)|| < |u(x)|

•  Precise coverage from trigonometry tricks:
theta = pi/4 - abs(mod(angle(gradx+i*grady),pi/2)-pi/4);
x = u./sqrt(gradx.^2 + grady.^2);
a = -1/sqrt(2)*cos(pi/4-theta); d = -a;
b = -1/sqrt(2)*sin(pi/4-theta); c = -b;

fill = zeros(size(u));
m = x <= a;
fill(m) = double(u(m)>0);
m = (x > a) & (x <= b);
fill(m) = 0.5*(x(m)-a(m)).^2./(cos(theta(m)).*(b(m)-a(m)));
m = (x > b) & (x <= c);
fill(m) = 0.5*(b(m)-a(m))./cos(theta(m)) + (x(m)-b(m))./cos(theta(m));
m = (x > c) & (x < d);
fill(m) = 1 - 0.5*(-x(m)-a(m)).^2./(cos(theta(m)).*(b(m)-a(m)));
m = x >= d;
fill(m) = double(u(m)>0) ;

7

abmask3

•  abmask3(u, softness)
•  In 3D we have / have not partial coverage if:

||grad u(x) / 2|| > |u(x)| or ||grad u(x) * sqrt(3)/2|| < |u(x)|

•  Precise coverage from divide and conquer…
– Divide voxel into 5 tetrahedra (simplices)

– Compute precise coverage for each simplex & sum
for k = 1:length(ii)
 f1 = tetragradvol([u000(k),u001(k),u010(k),u100(k)], [0 0 0; 0 0 1; 0 1 0; 1 0 0]);
 f2 = tetragradvol([u110(k),u100(k),u010(k),u111(k)], [1 1 0; 1 0 0; 0 1 0; 1 1 1]);
 f3 = tetragradvol([u111(k),u100(k),u001(k),u101(k)], [1 1 1; 1 0 0; 0 0 1; 1 0 1]);
 f4 = tetragradvol([u111(k),u001(k),u010(k),u011(k)], [1 1 1; 0 0 1; 0 1 0; 0 1 1]);
 f5 = tetragradvol([u001(k),u100(k),u111(k),u010(k)], [0 0 1; 1 0 0; 1 1 1; 0 1 0]);
 fill(ii(k)) = fill(ii(k)) + f1 + f2 + f3 + f4 + f5;
end

8

Sub Pixel Precision is non-linear!

•  Because of all the geometric cases involved,
essentially the rotation variance of the pixel (it
is a square, it is not round), sub pixel
accuracy using linear models inside pixels
yields a non-linear expression for the coverage
inside a pixel.

•  Could there be another representation of the
image / gradient where the coverage is a
linear function?

9

Softness, what?

•  Softness:
– Multiplies the gradient with a factor. High gradient

yields a higher probability of partial coverage.
– The mismatch between original function values

and artificially larger gradients makes the fuzzy
border bigger! Bug or feature?

•  If softness > 1: soft border wider than > 1 pixel
•  If 0 < softness < 1: more crisp border

10

Gradient, what?

•  The gradient is either
– Estimated from numerical differentiation of the

function or
– Provided analytically, because it is know to the

user and then we can avoid the extra smoothing a
numerical differentiation might give

11

“Precise” Enables Differentiation

•  Enables numerical differentiation:
– Compute volume of sphere with radius 0.50000001

– Compute volume of sphere with radius 0.50000000
– Divide the difference with 0.00000001
– This is an estimate of the surface area

•  Applies to surface area (3D) and circumference
(2D) of arbitrary shapes

•  Thresholding or sampled coverage… try! :-)

12

“Precise” Enables Differentiation

Increasing threshold moves the levelset curve
“The Eikonal equation”
Going from threshold T to T - dt:

 moves curve segment dN = dt/||grad u(x)||

dT

u(x)

x

13

“Precise” Enables Differentiation

Thus, in 2D, area increases locally by dN*dL,
where dL is the curve segment length inside
the pixel.

So … we can measure circumference or surface
area by this simple expression:

Sum((abmask(u-dT,1)-abmask(u,1)) ./ dN)

“Divide the band with its width and integrate”

dN

14

Open Questions

•  Generalization to N-D (N>3) and other grids
–  Divide and Conquer via N-D simplices is one way to go

here...

•  And hey… didn´t we throw away a little too much
when we forgot the gradient direction?

•  Given both coverage (a bitmap with values 0...1)
and gradient direction, we have all information
about the linear model inside every pixel. Useful?

