Precise Thresholding

... or, a Small Matlab Package Called Abmask

Anders Brun

Centre for Image Analysis
Swedish University of Agricultural Science
Uppsala University

Basic Ideas...

- Given a function $\mathbf{u}(\mathbf{x})$
- Thresholding:
if $u(\mathbf{x})>0: T(u(x))=1$
else: $T(u(x))=0$
- Soft version:
if $u(x)>0$ inside pixel $x: T(u(x))=1$
else if $u(x)<=0$ inside pixel $x: T(u(x))=0$
else: $\mathrm{T}(\mathrm{u}(\mathbf{x}))$ in $] 0, \mathrm{l}[$

Centre for Image Analysis
swedish University of Agricultural Sciences
Upossla a University

What is $\mathbf{u}(\mathbf{x})$ inside a pixel?

- Function Value
- Function Gradient Linear Model

- $u(x+d x)=u(x)+\operatorname{grad}(u(x)) * d x$

What is $\mathbf{u}(\mathbf{x})$ inside a pixel?

- Cons: A linear model introduces a bias

- Pros: We can estimate a precise "coverage"

abmask1

- abmaskı(u, softness)
- In 1D we have partial coverage iff:
$\left|u^{\prime}(x) / 2\right|>|u(x)|$
- Precise coverage from simple code:

$i d x=(u-0.5 * \operatorname{gradx}<0) \&(u+0.5 * \operatorname{gradx}>0)$;
$\left.\mathrm{ffill}^{(i d x}\right)=\left(0.5^{*} \operatorname{gradx}(\mathrm{idx})+u(i d x)\right) . / \operatorname{gradx}(i d x)$.

abmask2

- abmask2(u, softness)
- In 2D we have / have not partial coverage if: $\|g r a d u(x) / 2\|>|u(x)| \quad$ or $\| g r a d u(x) / \operatorname{sart(2)\| |l|lu(x)|}$
- Precise coverage from trigonometry tricks:

abmask3

- abmask3(u, softness)
- In 3D we have / have not partial coverage if: $\|g r a d ~ u(x) / 2\| \geqslant|u(x)| \quad$ or $\|g r a d u(x) * \operatorname{sart}(3) / 2\||<u(x)|$
- Precise coverage from divide and conquer...
- Divide voxel into 5 tetrahedra (simplices)
- Compute precise coverage for each simplex at sum

Sub Pixel Precision is non-linear!

- Because of all the geometric cases involved, essentially the rotation variance of the pixel (it is a square, it is not round), sub pixel accuracy using linear models inside pixels yields a non-linear expression for the coverage inside a pixel.
- Could there be another representation of the image / gradient where the coverage is a linear function?

10 Centre for Image Analysis Swedish University of Agricultural Sciences
Uppsala University

Softness, what?

- Softness:
- Multiplies the gradient with a factor. High gradient yields a higher probability of partial coverage.
- The mismatch between original function values and artificially larger gradients makes the fuzzy border bigger! Bug or feature?
- If softness > 1 : soft border wider than > 1 pixel
- If 0 < softness < 1 : more crisp border

Gradient, what?

- The gradient is either
- Estimated from numerical differentiation of the function or
- Provided analytically, because it is know to the user and then we can avoid the extra smoothing a numerical differentiation might give

"Precise" Enables Differentiation

- Enables numerical differentiation:
- Compute volume of sphere with radius 0.50000001
- Compute volume of sphere with radius 0.50000000
- Divide the difference with 0.00000001
- This is an estimate of the surface area
- Applies to surface area (3D) and circumference (2D) of arbitrary shapes
- Thresholding or sampled coverage... try! :-)

"Precise" Enables Differentiation

Increasing threshold moves the levelset curve
"The Eikonal equation"
Going from threshold T to T-dt:
moves curve segment $d N=d t /\|g r a d u(x)\|$

"Precise" Enables Differentiation

Thus, in 2 D , area increases locally by dN *dL, where dL is the curve segment length inside the pixel.

So ... we can measure circumference or surface area by this simple expression:

Sum((abmask(u-dT,1)-abmask(u,1)) ./ dN)
"Divide the band with its width and integrate"

Open Questions

- Generalization to N-D ($\mathrm{N}>3$) and other grids
- Divide and Conquer via N-D simplices is one way to go here...
- And hey... didn't we throw away a little too much when we forgot the gradient direction?
- Given both coverage (a bitmap with values 0...1) and gradient direction, we have all information about the linear model inside every pixel. Useful?

10 Centre for Image Analysis
Swedish University of Agriculural Sciences

