

Introduction

Problem 1

Assign orientation to each pixel using local information

- Strategies
- Uncertainity principles

Problem 2

Orientation for larger regions, circular data etc.

- Averaging
- Representation
- Orientation vs direction
Introduction
Type 1 problems
Local estimation
\square Any small patch
\square Lines
\square Edges

One variable

$$
f(x)=\frac{f^{\prime}(0)}{1!} x+\frac{f^{\prime \prime}(x)}{2!} x^{2}+
$$

Several variables (dimensions)

Let $f: R^{N} \rightarrow R$, then

$$
\begin{gathered}
f(\mathbf{x})=f(\mathbf{0})+D f(\mathbf{0})^{T} \mathbf{x}+\ldots \\
D f(\mathbf{x})=\left(\frac{\partial f}{\partial x_{1}}(\mathbf{0}), \frac{\partial f}{\partial x_{2}}(\mathbf{0}), \ldots, \frac{\partial f}{\partial x_{N}}(\mathbf{0})\right)
\end{gathered}
$$

and $D f: R^{N} \rightarrow R^{N}$

To discretise the gradient, the smallest stencil is: $[1,-1]$ for each partial derivative.

- Very local, depends only on three pixels.
- Half pixel offset!
- Rotationally invariant? (I.e. do we get the same result if we rotate the image first, then calculate the
 gradient, and then rotate back?) See fig (1,2) and (1,3)!

Finite differences
Directions from discretized derivatives I

Second smallest filter: $[1,0,-1] / 2$

In matlab

$d x=\operatorname{convn}(I,[1,0,-1] / 2, '$ same'); $d y=$ convn (I, [1, 0, -1]'/2, 'same');

Invariant to [..., $1,0,1,0,1, \ldots]$

- Still a little too discrete?

Symmetric

- Local

Gradient as a Least Squares Problem

$\left(\begin{array}{ccc}1 / 9 & -1 & 1 \\ 1 / 9 & -1 & 0 \\ 1 / 9 & -1 & -1 \\ 1 / 9 & 0 & 1 \\ 1 / 9 & 0 & 0 \\ 1 / 9 & 0 & -1 \\ 1 / 9 & 1 & 1 \\ 1 / 9 & 1 & 0 \\ 1 / 9 & 1 & -1\end{array}\right)\left(\begin{array}{l}c_{0} \\ d x \\ d y\end{array}\right)=?\left(\begin{array}{l}M(1,1) \\ M(2,1) \\ M(3,1) \\ M(1,2) \\ M(2,2) \\ M(3,2) \\ M(1,3) \\ M(2,3) \\ M(3,3)\end{array}\right) \quad . \quad:$

When the solution x to $A x=b$ can't be found by matrix inverse (i.e. too low rank), we can find

$$
\arg \min _{x}\|A x-b\|^{2}
$$

i.e.

$$
x=\left(A^{T} A\right)^{-1} A^{T} y
$$

Least Squares and Projections

Least Squares and Projections

Say we have some data points $\left\{y_{i}\right\}:=y\left(x_{i}\right), i=1, \ldots, N$ and a basis function $\left\{b_{i}\right\}$. Now we want to find the c that minimises

$$
\begin{equation*}
E(c)=\|c b(x)-y(x)\| . \tag{1}
\end{equation*}
$$

In the least squares approach, we expand Eq. 1 as

$$
\begin{equation*}
E(c)=\sum_{i=1}^{N}\left[c^{2} b_{i}^{2}-2 c b_{i} y_{i}+y^{2}\right] . \tag{2}
\end{equation*}
$$

Derivation with respect to c :

$$
\begin{equation*}
\frac{d}{d c} E(c)=\sum\left[c b_{i}^{2}-b_{i} y_{i}\right]=0 \tag{3}
\end{equation*}
$$

gives

$$
\begin{equation*}
c=\frac{\sum b_{i} y_{i}}{\sum b_{i}^{2}} \tag{4}
\end{equation*}
$$

With the projection approach, the projection of y to b is expressed

$$
\begin{equation*}
\operatorname{Proj}_{b} y=b \frac{(b, y)}{\|b\|^{2}} \tag{5}
\end{equation*}
$$

so we identify

$$
\begin{equation*}
c=\frac{(b, y)}{\|b\|^{2}}=\frac{b y^{T}}{b b^{T}}=\frac{\sum b_{i} y_{i}}{\sum b_{i}^{2}} \tag{6}
\end{equation*}
$$

Gaussian Derivatives
Scale Space Theory

Equivalences
■ Convolutions
■ Projection on linear bases
■ Least squares solutions

- Least squares solutions

See Koenderink and Lindeberg!

- Rotational invariance \rightarrow round support
- Non ringing \rightarrow smooth radial profile

■ \rightarrow Gaussian derivatives!


```
function y=gpartial(x, d, sigma)
w = 10*ceil(sigma); w = w+mod(w+1,2); % Filter length
g =fspecial('gaussian', [w,1], sigma); % 1D Gaussian
x=(-(w-1)/2:(w-1)/2)';
k0=1/sqrt(2*pi*sigma^2); k1=1/(2*sigma^2);
dg=-2*k0*k1.*x.*exp(-k1*x.^2); % d/dx Gaussian
if d==1
    y=convn(x, reshape(dg, [w,1]), 'same');
    y=convn(y, reshape( g, [1,w]), 'same');
end
if d==2
    y=convn(x, reshape( g, [w,1]), 'same');
    y=convn(y, reshape(dg, [1,w]), 'same');
end
```


A1: Sub pixel location of extremal points

Another example of Taylor expansion in image analysis. Sub pixel location of local extreme points is acheived by second order Taylor expansion using the 3^{N} closest points by:

$$
\begin{gathered}
D(\mathbf{x})=D+\frac{\partial D^{T}}{\partial \mathbf{x}} \mathbf{x}+\frac{1}{2} \mathbf{x}^{T} \frac{\partial^{2} D}{\partial x^{2}} \mathbf{x} \\
\hat{\mathbf{x}}=-\left(\frac{\partial^{2} D}{\partial \mathbf{x}^{2}}\right)^{-1} \frac{\partial D}{\partial \mathbf{x}}
\end{gathered}
$$

Gaussian derivatives in Matlab

Generalises to ND
end

A2: Location of edges

A one dimensional signal $P(x)$. We define a unit step edge located at $x=0$ by

$$
\theta(x)= \begin{cases}1, & x \geq 0 \tag{7}\\ 0, & <0\end{cases}
$$

Def 1: An edge can be located where the first derivative of the signal has an extremal value (zero crossing of second derivative)

$$
\begin{equation*}
E_{D}=\left\{x: \frac{d^{2}}{d x^{2}} P(x)=0\right\} \tag{8}
\end{equation*}
$$

Def 2: the edge can be located where the signal obtains a specific value or level c, i.e. the set

$$
\begin{equation*}
E_{I}=\{x: P(x)=c\} . \tag{9}
\end{equation*}
$$

A2: Location of edges

Differential Definition, Def 1

A2: Location of edges

$$
\begin{gather*}
G_{\sigma}(x):=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{\frac{-x^{2}}{2 \sigma^{2}}}:=a e^{-x^{2} b}, \tag{10}\\
a=\frac{1}{\sqrt{2 \pi \sigma^{2}}}, \quad b=\frac{1}{2 \sigma^{2}} \\
\operatorname{erf}_{\sigma}(x)=\int_{-\infty}^{x} G_{\sigma}(\xi) d \xi, \tag{11}
\end{gather*}
$$

Step edges: $P(x)=G_{\sigma} * \theta(x), E_{D}$ is the set of points that satisfy

$$
\begin{equation*}
0=\frac{d^{2}}{d x^{2}} G_{\sigma} * \theta(x)=\frac{d^{2}}{d x^{2}} \operatorname{erf}_{\sigma}(x)=G_{\sigma}^{\prime}(x), \tag{12}
\end{equation*}
$$

gives $E_{D}=\{0\}$
Lines: $P=\delta(x) \approx \frac{1}{\epsilon}(\theta(x)-\theta(x+\epsilon))$ for a small ϵ. E_{D} is the set of points that satisfies,

$$
\begin{equation*}
0=\frac{d^{2}}{d x^{2}} \delta * G_{\sigma}(x)=e^{-b x^{2}}\left(4 x^{2} b^{2} a-2 a b\right), \tag{13}
\end{equation*}
$$

which are

$$
\begin{equation*}
x= \pm \sqrt{\frac{2 a b}{4 a b^{2}}}= \pm \sqrt{2} \sigma \tag{14}
\end{equation*}
$$

Two detections, none at $x=0$.

Unit ridges $P(x)=\theta(x)-\theta(x-w)$, where $w>0$ is the width. E_{D} contains the points that satisfy
$0=G_{\sigma}^{\prime}(x)-G_{\sigma}^{\prime}(x-w)=-2 a b x e^{-b x^{2}}+2 a b(x-w) e^{-b\left(x^{2}-2 w x+w^{2}\right)}$,
or simplified

$$
\begin{equation*}
0=2 a b e^{-b x^{2}}\left\{(x-w) e^{-b\left(w^{2}-2 w x\right)}-x\right\} \tag{16}
\end{equation*}
$$

which further can be reduced to

$$
\begin{equation*}
0=x-(x-w) e^{-b\left(w^{2}-2 w x\right)} \tag{17}
\end{equation*}
$$

Neither $x=0$ or $x=w$ are solutions.

A2: Location of edges

Iso-level definition, def 2

For an ideal step edge,

$$
\begin{equation*}
E_{I}=\left\{x: G_{\sigma} * \theta(x)=\operatorname{erf}_{\sigma}(x)=c\right\} \tag{18}
\end{equation*}
$$

and since $E_{i}=\{0\}$ is required, $c=1 / 2$.
For lines, no, one or two edges will be detected since the condition is that

$$
\begin{equation*}
E_{l}=\left\{x: G_{\sigma}(x)=1 / 2\right\} \tag{19}
\end{equation*}
$$

For finite ridges,

$$
\begin{equation*}
E_{I}=\left\{x: \operatorname{erf}_{\sigma}(x)-\operatorname{erf}_{\sigma}(x-w)=1 / 2\right\} \tag{20}
\end{equation*}
$$

none (or one) or two edges are detected.

Location error for ridges

A2: Location of edges

Figure: Left: A unit ridge, smoothed, its second derivative (scaled) and the $1 / 2$ line. Right: NW: A ridge. NE: Smoothed with $\sigma / w=0.7$. SW: Canny edge detection. SE: Pixels with intensity above 0.5 .

GOP / Quadrature Filters

Quadrature filter in the spatial domain

Intermediate summary:

- Gaussian derivatives to calculate gradients!

■ Gradients vanish for some structures.

- Higher order constructions are needed needed. One such technique is the Hessian.
- Phase invariant filters are good.

■ Sub pixel location of edges is not trivial (see Van Vleet)

Representing directions and orientations

Histograms

Example: SIFT (2004)

- Angular Histogram, $[0,2 \pi]$ is divided into eight bins
- Gradient directions $\theta=\operatorname{atan} 2(d x, d y)$.
- 16 spatial bins, 8 angular bins (128)
- Gaussian Weights
- 128-dimensional

Approaches from the SIFT family

Kernel Density Estimators (KDE)

Extensions to manifolds

- A standard approach, > 5000 citations.
- The KDE is a linear sum of weighting functions

$$
K(x)=\sum_{i=1}^{N} W_{N}\left(x-x_{i}\right)
$$

- Circular means that
$x \in[-\pi, \pi)$ and $\lim _{x \rightarrow \pi} K(x)=K(-\pi)$
- Express K as a Fourier series (parameter: M)

$$
K=\sum_{k=0}^{\infty} c_{k} e^{i k \theta}=\underbrace{\sum_{k=0}^{M-1} c_{k} e^{i k \theta}}_{K_{F}}+\sum_{k=M}^{\infty} c_{k} e^{i k \theta}
$$

- The coefficients are

$$
\begin{aligned}
& c_{k}=\left\langle K, e^{-i k \theta}\right\rangle=\frac{1}{2 \pi} \int_{-\pi}^{\pi} K e^{-i k \theta} d \theta \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} \sum_{i=1}^{N}\left\{W\left(\theta-\theta_{i}\right)\right\} e^{-i k \theta} d \theta
\end{aligned}
$$

Derivation, pt. IV

- Since the formulas are linear, the contribution from each sample to the coefficients of the fourier series can be split. Let i enumberate the samples such that

$$
c_{k}=\sum_{i=1}^{N} c_{k i}
$$

- Then the coefficients are given by

$$
c_{k i}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} W\left(\theta-\theta_{i}\right) e^{-i k \theta} d \theta
$$

- A Gaussian W yields a simple expressoin. Let

$$
W(x)=\frac{1}{\sqrt{2 \pi \sigma_{w}^{2}}} e^{-\frac{x^{2}}{2 \sigma_{w}^{2}}}
$$

- A few calculations later, we get the contribution to the series from each sample:

$$
c_{k i}=2 \pi e^{-i k \theta_{i}} e^{-\frac{k^{2} \sigma_{w}^{2}}{2}}
$$

Relation to the structure tensor

The gradient structure tensor

Set weighting function to $\cos ^{2}(x)$, then for one observation, the kde is,

$$
f(\theta)=\cos ^{2}\left(\theta-\theta_{0}\right)=
$$

$\left(\cos \theta \cos \theta_{0}+\sin \theta \sin \theta_{0}\right)^{2}$

The structure tensor constructed from the same angle $s=\left(\cos \theta_{0}, \sin \theta_{0}\right)$ is

$$
S=s s^{T}=
$$

$$
\left(\begin{array}{cc}
\cos ^{2} \theta_{0} & \sin \theta_{0} \cos \theta_{0} \\
\sin \theta_{0} \cos \theta_{0} & \sin ^{2} \theta_{0}
\end{array}\right)
$$

So, for an arbitrary angle, $v=(\cos \theta, \sin \theta), v^{\top} S v=f(\theta)$.

- Induction and linearity gives the full story
- Conclusion: The structure tensor admits an interpretation as a special kde.

```
function st = gst(I, dsigma, tsigma)
% Calculate the image gradient
g= zeros([size(V), 3]);
for kk=1:3
        g(:,:,:,kk)=gpartial(V, kk, dsigma);
end
% gradient to structure tensor
st=zeros([\operatorname{size}(g,1),\operatorname{size}(g,2),\operatorname{size}(g,3), 6]);
st (:,:,:,1)=g(:,:,:,1).*g(:,:,:,1);
st (:,:,:,2)=g(:,:,:,1).*g(:,:,:,2);
st (:,:,:, 3)=g(:,:,:,1).*g(:, :,:,3);
st (:,:,:,4)=g(:,:,:,2).*g(:,:,:,2);
st (:,:,:,5)=g(:,:,:,2).*g(:,:,:,3);
st (:,:,::,6)=g(:,:,:,3).*g(:,:,::,3);
% Average per coefficient
for kk=1:6
            st(:,:,:,kk)=gsmooth(st(:,:,:,kk), tsigma);
end
```


The outer product $(\nabla I)^{T} \nabla I$

The gradient of I is

$$
\nabla I=\left(\frac{\partial}{d x_{1}}, \frac{\partial}{d x_{2}}, \frac{\partial}{d x_{2}}\right)
$$

so the structure of the outer product

$$
E:=(\nabla I)^{T} \nabla I \approx\left(\begin{array}{lll}
a^{2} & a b & a c \tag{24}\\
a b & b^{2} & b c \\
a c & b c & c^{2}
\end{array}\right)
$$

Using S_{x} as a quadratic form

Denote the eigenvalues to S_{x} as λ_{i} and the eigenvectors v_{i}. Then the structure tensor maps vectors as

$$
\begin{aligned}
\langle E w, w\rangle & =\left\langle\lambda_{1} \operatorname{Proj}_{v_{1}} w+\lambda_{2} \operatorname{Proj}_{v_{2}} w+\lambda_{3} \operatorname{Proj}_{v_{3}} w, w\right\rangle \\
& =\lambda_{1}\left\langle\left\langle w, v_{1}\right\rangle v_{1}, w\right\rangle+\lambda_{2} \ldots \\
& =\lambda_{1}\left\langle w, v_{1}\right\rangle\left\langle w, v_{1}\right\rangle+\lambda_{2} \ldots \\
& =\lambda_{1} \cos ^{2} \theta_{1}+\lambda_{2} \cos ^{2} \theta_{2}+\lambda_{3} \cos ^{2} \theta_{3}
\end{aligned}
$$

Where the angles θ_{i} is the angle between w and each eigenvector, v_{i}.

The 2×2 eigenvalue problem

Eigenvalues

The eigenvalue problem $\operatorname{det} A x=\lambda x$ has the characteristic polynomial $(a-\lambda)(c-\lambda)-b^{2}=0$ when $A=\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)$ and the solutions $\lambda=\frac{a+c}{2} \pm \sqrt{b^{2}-a c+\left(\frac{a+c}{2}\right)^{2}}$, equivalent to $\lambda=\operatorname{Tr} / 2 \pm \sqrt{(\operatorname{Tr} / 2)^{2}-\mathrm{D}}$, where $\operatorname{Tr}=\operatorname{Trace} A$ and $\mathrm{D}=\operatorname{Det} A$.

Eigenvectors

If we set $x_{1}=1$, we get $x_{2}=-b /(c-\lambda)$. When $b \approx 0, A$ is diagonal and $\mathbf{x}=(1,0)^{T}$ when $\lambda \approx a$ and $(0,1)^{T}$ when $\lambda \approx c$.

The symmetric eigenvalue problem

1 The 3×3 eigenvalue problem i.e. to find $x \in R^{3}-(0,0,0)$ and $\lambda \in R$ which satisfies $A x=\lambda x$ for $A=A^{T} \in R^{3 \times 3}$.
2 Multiple approaches possible.
3 Cardano's solution to the characteristic equation
($\operatorname{det}(A x-\lambda I)=0$ is not suited for numerical computations. (Demmel)
4 Jacobis method is the fastest?

A plane rotation matrix

$$
R(\theta)=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

has the properties $R^{-1}(\theta)=R(-\theta)$. A 2×2 real and symmetric matrix

$$
M=\left(\begin{array}{ll}
\alpha & \gamma \\
\gamma & \beta
\end{array}\right)
$$

can be diagonalised with such rotation matrix so that

$$
\begin{equation*}
R^{-1} M R=D \tag{25}
\end{equation*}
$$

After the rotation, D and M are similar, i.e. have the same eigenvalues.
θ that makes D diagonal is not explicitly needed:

$$
\begin{gathered}
\epsilon=\frac{\alpha-\beta}{2 \gamma}, \\
t=\frac{|\epsilon|}{|\epsilon|+\sqrt{1+\epsilon^{2}}}, \\
c:=\cos \theta=\left(1+t^{2}\right)^{-1 / 2} \quad s:=\sin \theta=c t .
\end{gathered}
$$

And,

$$
\left(\begin{array}{cc}
c & -s \\
s & c
\end{array}\right)\left(\begin{array}{ll}
\alpha & \gamma \\
\gamma & \beta
\end{array}\right)\left(\begin{array}{cc}
c & s \\
-s & c
\end{array}\right)=\left(\begin{array}{cc}
\alpha-\gamma t & 0 \\
0 & \beta+\gamma t
\end{array}\right) .
$$

With Jacobi rotations, two-dimensional subspaces are rotated
There are three of them:
$R_{12}=\left(\begin{array}{ccc}c & -s & 0 \\ s & c & 0 \\ 0 & 0 & 1\end{array}\right), R_{13}=\left(\begin{array}{ccc}c & 0 & -s \\ 0 & 1 & 0 \\ s & 0 & c\end{array}\right), R_{23}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & c & -s \\ 0 & s & c\end{array}\right)$.
To use those matrices iteratively to diagonalise A is the core of the Jacobi method.

Input $A_{0}:=A$. Initialise $E_{0}:=\operatorname{diag}(1,1,1)$ which will contain the eigevectors and set the tolerances value tol $=10^{-14}$.
2 Find the largest off diagonal element of $A_{n}(i, j)$,

$$
(i, j)=\arg \max \left|A_{n}(i, j)\right|, i<j
$$

3 Find c and s using

$$
\alpha=A(i i), \beta=A(j, j), \gamma=A(i, j)
$$

4 Rotate $A, A_{n}:=R_{i j} A_{n-1} R_{i j}^{T}$
5 Rotate $E, E_{n}:=R_{i j}^{T} E_{n-1}$
6 If $\max \left|A_{n}(i j)\right|<$ tol end, else repeat from step 2.

- Matrix multiplications are explicitly written out (generality vs speed)
- Quadratic convergence
- Well suited for parallelisation
- 30% faster than DIPLib (single core)
- Get code from me

Direction vs Orientation I

Direction vs Orientation II

A vector in a metric space represents a direction. In $\mathbb{R}^{N}, N-1$ scalars are required (example). A direction points out how to get from point A to point B in R^{N} An orientation tells you to point your nose at B and have your feet down. There is a strong relationship between orientations and rotations. The natural setting for a discussion on orientations is group theory (see my thesis!) Bild: Jordglob

Of necessity, rotation matrices are ON. All eigenvalues have length 1. The minimal number of elements that are needed to describe this is $1+2+\ldots+(N-1)=N(N-1)$ (odd dimensions)

Example VI, curvature On meshes

Gaussian Curvature $k_{1} k_{2}$

Gaussian Curvature $k_{1} k_{2}$

- Not to choose is also a choice!
- There are a few different techniques for local direction estimation.
- For larger regions, orientation can be estimated as well.

■ I'd like to see more KDEs!

- There is much more to this subject!

■ Michael Van Ginkel, Image Analysis using Orientation Space Based on Steerable Filters, PhD Theis, 2002

- Gösta Granlund, In Search for a General Picture Processing Operator, Computer Graphics and Image Processing, 8, 1978
■ Heinrich W. Guggenheimer, Differential Geometry, Dover, 1977

