Image analysis with subpixel
precision - The Coverage model

Part 3 - Distances between sets

Nataša Sladoje and Joakim Lindblad
sladoje@uns.ac.rs, joakim@cb.uu.se

Image analysis with subpixel precision - The Coverage model

Motivation Our results are summarized in the following papers:

- J. Lindblad, V. Ćurić, and N. Sladoje. On set distances and their application to image
registration. In Proceedings of the 6th International Symposium on Image and Signal
Processing and Analysis (ISPA),Salzburg, Austria. IEEE, pp. 449-454, 2009 .
- V. Ćurić, J. Lindblad, N. Sladoje, H. Sarve, and G. Borgefors. A new set distance and
application to shape registration. Accepted for Pattern Analysis and Applications, 201
- V. Curić, J. Lindblad, and N. Sladoje. Distance measures between digital fuzzy object
and their applicability in image processing. In Proceedings of the 14th International
Workshop on Combinatorial Image Analysis (IWCIA2011), Madrid, Spain. Lecture No
in Computer Science, Vol. 6636, pp. 385-395, 2011 . Our results are summarized in the following papers:
- J. Lindblad, V. Ćurić, and N. Sladoje. On set distances and their application to image
registration. In Proceedings of the 6th International Symposium on Image and Signal
Processing and Analysis (ISPA),Salzburg, Austria. IEEE, pp. 449-454, 2009.
- V. Ćurić, J. Lindblad, N. Sladoje, H. Sarve, and G. Borgefors. A new set distance and
application to shape registration. Accepted for Pattern Analysis and Applications, 201
- V. Ćurić, J. Lindblad, and N. Sladoje. Distance measures between digital fuzzy object
and their applicability in image processing. In Proceedings of the 14th International
Workshop on Combinatorial Image Analysis (IWCIA2011), Madrid, Spain. Lecture No
in Computer Science, Vol. 6636, pp. 385-395, 2011 . Our results are summarized in the following papers:
- J. Lindblad, V. Ćurić, and N. Sladoje. On set distances and their application to image
registration. In Proceedings of the 6th International Symposium on Image and Signal
Processing and Analysis (ISPA),Salzburg, Austria. IEEE, pp. 449-454, 2009.
- V. Ćurić, J. Lindblad, N. Sladoje, H. Sarve, and G. Borgefors. A new set distance and
application to shape registration. Accepted for Pattern Analysis and Applications, 201
- V. Ćurić, J. Lindblad, and N. Sladoje. Distance measures between digital fuzzy object
and their applicability in image processing. In Proceedings of the 14th International
Workshop on Combinatorial Image Analysis (IWCIA2011), Madrid, Spain. Lecture No
in Computer Science, Vol. 6636, pp. 385-395, 2011 . Our results are summarized in the following papers:
- J. Lindblad, V. Ćurić, and N. Sladoje. On set distances and their application to image
registration. In Proceedings of the 6th International Symposium on Image and Signal
Processing and Analysis (ISPA),Salzburg, Austria. IEEE, pp. 449-454, 2009.
- V. Ćurić, J. Lindblad, N. Sladoje, H. Sarve, and G. Borgefors. A new set distance and
application to shape registration. Accepted for Pattern Analysis and Applications, 201
- V. Ćurić, J. Lindblad, and N. Sladoje. Distance measures between digital fuzzy object
and their applicability in image processing. In Proceedings of the 14th International
Workshop on Combinatorial Image Analysis (IWCIA2011), Madrid, Spain. Lecture No
in Computer Science, Vol. 6636, pp. 385-395, 2011 . Our results are summarized in the following papers:
- J. Lindblad, V. Ćurić, and N. Sladoje. On set distances and their application to image
registration. In Proceedings of the 6th International Symposium on Image and Signal
Processing and Analysis (ISPA),Salzburg, Austria. IEEE, pp. 449-454, 2009.
- V. Ćurić, J. Lindblad, N. Sladoje, H. Sarve, and G. Borgefors. A new set distance and its
application to shape registration. Accepted for Pattern Analysis and Applications, 2012.
- V. Ćurić, J. Lindblad, and N. Sladoje. Distance measures between digital fuzzy objects
and their applicability in image processing. In Proceedings of the 14th International
Workshop on Combinatorial Image Analysis (IWCIA2011), Madrid, Spain. Lecture Note
in Computer Science, Vol. 6636, pp. 385-395, 2011. Our results are summarized in the following papers:
- J. Lindblad, V. Ćurić, and N. Sladoje. On set distances and their application to image
registration. In Proceedings of the 6th International Symposium on Image and Signal
Processing and Analysis (ISPA),Salzburg, Austria. IEEE, pp. 449-454, 2009.
- V. Ćurić, J. Lindblad, N. Sladoje, H. Sarve, and G. Borgefors. A new set distance and its
application to shape registration. Accepted for Pattern Analysis and Applications, 2012.
- V. Ćurić, J. Lindblad, and N. Sladoje. Distance measures between digital fuzzy objects
and their applicability in image processing. In Proceedings of the 14th International
Workshop on Combinatorial Image Analysis (IWCIA2011), Madrid, Spain. Lecture Note
in Computer Science, Vol. 6636, pp. 385-395, 2011 . Our results are summarized in the following papers:
- J. Lindblad, V. Ćurić, and N. Sladoje. On set distances and their application to image
registration. In Proceedings of the 6th International Symposium on Image and Signal
Processing and Analysis (ISPA),Salzburg, Austria. IEEE, pp. 449-454, 2009 .
- V. Ćurić, J. Lindblad, N. Sladoje, H. Sarve, and G. Borgefors. A new set distance and it
application to shape registration. Accepted for Pattern Analysis and Applications, 2012
- V. Ćurić, J. Lindblad, and N. Sladoje. Distance measures between digital fuzzy objects
and their applicability in image processing. In Proceedings of the 14th International
Workshop on Combinatorial Image Analysis (IWCIA2011), Madrid, Spain. Lecture Notes
in Computer Science, Vol. 6636, pp. 385-395, 2011 . Our results are summarized in the following papers:
- J. Lindblad, V. Ćurić, and N. Sladoje. On set distances and their application to image
registration. In Proceedings of the 6th International Symposium on Image and Signal
Processing and Analysis (ISPA),Salzburg, Austria. IEEE, pp. 449-454, 2009.
- V. Ćurić, J. Lindblad, N. Sladoje, H. Sarve, and G. Borgefors. A new set distance and
application to shape registration. Accepted for Pattern Analysis and Applications, 201
- V. Ćurić, J. Lindblad, and N. Sladoje. Distance measures between digital fuzzy object
and their applicability in image processing. In Proceedings of the 14th International
Workshop on Combinatorial Image Analysis (IWCIA2011), Madrid, Spain. Lecture No
in Computer Science, Vol. 6636, pp. 385-395, 2011 . Our results are summarized in the following papers:
- J. Lindblad, V. Ćurić, and N. Sladoje. On set distances and their application to image
registration. In Proceedings of the 6th International Symposium on Image and Signal
Processing and Analysis (ISPA),Salzburg, Austria. IEEE, pp. 449-454, 2009 .
- V. Ćurić, J. Lindblad, N. Sladoje, H. Sarve, and G. Borgefors. A new set distance and its
application to shape registration. Accepted for Pattern Analysis and Applications, 2012.
- V. Ćurić, J. Lindblad, and N. Sladoje. Distance measures between digital fuzzy objects
and their applicability in image processing. In Proceedings of the 14th International
Workshop on Combinatorial Image Analysis (IWCIA2011), Madrid, Spain. Lecture Notes
in Computer Science, Vol. 6636, pp. 385-395, 2011. Our results are summarized in the following papers:
- J. Lindblad, V. Ćurić, and N. Sladoje. On set distances and their application to image
registration. In Proceedings of the 6th International Symposium on Image and Signal
Processing and Analysis (ISPA),Salzburg, Austria. IEEE, pp. 449-454, 2009.
- V. Ćurić, J. Lindblad, N. Sladoje, H. Sarve, and G. Borgefors. A new set distance and
application to shape registration. Accepted for Pattern Analysis and Applications, 201
- V. Ćurić, J. Lindblad, and N. Sladoje. Distance measures between digital fuzzy object
and their applicability in image processing. In Proceedings of the 14th International
Workshop on Combinatorial Image Analysis (IWCIA2011), Madrid, Spain. Lecture No
in Computer Science, Vol. 6636, pp. 385-395, 2011 . image
Signal
Lecture and its
Note

- Our choice of distance measures to explore:
- applicable to image registration and pattern/shape matching
- of linear computational complexity;
- applicable to crisp sets and applicable to fuzzy sets
- theoretical aspects of the problem i.e., different properties of different

Characterize a pair of sets by a single number

- the distance between them -
reflecting size of a displacement and/or difference in some other way.
- Interest is both in
(
(1) Distances between sets
(2) Distances between fuzzy sets
(3) Concluding remarks

O

The Coverage model	Distances between objects		
$\begin{aligned} & \text { Nataša } \\ & \text { Sladoje and } \\ & \text { Joakim } \\ & \text { Lindblad } \end{aligned}$			
Distances between sets	Distances - between two points in a set		
Distances between fuzzy sets	- between a point and a set - between two sets		
Concluding remarks	are of interest.		
	Point-to-point:		
	Distance d between two points $a, b \in X$, is $d(a, b)=\\|a-b\\|_{2}$.		
	Point-to-set:		
	The distance between a point $a \in X$ and a non-empty set $B \subseteq X$ is		
	$d(a, B)=\inf _{b \in B} d(a, b)$.		
	The distance between sets often incorporates information on point-to-set distances, for some selection of the points involved.		

- between two points in a set
- between a point and a set
- between two sets

Hausdorff distance

$$
d_{H}(A, B)=\max \left(\sup _{a \in A} d(a, B), \sup _{b \in B} d(b, A)\right)
$$

- Modified Hausdorff distance

$$
d_{M H}(A, B)=\max \left(\frac{1}{|A|} \sum_{a \in A} d(a, B), \frac{1}{|B|} \sum_{b \in B} d(b, A)\right)
$$

- Metric by Symmetric difference

$$
d_{S D}(A, B)=|(A \backslash B) \cup(B \backslash A)|
$$

- Chamfer matching distance

$$
d_{C H}(A, B)=\sum_{a \in \partial A} d(a, \partial B)
$$

- The Sum of minimal distances

$$
d_{S M D}(A, B)=\frac{1}{2}\left(\sum_{a \in A} d(a, B)+\sum_{b \in B} d(b, A)\right)
$$

Main properties of the set distances

- Hausdorff distance is a metric, however very sensitive to noise.
- Modified Hausdorff distance is not a metric, but it is less sensitive to noise.
- Metric by Symmetric Difference is a metric, but it is not sensitive to spatial displacements of non-overlapping sets
- Chamfer Matching distance is not a metric. It can be sensitive to boundary noise and to an exchange of foreground and background
- Sum of Minimal Distances is not a metric. Exhibits reasonably good properties.

The Chamfer matching distance does not distinguish between points of the object and points of the background. A: Reference image I_{r}, B: Observed image I_{o}, C : Observed image (Red) and Registered image (Green) superimposed.

A

B

Intention:

To assign a higher importance to the points of A deep inside the set than to points closer to the boundary of the set, and by that further improve The Sum of Minimal Distances.

$$
d_{C W}(A, B)=\frac{1}{2}\left(\frac{\sum_{a \in A} d(a, B) d(a, \bar{A})}{\sum_{a \in A} d(a, \bar{A})}+\frac{\sum_{b \in B} d(b, A) d(b, \bar{B})}{\sum_{b \in B} d(b, \bar{B})}\right) .
$$

Properties:
non-negativity, separability and symmetry.

Complement Weighted Sum of Minimal
Distances
Comparison of weighting performed - an illustration

Two binary shapes A and B and their symmetric difference $A \triangle B$.
Values assigned to individual points of sets A and B for $d_{S M D}$ and for $d_{C W}$.

Set distances between crisp sets

An overview of the results

- Newly proposed set distance measure, CWSMD, is a semimetric, and is of a linear computational complexity.
- CWSMD is a weighted version of the Sum of Minimal Distances, SMD
- An improved performance (regarding monotonicity under translation and rotation, and noise sensitivity), compared to SMD (and even more to other observed set distances) is evident, even if not dramatic.
- Applicability of CWSMD in image registration is confirmed on synthetic and real tasks
- Applicability of CWSMD to the distance based handwritten characters recognition task is also shown to be high.

- Fuzzy object representations and appropriately adjusted image analysis tools are, one more time, shown to provide image processing with improved performance.
- Most common fuzzification approach of α-cutting provides distance measures that perform very well in many situations and significantly outperform their corresponding crisp counterparts.
- An important observation is that, even in analysis performed on crisp objects, utilization of distance measures defined for fuzzy sets in intermediate steps and intermediate fuzzy object representations, lead to significant improvements in terms of precision. They, here as well, enable analysis at sub-pixel precision.

Distances between fuzzy sets

Concluding remarks

Set distances between fuzzy sets
Possible step further - When (and how) to cut?

- Fuzzification can be performed earlier than at a "set distance level".
- What about fuzzifying a point-to-set distance?
- What about point-to-point distance in a fuzzy set?

Set distances between fuzzy sets

 Fuzzification of a point-to-set distanceDefinitions of so far used set distances can be adjusted to fuzzy sets also as:

- Point-to-set based Hausdorff distance:

$$
d_{H}^{p s}(\mathcal{A}, \mathcal{B})=\max \left(\sup _{a \in \operatorname{Supp}(\mathcal{A})} d(a, \mathcal{B}), \sup _{b \in \operatorname{Supp}(\mathcal{B})} d(b, \mathcal{A})\right)
$$

- Point-to-set based Sum of Minimal Distances:

$$
d_{S M D}^{p s}(\mathcal{A}, \mathcal{B})=\frac{1}{2}\left(\sum_{a \in \operatorname{Supp}(\mathcal{A})} d(a, \mathcal{B})+\sum_{b \in \operatorname{Supp}(\mathcal{B})} d(b, \mathcal{A})\right)
$$

- Point-to-set based Complement Weighted Sum of Minimal Distances:

$$
d_{C W}^{p s}(\mathcal{A}, \mathcal{B})=\frac{1}{2}\left(\frac{\sum_{a \in \operatorname{Supp}(\mathcal{A})} d(a, \mathcal{B}) \cdot d(a, \overline{\mathcal{A}})}{\sum_{a \in \operatorname{Supp}(\mathcal{A})} d(a, \overline{\mathcal{A}})}+\frac{\sum_{b \in \operatorname{Supp}(\mathcal{B})} d(b, \mathcal{A}) \cdot d(b, \overline{\mathcal{B}})}{\sum_{b \in \operatorname{Supp}(\mathcal{B})} d(b, \overline{\mathcal{B}})}\right)
$$

Distances between fuzzy sets - Future work "Vertical approach" - Motivation

Main issue:

How to define $d(a, \mathcal{B})$, for a (fuzzy) point a and a fuzzy set \mathcal{B}.

- "Horizontal approach" is possible here too:

$$
d(a, \mathcal{B})=\int_{0}^{1} d\left(a,{ }^{\alpha} B\right) d \alpha=\int_{0}^{1} \min _{b \in{ }^{\alpha}} d(a, b) d \alpha .
$$

- Intuitively unappealing property:

Every α-cut is observed independently of the others; distance from a point to a set may follow different paths at different α-levels, depending on a shape of a membership function.

Idea:
To define a path-based distance between a point and a set seems rather promising and will be addressed in our future work!

