Part 3 - Feature extraction

Nataša Sladoje and Joakim Lindblad
sladoje@uns.ac.rs, joakim@cb.uu.se

Feature estimation - some general

 observations- Our aim is to obtain information about continuous real objects, having available their discrete - coverage - representation.
- Different numerical descriptors, such as area, perimeter, moments, of the objects are often of interest, for the tasks of shape analysis, classification, etc.
- Estimators should be adjusted/designed so that they utilize in a best way information preserved in a coverage representation.

Precision of features extracted from the coverage representation

(1) Geometric moments

- N. Sladoje and J. Lindblad. Estimation of Moments of Digitized Objects with Fuzzy Borders. ICIAP'05, LNCS-3617, pp. 188-195, Cagliari, Italy, 2005.
(2) Perimeter
- N. Sladoje and J. Lindblad. High Precision Boundary Length Estimation by Utilizing Gray-Level Information. IEEE Trans. on PAMI, Vol. 31, No. 2, pp. 357-363, 2009.
Signature of a shape
- J. Chanussot, I. Nyström, N. Sladoje. Shape Signatures of Fuzzy Sets Based on Distance from the Centroid, PRL, 26(6), pp. 735-746, 2005.
Projection (diameter, elongation)
- S. Dražić, J. Lindblad, N. Sladoje. Precise Estimation of the Projection of a Shape from a Pixel Coverage Representation. Proc. of ISPA 2011 (IEEE), pp. 569-574, Dubrovnik, Croatia, 2011.
Distances between sets (shape matching, image registration)
- V. Ćurić, J. Lindblad, and N. Sladoje. Distance measures between digital fuzzy objects and their applicability in image processing. IWCIA2011, LNCS-6636, pp. 385-395, Madrid, Spain,

2011. 2011.

Feature estimation - some general

 observations- Evaluation of an estimator should, in an ideal case, provide some relevant error bounds.
- Several estimators proposed for general fuzzy membership functions are (only) statistically evaluated (for some selection of cases) and improvements in terms of precision are observed.
- Generality is often an obstacle for derivation of stronger theoretical statements about the derived estimation methods.
- Membership function of a coverage model is restricted enough to allow derivation of error bounds for feature estimators.

Feature extraction - some general observations

Aggregation over α-cuts - a standard approach for fuzzy sets

Given a function $f: \mathcal{P}(X) \rightarrow \mathbb{R}$, which assigns a real valued "feature" to a crisp subset of an integer grid,
we can extends this function to $f: \mathcal{F}(X) \rightarrow \mathbb{R}$, so that it assigns a real valued feature to a fuzzy subset of an integer grid, using the equation

$$
f(S)=\int_{0}^{1} f\left(S_{\alpha}\right) d \alpha
$$

where S_{α} is an α-cut of a fuzzy set S, i.e., a crisp set that contains all the elements in X that have membership value in S greater than or equal to α :

$$
F_{\alpha}=\left\{x \in X \mid \mu_{F}(x) \geq \alpha\right\} .
$$

α-cutting is thresholding of the membership function at a level α.

Geometric moments - computation

Definition

The two-dimensional Cartesian moment, $m_{p, q}$ of a function $f(x, y)$ is defined as

$$
m_{p, q}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) x^{p} y^{q} d x d y,
$$

for integers $p, q \geq 0$. The moment $m_{p, q}(S)$ has the order $p+q$.

Definition

Geometric moment $m_{p, q}$ of a digital image $f(i, j)$ is

$$
m_{p, q}=\sum_{i} \sum_{j} f(i, j) i^{p} j^{q},
$$

where (i, j) are points in the (integer) sampling grid.

Geometric moments of objects provide information about area, (hyper-)volume, centroid, principal axes, and a number of other features of the shape.

Crisp representation:

Theorem

The moments of a closed bounded set S, digitized in a grid with resolution r (the number of grid points per unit), can be estimated by

$$
m_{p_{1}, p_{2}}(S)=\frac{1}{r^{p_{1}+p_{2}+2}} \tilde{m}_{p_{1}, p_{2}}(r S)+\mathcal{O}\left(\frac{1}{r}\right)
$$

for $p_{1}+p_{2} \leq 2$
Here $r S$ denote a scaling of the continuous set S about the origin by the factor r. Scaling of the object can be used instead of changing resolution of a grid.

Geometric moments are multi-grid convergent.

Coverage representation:

Theorem

The moments of a closed and bounded 2D shape S can, for $p_{1}+p_{2} \leq 2$, be estimated by

$$
m_{p_{1}, p_{2}}(S)=\frac{1}{r_{s}^{p_{1}+p_{2}+2}} \tilde{\mathcal{M}}_{p_{1}, p_{2}}^{r_{f}}\left(r_{s} S\right)+\mathcal{O}\left(\frac{1}{r_{s}^{2}}\right)+\mathcal{O}\left(\frac{1}{r_{s} r_{f}}\right)
$$

where $\tilde{\mathcal{M}}_{p_{1}, p_{2}}^{r_{2}}$ is $\left(p_{1}, p_{2}\right)$-geometric moment of $r_{s} S$ computed from its r_{f}-sampled coverage segmentation.

Left: (top) Synthetic test objects. (middle) Part of object with 30% noise added. (bottom) Coverage segmentation result for 30% noise. Right: Estimation errors for increasing levels of noise. Green is noise free crisp reference. Lines show averages for 50 observations and bars indicate max and min errors.

 estimate

- Stable, if the local estimate is bounded

Non-local estimators

Use information from larger (unbounded) regions of the image.

- Difficult to parallelize, if at all possible
- Often of higher complexity (may be NP-hard)
- May suffer from stability problems
- Small change of the image requires global recomputation
- To minimize MSE: $a=0.9481$ and $b=1.3408$.

Root Mean Square (RMS) Error is 2.33%.

- To minimize MaxErr: $a=0.9604$ and $b=1.3583$.

Maximal Error is 3.95%.

- The error does not decrease with increasing resolution

Local estimators

Use information from a small region of the image to compute a local feature estimate. The global feature is computed by a summation of the local feature estimates over the whole image.

- Easy to implement
- Trivial to parallelize
- If a local change in the image, only that part has to be traversed to update the

Local and non-local estimators

Local and non-local estimators

- Local estimators have sufficiently many advantages compared to global ones, to deserve to be studied further.
- Local perimeter estimators are, however, not multigrid convergent, not even for straight edges.

The straight edge of a halfplane

Discrete, grey-scale, non-quantized

Observe a halfplane $H=\{(x, y) \mid y(x) \leq k x+m, k, m \in[0,1]\}$, over an interval $x \in[0, N], N \in \mathbb{Z}^{+}$.
Let I be the non-quantized pixel coverage digitization $I=\mathcal{D}(H)$ ($\Delta x=\Delta y=h=1$ by definition.)

Then it holds that

$$
\begin{gathered}
y(i)=\sum_{j \geq 0} I(i, j)-0.5 \\
k(i)=y(i+1)-y(i)=k \\
l=\sqrt{N^{2}+(k N)^{2}}=\sum_{i=0}^{N-1} \sqrt{1+k(i)^{2}}
\end{gathered}
$$

The length of the edge segment l is "estimated" with no error.

Example illustrating edge length estimation based on the difference d_{c} of column sums s_{c} for a segment $(N=4)$ of a halfplane edge given by $y \leq 0.45 x+0.78$.

$$
s_{c}=\sum_{j \geq 0} I(c, j), d_{c}=s_{c+1}-s_{c}, l_{c}=\sqrt{1+d_{c}^{2}}
$$

The straight edge of a halfplane

Discrete, grey-scale, quantized

Observe a halfplane $H=\{(x, y) \mid y(x) \leq k x+m, k, m \in[0,1]\}$,
over an interval $x \in[0, N], N \in \mathbb{Z}^{+}$.
Let I be the quantized pixel coverage digitization $I=\mathcal{D}^{n}(H)$
Then

$$
\tilde{l}=\sum_{c=0}^{N-1} \sqrt{1+d_{c}^{2}}
$$

provides an estimate of the edge length l.
However, this is in general an overestimate (zig-zag steps). Scaling the estimate with an optimally chosen factor $\gamma_{n}<1$, gives an estimate with a minimal error.

$$
\hat{l}=\sum_{c=0}^{N-1} \gamma_{n} \sqrt{1+d_{c}^{2}}
$$

Minimization of the maximal relative error

An edge is a linear combination of local steps

The edge segment $l=(N, k N)$ can be expressed as a linear combination of two of the vectors, $S_{i}=\left(1, \frac{i}{n}\right)$, $S_{j}=\left(1, \frac{i}{n}\right), i, j \in\{0,1, \ldots, n\}$, having slopes $k_{i}=\frac{i}{n}, k_{j}=\frac{i}{n}$ such that $k_{i} \leq k \leq k_{j}$. ts length on the interval $[0, N]$ can be estimated by

$$
\hat{l}=\gamma_{n}\left(\frac{(j-n k) N}{j-i} S_{i}+\frac{(n k-i) N}{j-i} S_{j}\right), \text { where } S_{i}=\sqrt{1+\left(\frac{i}{n}\right)^{2}} .
$$

Relative error of the length estimation

The relative error of the length estimation of the line segment with slope k, such that $k \in\left[\frac{i}{n}, \frac{j}{n}\right)$:

$$
\varepsilon_{i, j}(k)=\frac{\hat{l}-l}{l}=\gamma_{n} \frac{(j-n k) S_{i}+(n k-i) S_{j}}{(j-i) \sqrt{1+k^{2}}}-1 .
$$

Example illustrating edge length estimation based on the difference d_{c} of column sums s_{c} for a segmen $N=4$) of a halfplane edge given by $y \leq 0.45 x+0.78$.

$$
s_{c}=\sum_{j \geq 0} I(c, j), d_{c}=s_{c+1}-s_{c}, l_{c}=\sqrt{1+d_{c}^{2}}
$$

Result [Sladoje and Lindblad, PAMI 2009]
The maximal error is minimized for

$$
\gamma_{n}^{q}=\frac{2 q}{q+\sqrt{\left(\sqrt{n^{2}+q^{2}}-n\right)^{2}+q^{2}}}, \text { where } q=j-i
$$

The maximal error is $|\varepsilon|=1-\gamma_{n}^{q}$.
Quantization leads to $q>1$. In 2D it holds that $q \leq 3$.

Asymptotic behaviour

Observing the estimation error as a function of the number of grey-levels n, we conclude that

$$
\left|\varepsilon_{n}\right|=\mathcal{O}\left(\frac{1}{n^{2}}\right) .
$$

Asymptotic behaviour of the maximal error for straight edge length estimation using $\gamma_{n}=\gamma_{n}^{1}$; theoretical (line) and empirical (points) results.
Input: Pixel coverage values $\tilde{p}_{i}, i=1, \ldots, 9$, from a 3×3 neighbourhood $T_{(c, r)}$.
Output: Local edge length $\hat{l}_{(c, r)}^{T}$ for the given 3×3 configuration.
if }\mp@subsup{\tilde{p}}{7}{}+\mp@subsup{\tilde{p}}{8}{}+\mp@subsup{\tilde{p}}{9}{}<\mp@subsup{\tilde{p}}{1}{}+\mp@subsup{\tilde{p}}{2}{}+\mp@subsup{\tilde{p}}{3}{}/* y\geqkx+\mp@subsup{m}{}{*/
if }\mp@subsup{\tilde{p}}{7}{}+\mp@subsup{\tilde{p}}{8}{}+\mp@subsup{\tilde{p}}{9}{}<\mp@subsup{\tilde{p}}{1}{}+\mp@subsup{\tilde{p}}{2}{}+\mp@subsup{\tilde{p}}{3}{}/* y\geqkx+\mp@subsup{m}{}{*/
swap(\mp@subsup{\tilde{p}}{1}{\prime},\mp@subsup{\tilde{p}}{7}{})
swap(\mp@subsup{\tilde{p}}{1}{\prime},\mp@subsup{\tilde{p}}{7}{})
\operatorname{wap}(\mp@subsup{\tilde{p}}{3}{},\mp@subsup{\tilde{p}}{9}{})
\operatorname{wap}(\mp@subsup{\tilde{p}}{3}{},\mp@subsup{\tilde{p}}{9}{})
endif
endif
if \tilde{p}3+
if \tilde{p}3+
wap(\mp@subsup{p}{1}{},\mp@subsup{\tilde{p}}{3}{})<\mp@subsup{\tilde{p}}{1}{}+\mp@subsup{\tilde{p}}{4}{}+\mp@subsup{\tilde{p}}{4}{}
wap(\mp@subsup{p}{1}{},\mp@subsup{\tilde{p}}{3}{})<\mp@subsup{\tilde{p}}{1}{}+\mp@subsup{\tilde{p}}{4}{}+\mp@subsup{\tilde{p}}{4}{}
swap(\mp@subsup{\tilde{p}}{4}{},\mp@subsup{\tilde{p}}{6}{})
swap(\mp@subsup{\tilde{p}}{4}{},\mp@subsup{\tilde{p}}{6}{})
swap(\mp@subsup{\tilde{p}}{7}{},\mp@subsup{\tilde{p}}{9}{})
swap(\mp@subsup{\tilde{p}}{7}{},\mp@subsup{\tilde{p}}{9}{})
endif
endif
if \tilde{p}4+\mp@subsup{\tilde{p}}{7}{}+\mp@subsup{\tilde{p}}{8}{}<\mp@subsup{\tilde{p}}{2}{}+\mp@subsup{\tilde{p}}{3}{}+\mp@subsup{\tilde{p}}{6}{6}/*}k>1*
if \tilde{p}4+\mp@subsup{\tilde{p}}{7}{}+\mp@subsup{\tilde{p}}{8}{}<\mp@subsup{\tilde{p}}{2}{}+\mp@subsup{\tilde{p}}{3}{}+\mp@subsup{\tilde{p}}{6}{6}/*}k>1*
\operatorname{swap}(\mp@subsup{\tilde{p}}{2}{},\mp@subsup{\tilde{p}}{4}{})
\operatorname{swap}(\mp@subsup{\tilde{p}}{2}{},\mp@subsup{\tilde{p}}{4}{})
swap(\mp@subsup{\tilde{p}}{6}{},\mp@subsup{\tilde{p}}{8}{})
swap(\mp@subsup{\tilde{p}}{6}{},\mp@subsup{\tilde{p}}{8}{})
endif
endif
\mp@subsup{\tilde{s}}{1}{}=\mp@subsup{\tilde{p}}{1}{}+\mp@subsup{\tilde{p}}{4}{}+\mp@subsup{\tilde{p}}{7}{}
\mp@subsup{\tilde{s}}{1}{}=\mp@subsup{\tilde{p}}{1}{}+\mp@subsup{\tilde{p}}{4}{}+\mp@subsup{\tilde{p}}{7}{}
\mp@subsup{\tilde{s}}{2}{}=\mp@subsup{\tilde{p}}{2}{}+\mp@subsup{\tilde{p}}{5}{}+\mp@subsup{\tilde{p}}{8}{}
\mp@subsup{\tilde{s}}{2}{}=\mp@subsup{\tilde{p}}{2}{}+\mp@subsup{\tilde{p}}{5}{}+\mp@subsup{\tilde{p}}{8}{}
Only integer arithmetics used locally (fast, exact)

Perimeter estimation - evaluation
Trade-off between spatial and grey-level resolution

(a) lin-lin scale

(b) $\log -\log$ scale

Relative errors in percent for test shapes digitized at increasing resolution for 5 different quantization levels and non-quantized $(n=\infty)$.

Only local information is used (fast, stable, parallelizable)

Segm. (soft threshold) + perimeter estimation
Digital photos of the straight edge of a white paper on a black background at a number of angles using a Panasonic DMC-FX01 digital camera in grey-scale mode.

(a) Close up of the straight edge of a white paper imaged with a digital camera. (b) Segmentation output from Algorithm 2 using 130 positive grey-levels. Approximating edge segments are superimposed

Results - Segm. method 2 + perimeter est.

The observed noise range in the images is between 20 and 50 grey-levels, out of 255 , and the found value of n in the segmentation varies from 90 to 140 for the different photos.

The observed maximal errors for the methods are as follows:

- Proposed method 0.14\%;
- Binary 3.95\%;
- Corner count 1.61\%;
- Eberly \& Lancaster 8.78\%;
- Gauss $\sigma=2+\mathrm{E} \& \mathrm{~L} 0.57 \%$;
- Gauss $\sigma=4+\mathrm{E} \& \mathrm{~L} 0.58 \%$.

Perimeter estimation error in a noisy environment
in combination with coverage segmentation

Left: (top) Synthetic test objects. (middle) Part of object with 30\% noise added. (bottom) Coverage segmentation result for 30\% noise. Right: Estimation errors for increasing levels of noise. Green is noise free crisp reference. Lines show averages for 50 observations and bars indicate max and min errors

Orthogonal projection of a shape

Extremal points of a set S in the direction φ is defined as

$$
\operatorname{Min}_{\varphi}(S)=\min _{(x, y) \in S}(x \cos \varphi+y \sin \varphi)
$$

Tangent direction at extremal point P is orthogonal to the line $y=x \tan \varphi$

Orthogonal projection of a shape

Boundary of a smooth shape S in pixel A containing extremal point P, can be approximated by tangent line in extremal point.

[^0]Trapeze
$P_{1}\left(i-\frac{2 \cdot \alpha(i, j)-\tan \varphi}{2}, j\right)$
$P_{2}\left(i-\frac{2 \cdot \alpha(i, j)+\tan \varphi}{2}, j+1\right)$,
Pentagon
$P_{1}(i-1+$
$\sqrt{2 \cdot(1-\alpha(i, j)) \cdot \tan \varphi, j)}$
$\sqrt{P_{2}(i-1, j-} \sqrt{2 \cdot(1-\alpha(i, j)) \cdot \cot \varphi)}$.

Algorithm: Projection of an extremal point of
a given shape onto a given direction.

```
- Input: Pixels }\mp@subsup{p}{(i,j)}{},i\in{1,\ldotsm},j\in{1,\ldotsn}, with values of area coverage digitization \alpha(i,j) of given shape S, and
    direction }\varphi\mathrm{ for projecting.
    - Output: Value of projection, Min}\varphi,\mathrm{ of minimal extremal point onto the direction }\varphi\mathrm{ .
for i\in{1,\ldots,m},j\in{1,\ldots,n},\alpha(i,j)>0
    if 0< \alpha(i,j)<\frac{\operatorname{tan}\varphi}{2}
        \mp@subsup{\tilde{x}}{i}{}}=i,\mp@code{, 
    if }\frac{\operatorname{tan}\varphi}{2}\leq\alpha(i,j)\leq\frac{1-\operatorname{tan}\varphi}{2
        \mp@subsup{\tilde{x}}{i}{\prime}=i-\frac{2\cdot\alpha(i,j)-\operatorname{tan}\varphi}{2},
    end if
    if \alpha(i,j)>1-\frac{tan}{2}
        l
        end if
        \mp@subsup{P}{i,j}{}}=\mp@subsup{\tilde{x}}{i}{}\cdot\operatorname{cos}\varphi+\mp@subsup{\tilde{y}}{j}{}\cdot\operatorname{cos}
#.0. Nor,
```


[^0]: Triangle
 $P_{1}(i, j+1-\sqrt{2 \cdot \alpha(i, j) \cdot \cot \varphi)}$
 $P_{2}(i-\sqrt{2 \cdot \alpha(i, j) \cdot \tan \varphi}, j+1)$,
 $P_{2}(i-\sqrt{2 \cdot \alpha(i, j) \cdot \tan \varphi}, j+1)$,

