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Problem formulation

• We observe a 2D digital image I with b spectral bands.

• Let N = width× height be the number of pixels of the image and let the
image data be given as matrix I = [pi,k]N×b such that a row contains
intensities of one pixel in each of the observed bands, and a column
represents the pixel intensities in one band, over the whole image.

• Our goal is to obtain a coverage segmentation of I corresponding to m
classes (objects) existing in the image, i.e., each pixel is assigned a
vector of length m whose components give the relative area of the pixel
covered by each of the m classes.

• A coverage segmentation of the image I is a matrix A = [αi,j]N×m where
αi,j ∈ [0, 1] is the coverage of the pixel with index i (i = 1, 2 . . . ,N) by a
class (object) Sj. Assuming spatially non-overlapping classes Sj each
row of A sums up to one.
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Linear unmixing

Models based on linear unmixing of image intensities are common in the
field of image processing, due to simplicity and wide applicability.

• We model the image intensities I as a non-negative linear mixture (a
convex combination) of pure class representatives (a.k.a.
end-members).1

• The pure class representatives can be written as a matrix C = [cj,k]m×b,
where cj,k is the (expected) image value of a class j in the band k.

• Using the introduced notation, we can, conveniently, express that I is
approximately a linear mixture of the end-members as follows

I ≈ A · C .

Note: This notation suggests that the end-members cj,k are position
invariant. This is not necessarily the case; we allow spatially varying class
representatives C = C(x). However, to not complicate notation, we write C
as an m× b matrix, and not as an N × m× b 3D tensor.

1 Appropriate determination of end-members is a subject of many studies and outside the scope
of this presentation.
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Data fidelity term

Considering the task of finding a coverage segmentation A, which fulfils
I ≈ A · C as well as possible, we define the following data fidelity term D(A),
for a given image I and a given end-member matrix C

D(A) = ‖I − AC‖2 ,

where ‖X‖ is the Frobenius norm (Euclidean norm) of a matrix X.

Minimization of D(A) (calculus of variations) constrained to A ∈ AN×m

provides a linear unmixing segmentation.

A∗ = arg min
A∈AN×m

D(A)
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Data fidelity term
- an illustrative example

Example colour image with three
training regions (defining the
end-member matrix C) indicated.

A∗ = arg min
A∈AN×m

D(A)

The lack of spatial information makes this type of coverage segmentation
noise sensitive. Also, the resulting segmentation is generally too fuzzy
(too many image pixels are classified as mixed).
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Properties of coverage representations
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• homogeneous connected regions of “pure” pixels
• separated by thin layers of “mixed” pixels
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More energy terms

We add two more criteria to our (so far “too noisy” and “too fuzzy”)
segmentation model.

(i) we favour a smooth boundary of each object;

(ii) we favour objects with majority of pixels classified as pure, whereas
mixed pixels appear only as thin boundaries between the objects.

Criterion (i) is implemented by inclusion of the (fuzzy) perimeter of the
objects as a term in the energy function to minimize. Criterion (ii) is imposed
by minimizing “thickness” of boundaries over the image, and also, to some
extent, minimizing overall fuzziness of the image.

These requirements are combined into the following energy function:

J(A) = D(A) + µP(A) + νT(A) + ξF(A) ,

where D,P, T,F are data term, overall perimeter, boundary thickness,
and total image fuzziness, and µ, ν, ξ ≥ 0 are weighting parameters.
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Perimeter, thickness, and fuzziness

Perimeter P(A) is the overall (fuzzy) perimeter of the m objects of a
coverage segmentation A

P(A) =
1
2

m∑

j=1

P(Aj) .

Thickness We define border thickness T of a coverage segmentation as

T(A) =
1
2

m∑

j=1

T(Aj) ,

where the thickness of one component T(Aj) is the sum of local thickness
computed for all 2× 2 tiles of the image:

T(Aj) =
∑

(α1..4)∈τ2×2(Aj)

4∏

i=1

4αi(1− αi) .

Fuzziness The inclusion of an overall fuzziness term allows better control
of the fuzziness in the resulting segmentation.

F(A) =
N∑

i=1

m∑

j=1

4αi,j(1− αi,j) .

The
Coverage

model

Nataša
Sladoje and

Joakim
Lindblad

Preliminaries

Energy
terms

Minimization

Evaluation

Application
example

Further im-
provements

Different terms
- an illustrative example

a b c d

(a) Minimization of Data term alone (linear unmixing). (b) Minimization of Data and
Perimeter terms. (c) Minimization of Data and Fuzziness terms. (d) Minimization of
all the suggested energy terms.
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Minimization

The sought coverage segmentation A∗ is obtained by minimizing the
complete energy functional J over the set of valid coverage segmentations:

A∗ = arg min
A∈AN×m

J(A).

A convex constrained large scale non-convex optimization problem.

Encouraged by good results obtained when addressing problems of similar
structure and dimensionality we decided to use the Spectral Projected
Gradient (SPG) method.

The SPG method requires differentiating the energy function J(A).
The partial derivative of J(A) w.r.t. an individual coverage value αi,j is

∂(J(A))
∂αi,j

=
∂(D(A))
∂αi,j

+ µ
∂(P(A))
∂αi,j

+ ν
∂(T(A))
∂αi,j

+ ξ
∂(F(A))
∂αi,j

.
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Minimization

All the included terms are either pixel-wise (data and fuzziness), or utilize
only a 2× 2 neighbourhood (perimeter and thickness terms). Therefore only
9 pixel values affect ∂(J(A))

∂αi,j
, making differentiation quite “manageable”.

The energy function J is, unfortunately, highly non-convex, and
minimization of J is far from trivial. Care has to be taken to not end up in a
sub-optimal local minimum of the energy function.

To reach as good as possible result, solutions of numerically easier
problems are used as starting guesses when addressing more difficult ones.
We initiate the process with a unmixing based on the data term alone. This
is followed by introduction of the perimeter term and an iterative part where
the weights of the two fuzziness regulating terms ν and ξ are gradually
increased.

The iteration continues until the Fuzziness of the solution is lower than twice
the Perimeter. This stopping criterion utilizes the fact that a correct
coverage representation typically fulfils this relation.
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Method 5: Algorithm

Alg. 1. Coverage segmentation

Parameters: µ, ν0, ξ0, ρ ≥ 0.

A0 =
[ 1

m

]
N×m

; ν = ν0; ξ = ξ0;

A = arg min D(A0) by SPG;
repeat

A← arg min J(A; I,C, µ, ν, ξ) by SPG;
f = F(A)/(2P(A));
ν ← ν(1 + ρ · f );
ξ ← ξ(1 + ρ · f );

until f ≤ 1



The
Coverage

model

Nataša
Sladoje and

Joakim
Lindblad

Preliminaries

Energy
terms

Minimization

Evaluation

Application
example

Further im-
provements

Qualitative evaluation

(a)

(b)

(c)

Segmentation result obtained by: (a) linear discriminant analysis, (b) fuzzy
c-means clustering, (c) the proposed method.
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Quantitative evaluation
- noise sensitivity
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Crisp, no noise
S & L (2009b)
Alg 1, µ = 0.5
Alg 1, µ = 5σ

Left: (top) Synthetic test objects. (middle) Part of object with 30% noise added.
(bottom) Coverage segmentation result for 30% noise. Right: Average absolute error
of coverage values of object border pixels for different noise levels. Lines show
averages for 50 observations and bars indicate max and min errors.
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Quantitative evaluation
- noise sensitivity
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Crisp, no noise
S & L (2009b)
Alg 1, µ = 0.5
Alg 1, µ = 5σ

Left: (top) Synthetic test objects. (middle) Part of object with 30% noise added.
(bottom) Coverage segmentation result for 30% noise. Right: Average absolute error
of coverage values of object border pixels for different noise levels. Lines show
averages for 50 observations and bars indicate max and min errors.
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Segmentation of hyperspectral data

• Test on a publicly available1 220 band hyperspectral data set from an
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS).

• The same data is used in Villa et al.2 allowing direct performance
comparison.

• Available ground truth classification is crisp. Approximate coverage
values are created by binning 3× 3 pixels into a lower resolved image.

• The 220 bands are highly correlated, making the Euclidean distance (in
the Data term) unsuitable as a distance measure. We therefore
decorrelate the data initially by a whitening transformation.

• For each class, 20 non-mixed pixels from the low resolution image are
randomly selected as training data. From these pixels the matrix C is
computed.

1 https://engineering.purdue.edu/~biehl/MultiSpec/
2 A. Villa et al. “Spectral unmixing for the classification of Hyperspectral images at a finer spatial

resolution.” IEEE J. Selected Topics Signal Proc. 5 (3), 512-533. 2011.
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(a) One band (30 out of 220) of a low
resolution image obtained by averag-
ing of 3×3 blocks in the original image
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(b) Ground truth for the high reso-
lution image, with unclassified pixels
presented in black
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(c) A coverage segmentation (into four
classes) of (a)
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(d) Crisp segmentation derived from
(c) at the same spatial resolution as (b)
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Quantitative evaluation of results

• The method of Villa et al. (2011) performs sub-pixel classification.
(SVM-based coverage segmentation is followed by spatial high
resolution assignment by means of simulated annealing optimization.)

• To compare our results, we generate two high resolution distributions of
coverage:

1 “Stupid” method: Perform crisp classification and scale up by a factor 3
2 Optimal method: Distribute the coverage to best match the ground truth

This provides lower and upper bounds of accuracy for a possible
sub-pixel assignment of the coverage values.

Accuracy [%] CPU time [s]
Villa et al.,2011 90.65 58 (88 incl. SA)
Proposed [92.59,94.74] 4.5
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Further improvements . . . work in progress

• We observe that the perimeter term (which likes fuzzy plateaus) and
the two defuzzifying terms to some extent fight each other.

• To reach a desired result, the defuzzifying terms have to be strong
enough, but should not be so strong as to give a crisp output.

A difficult balance act which is only partly solved by the designed algorithm
(with its slow increase of defuzzifying terms and a smart stopping criterion).
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A new Fuzziness term

• Fuzziness should not be penalized when it appears on object
boundaries.

Scale the fuzziness term based on local “edgeness”.

F(A) =
N∑

i=1

m∑

j=1

4αi,j(1− αi,j)(1− κi,j) ,

where
κi,j = max

k∈N (i)
αk,j − min

k∈N (i)
αk,j

and N (i) is the 3× 3 neighbourhood of pixel i.

• The new term is able to replace both previous terms T and F.
• The larger 3× 3 neighbourhood makes processing a bit slower.
• Much improved stability w.r.t. parameter changes.
• Allows simplified algorithm and gives better results.
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Quantitative evaluation
- noise sensitivity
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Crisp, no noise
S & L (2009b)
Alg 1, µ = 0.5
Alg 1, µ = 5σ
Alg 2, µ = 0.5
Alg 2, µ = 5σ

Left: (top) Synthetic test objects. (middle) Part of object with 30% noise added.
(bottom) Coverage segmentation result for 30% noise. Right: Average absolute error
of coverage values of object border pixels for different noise levels. Lines show
averages for 50 observations and bars indicate max and min errors.
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A new Data fidelity term

• The only term in the Energy function that relates to the input image is
the Data term.

• By matching an n× n block of pixels in the segmented image A with one
pixel in the input image I, super resolution coverage segmentation is
directly available.
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Reconstruction at increased resolution
- evaluation of noise sensitivity
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Crisp, noise free

Crips, noise free hi−res.
Sub−pixel coverage segm. .

Left: (top) Synthetic test objects. (middle) Part of object with 30% noise added.
(bottom) Coverage segmentation result for 30% noise at twice the original
resolution. Right: Average absolute error of coverage values of object border pixels
for different noise levels at twice the original resolution. Lines show averages for 50
observations and bars indicate max and min errors.
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Reconstruction at increased resolution
- synthetic image

Segmentation at four times the original res-
olution, for a noise free case, 15% of added
noise, and 30% of added noise, respectively.



The
Coverage

model

Nataša
Sladoje and

Joakim
Lindblad

Preliminaries

Energy
terms

Minimization

Evaluation

Application
example

Further im-
provements

Reconstruction at increased resolution
- satellite image
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(a) One band (30 out of 220) of a low
resolution image obtained by averag-
ing of 3×3 blocks in the original image
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(b) Ground truth for the high reso-
lution image, with unclassified pixels
presented in black
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(c) New super resolution segmenta-
tion (3 times higher resolution)
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Deconvolution

• If the point spread function is larger than the size of a pixel, the linear
mixture assumed in the Data term starts to be questionable.

• However, the convolution of the image data with a point spread function
can be straigtforwardly incorporated into the Data fidelity term.

• Using the introduced notation, this is just one more matrix multiplication
(see the function convmtx2 in Matlab).

D(A) = ‖I − KAC‖2 ,
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Work in progress. . .

Original image with three training
regions.

Promising first results with deconvolution . . .


