

- Embedded in the hard bone matrix → light can't penetrate it
 Size of canaliculi in the range 300 700 nm (human)
- \rightarrow high spatial resolution required
- Complex 3D organization
- Needs to be studied in a relatively large 3D region
 → osteon ⇔ the basic structural & functional unit in bone cortex
 (~200 µm diam., up to 2 mm in length)
- So far studied mainly in 2D (3D parameters infered)
- Recently 3D methods proposed but FOV is restricted to 1-3 cells and imaging is tedious

Oil immersion

(Shapiro, 1988)

CLSM - spatial resolution 263 nm in plane 604 nm in depth (Sugawara et al. 2005)

ropean Synchrotron Radiation Facility

b Swedds University of Agricultural Sciences

Precise image analysis is necessary

- New images no previous work on analysing this type of structure from X-ray micro CT images
- Measurements on cell morphology, cell orientation, cell dendrites length, branching, connectivity are needed
- Interactive segmentation not feasible (10³ cells, 10⁵-10⁶ dendrites in
- · Some a priori information can be used
- Main challenges
 - Size of the canaliculi 1-3 voxels thick in the reconstructed data
 - Partial volume effect
 - 3D complexity of the cell network
 - Bone matrix is not homogeneous

 - Low contrast
- Image size 32 GB (rescale to 8 bit => 8 GB)

Centre for Image Analysis Sere Suedah University of Apricultural Sciences A Light for Science	Centre for Image Analysis ESRF Centre for Image Analysis Uppala University of Apricultural Sciences Current Analysis
	Variational Region Growing
The second second second	• Framework proposed by [Rose, Muller et al., 2010]
Segmentation attempts	• Achieve the desired image partition by switching a discrete function $\varphi_{\mathbf{X}}$ in order to minimize a functional $J(\varphi_{\mathbf{X}})$ which models the structure to detect • The function governing the region propagation:
ENDI IL MARKE	$F(\varphi_{\mathbf{x}}, \Delta J(\tilde{\varphi})) = -c(\varphi) \cdot H(-\Delta J(\tilde{\varphi}))$ $c(\varphi) = 1 - 2\varphi_{\mathbf{x}}$ Ω_{out} Ω_{in}
	With H the Heaviside function
	 Candidate voxels tested at each iteration – the outer border of the aggregated regions
European Synchrotron Radiation Facility	Design suited energy functional
17	European Synchrotron Radiation Facility

