Sub-Pixel Precision Measurement in the Point-Sampling Model

Topics

- What is important for a measure?
- accuracy (bias), precision, sampling-invariance
- How does filtering affect the measurement?
- The point-sampling model:
- image formation, band limit, sampling, Fourier analysis
- Soft clipping
- Measurement:
- area
- perimeter
- curvature
- bending energy
- Euler number (object count)

Cris Luengo - Centre for Image Analysis - 2012-9-18 - cris@cb.uu.se

Accuracy vs. precision

precision is useless if measurement is biased
bias = lack of accuracy

Cris Luengo - Centre for Image Analysis - 2012-9-18 - cris@cb.uu.se

Sampling invariance

- The choice of sampling grid should not influence the measurement result:
- translation invariance
- rotation invariance
- scaling invariance
- when counting pixels, a denser grid gives higher precision
- Methods we talk about today are invariant to scaling!
- given a properly sampled band-limited function
- thus: there is a minimum sampling density
- band limit gives maximum attainable precision

Cris Luengo - Centre for Image Analysis - 2012-9-18 - cris@cb.uu.se

Effects of filtering

- Low-pass filtering always moves the edges inwards
- (Inwards = in the direction of curvature)
- This is also true for median filtering, for example!
- Edge-preserving smoothing filters sometimes also move edges

count $=4421$

count $=4101$

Cris Luengo - Centre for Image Analysis - 2012-9-18 - cris@cb.uu.se

The point-sampling model

- Point sampling is what is assumed in signal theory
- Point sampling is only useful if the image is band limited
- otherwise we get aliasing
- sampling frequency > 2 • band limit (Nyquist)
- CCDs do not point-sample
- but: can be modelled by a uniform filter followed by point sampling

Band-limited images

- Any optical image formation system imposes a band limit
- A sampled band-limited image exactly represents the continuous band-limited image
- if sampled properly, of course
- The continuous band-limited image is a version of real world that lacks very high frequencies
- i.e. small details
- This smooth image preserves large-scale geometric properties of the imaged objects, but not small scale ones
- as in "the infinite coastline of Britain"

The sampling property

Cris Luengo - Centre for Image Analysis - 2012-9-18 - cris@cb.uu.se

Optical image formation

- Image formation system (e.g. lenses) creates a bandlimited image - imposes resolution

- Standard optics' point-spread function (PSF) can be approximated by a Gaussian
- ideal lens has Airy function for PSF
- but lens imperfections are unavoidable

Cris Luengo - Centre for Image Analysis - 2012-9-18 - cris@cb.uu.se

Optical image formation

- The image is smoothed by a PSF (convolution!) before sampling

\otimes

- Neither the smoothing nor the sampling change the total amount of light in the image

Cris Luengo - Centre for Image Analysis - 2012-9-18 - cris@cb.uu.se

What happens in the Fourier domain

- The $0^{\text {th }}$ frequency is proportional to the total amount of light
- $0^{\text {th }}$ frequency is unaltered by sampling
- Sum of samples is equal (proportional) to integral over continuous function

Cris Luengo - Centre for Image Analysis - 2012-9-18 - cris@cb.uu.se
What happens in the Fourier domain

- But: aliasing can affect the $0^{\text {th }}$ frequency!
- Sum of samples is equal (proportional) to integral over continuous, band-limited function if sampled correctly

Threshold vs. soft clipping

Cris Luengo - Centre for Image Analysis - 2012-9-18 - cris@cb.uu.se

Soft clipping

- Selecting a proper range is important
- too small: introduction of aliasing
- too large: background and foreground not uniform

Cris Luengo - Centre for Image Analysis - 2012-9-18 - cris@cb.uu.se

Soft clipping

- Interpolated $4 x$ by padding the Fourier transform before soft clipping
- input, soft clipping, threshold

Cris Luengo - Centre for Image Analysis - 2012-9-18 - cris@cb.uu.se

Possible measures

- Area (2D) / volume (3D)
- integral over image (sum of grey values)
- effectively dimensionality-independent
- Perimeter (2D) / surface area (3D)
- we convert the problem to a volume problem
- effectively dimensionality-independent
- (Isophote) curvature (2D/3D)
- based on $2^{\text {nd }}$ derivative along the contour
- Bending energy (2D/3D)
- integrating squared curvature along contour
- Euler number (object count, 2D)
- integral of curvature along contour is constant

2 D area (ideal case)

Cris Luengo - Centre for Image Analysis - 2012-9-18 - cris@cb.uu.se

2D area (with soft clipping)

Binary mese $1385.31=0.003 \mathrm{px}^{2}$
$1385.31 \pm 0.08 \mathrm{px}^{2}$

2D perimeter

- Given a grey-value object with a constant intensity H
- If we extend the object by a fixed distance D, the volume of the extension is given by: $P D H$ ($P=$ perimeter)

$$
D H=\int_{x} f(x)-f(x+D)
$$

We converted length estimation problem into area estimation problem (sampling-invariant!)

Cris Luengo - Centre for Image Analysis - 2012-9-18 - cris@cb.uu.se

2D perimeter

- Given a grey-value object with a constant intensity H
- If we extend the object by a fixed distance ε, the area of the extension is given by: $P \varepsilon H$
($P=$ perimeter)

Cris Luengo - Centre for Image Analysis - 2012-9-18 - cris@cb.uu.se

2D perimeter

(For soft clipping I increased the sampling density 4 times)

Expected measure: $\quad 131.946891$ px
Grey-value measure: $131.9415 \pm 0.0001 \mathrm{px}$
with larger $\sigma: \quad 131.7958 \pm 0.0001 \mathrm{px}$
Binary measure: $\quad 132.04 \pm 0.01 \mathrm{px}$
(std $=0.0006$)
(std $=0.0006$)
(std $=0.07$)

Cris Luengo - Centre for Image Analysis - 2012-9-18 - cris@cb.uu.se

2D perimeter

- Soft clipping
- Gradient magnitude $\sqrt{\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}}$
- Integration (sum)

We're using Gaussian gradients!

$$
\frac{\partial}{\partial x}(f \otimes G)=f \otimes \frac{\partial}{\partial x} G
$$

Bending energy

- Often used as a shape descriptor
- Given by integral along the perimeter of the square of curvature
- Integrate along perimeter by multiplying by $|\mathrm{g}|$ and integrating over the image

$$
\text { B.E. }=\int_{\text {contour }} \kappa^{2} \mathrm{~d} s=\iint_{\text {image }} \kappa^{2}|g| \mathrm{d} x \mathrm{~d} y=\iint_{\text {image }} \frac{f_{\mathrm{cc}}^{2}}{|g|} \mathrm{d} x \mathrm{~d} y
$$

Bending energy

- Often used as a shape descriptor
- Given by integral along the perimeter of the square of curvature
- Integrate along perimeter by multiplying by $|g|$ and integrating over the image

Euler number

- Euler number
- In 2D: \# of objects - \# of holes
- In 3D: \# of objects - \# of tunnels + \# of cavities
- Gray's algorithm
- Computes Euler number based on 2×2 image regions
$-E=\left(C_{1}-C_{2}-2 C_{3}\right) / 4$
- C1 = \# of 2×2 regions with only 1 pixel set

- C2 = \# of 2×2 regions with 3 pixels set
- C3 = \# of 2×2 regions 2 pixels set in a diagonal

Cris Luengo - Centre for Image Analysis - 2012-9-18 - cris@cb.uu.se

Euler number

- Integral of curvature along a closed contour is always 2π, a hole in an object contributes with -2π

Euler number $=\frac{1}{2 \pi} \int_{\text {contour }} \kappa \mathrm{d} s=\frac{1}{2 \pi} \iint_{\text {image }} \kappa|g| \mathrm{d} x \mathrm{~d} y=\frac{1}{2 \pi} \iint_{\text {image }}-f_{\mathrm{cc}} \mathrm{d} x \mathrm{~d} y$

- Integral of second derivative in gradient direction also yields a constant 2π for a closed contour

Euler number $=\frac{1}{2 \pi} \iint_{\text {image }} f_{g 9} d x d y$

Cris Luengo - Centre for Image Analysis - 2012-9-18 - cris@cb.uu.se

Summary

- It is important to use unbiased measures
- Filtering can introduce bias
- Area/volume = integral over image
- Perimeter/surface area
- obtained by converting to area measurement problem
- Curvature
- computed through $2^{\text {nd }}$ derivative along countour
- bending energy \& Euler number
- Prepare image by soft clipping
- (equivalent to thresholding, but without loss of band limitation)

