Cris Luengo – Centre for Image Analysis – 2012-9-18 – cris@cb.uu.se	Cris Luengo – Centre for Image Analysis – 2012-9-18 – cris@cb.uu.se
	Topics
Sub-Pixel Precision Measurement in the Point-Sampling Model	 What is important for a measure? accuracy (bias), precision, sampling-invariance How does filtering affect the measurement? The point-sampling model: image formation, band limit, sampling, Fourier analysis Soft clipping Measurement: area perimeter curvature bending energy Euler number (object count)

Cris Luengo - Centre for Image Analysis - 2012-9-18 - cris@cb.uu.se Cris Luengo - Centre for Image Analysis - 2012-9-18 - cris@cb.uu.se Effects of filtering The point-sampling model · Low-pass filtering always moves the edges inwards • Point sampling is what is assumed in signal theory - (Inwards = in the direction of curvature) · Point sampling is only useful if the image is band - This is also true for median filtering, for example! limited · Edge-preserving smoothing filters sometimes also - otherwise we get aliasing move edges - sampling frequency > $2 \cdot$ band limit (Nyquist) Gauss, σ =10 threshold 0.5 · CCDs do not point-sample - but: can be modelled by a uniform filter followed by point sampling

count = 4421

count = 4101

Cris Luengo – Centre for Image Analysis – 2012-9-18 – cris@cb.uu.se	Cris Luengo – Centre for Image Analysis – 2012-9-18 – cris@cb.uu.se
What happens in the Fourier domain	What happens in the Fourier domain
spatial domain frequency domain	spatial domain frequency domain
continuous	function
sampled the same the same time time time time time time time ti	
 The 0th frequency is proportional to the total amount of light 	• But: aliasing can affect the 0 th frequency!
 0th frequency is unaltered by sampling Sum of samples is equal (proportional) to integral over continuous function 	• Sum of samples is equal (proportional) to integral over continuous, band-limited function if sampled correctly

Cris Luengo – Centre for Image Analysis – 2012-9-18 – cris@cb.uu.se

Soft clipping

- Selecting a proper range is important
 - too small: introduction of aliasing
 - too large: background and foreground not uniform

Cris Luengo – Centre for Image Analysis – 2012-9-18 – cris@cb.uu.se

Possible measures

- Area (2D) / volume (3D)
 - integral over image (sum of grey values) effectively dimensionality-independent
- Perimeter (2D) / surface area (3D)
 we convert the problem to a volume problem
 - effectively dimensionality-independent
- (Isophote) curvature (2D/3D)
 - based on 2^{nd} derivative along the contour
- Bending energy (2D/3D)
 integrating squared curvature along contour
- Euler number (object count, 2D)

 integral of curvature along contour is constant

Cris Luengo – Centre for Image Analysis – 2012-9-18 – cris@cb.uu.se

Soft clipping

- Interpolated 4x by padding the Fourier transform before soft clipping
 - input, soft clipping, threshold

Cris Luengo – Centre for Image Analysis – 2012-9-18 – cris@cb.uu.se

2D area (ideal case) Area of 100 disks (r = 21 px) with sub-pixel shifts 1394 1392 Binary measure 139 Grey-value measure area (px 138 138 1380 137 1376 20 40 80 100 1385.442360 px² Expected measure: $1385.442352 \pm 0.000001 \text{ px}^2$ (std = 0.000006)Grey-value measure: Binary measure: 1385.8 ± 0.6 px² $\dot{(std = 2.9)}$

Cris Luengo – Centre for Image Analysis – 2012-9-18 – cris@cb.uu.se

 $\vec{g} = (f_x, f_y)$

• Contour direction: $\vec{c} = (-f_v, f_x)$

 $\theta = \epsilon$

$$\operatorname{arccos}\left(\frac{-f_{y}}{|g|}\right) = \operatorname{arcsin}\left(\frac{f_{x}}{|g|}\right) = \operatorname{arctan}\left(\frac{-f_{y}}{f_{x}}\right)$$

• To differentiate along the curve:

$$\frac{d}{ds} = \cos\theta \frac{\partial}{\partial x} + \sin\theta \frac{\partial}{\partial y} = \frac{-f_y}{|g|} \frac{\partial}{\partial x} + \frac{f_x}{|g|} \frac{\partial}{\partial y}$$

- Curvature κ = derivative of θ along the curve $\kappa = \frac{d\theta}{ds} = -\frac{f_{xx}f_y^2 - 2f_xf_yf_{xy} + f_{yy}f_x^2}{\left[f_x^2 + f_y^2\right]^{3/2}} = \frac{-f_{cc}}{|g|}$
- 3D version more involved: eigenvalues of Hessian...

Cris Luengo – Centre for Image Analysis – 2012-9-18 – cris@cb.uu.se

Summary

- It is important to use unbiased measures
- Filtering can introduce bias
- Area/volume = integral over image
- Perimeter/surface area
 - obtained by converting to area measurement problem
- Curvature
 - computed through 2nd derivative along countour
 - bending energy & Euler number
- Prepare image by soft clipping
 - (equivalent to thresholding, but without loss of band limitation)