
DATooR:
A DAG Design and Analysis Tool

Morteza Mohaqeqi
Wang Yi

Uppsala University

February 2022

DATooR is a Design and Analysis Tool for Real-time systems that
are specified as a set of reoccurring DAG tasks deployed on a
heterogeneous multiprocessor platform. First, it allows design-
ers to evaluate – by simulation and analytical methods – differ-
ent scheduling policies using user-specified system configuration
parameters such as the number of processor cores, memory access
latency, and task parameters etc., and randomly generated task sets.
Second (under development), for a system design with a fixed hard-
ware configuration, a task set and a scheduling policy, the tool will
generate a run-time schedule providing performance and real-time
guarantees.

Contents

1 Introduction 2
1.1 Applications Areas . 2
1.2 An Overview of the Tool . 3
1.3 How to Run . 3

2 System Models 4
2.1 Task Model . 4
2.2 Processor Model . 5

3 Scheduling Algorithms 6
3.1 Preemption Strategies . 6
3.2 Scheduling Policies . 6

4 Random Task Generation 8
4.1 Random Graph Generation . 8

4.1.1 Layer-by-layer . 8
4.1.2 Series-parallel graphs . 9
4.1.3 The STR2RTS benchmark . 10

4.2 Selecting Periods . 10

5 Tool Manual: Configuration 11
5.1 Scheduler . 11

5.1.1 Scheduling Policy . 11
5.1.2 Preemption . 12

5.2 Task Set . 13
5.3 Platform . 14

5.3.1 Memory-related timings . 15
5.3.2 Time constraint . 15

5.4 Experiment Parameters . 16

6 Tool Manual: Analysis Results 18
6.1 Schedulability Ratio . 18
6.2 Throughput . 19
6.3 Lateness . 19

7 Developers Guide 21
7.1 Code Structure . 21

References 24

1

Chapter 1

Introduction

Today, parallel architectures such as multi- and many-core processors have become ubiq-
uitous in computing. In embedded domains, there is an increasing trend towards the usage
of heterogeneous and parallel architectures for performance-demanding and real-time applica-
tions. Paradoxically, the introduction of performance enhancing architectural solutions, such
as memory hierarchies, heterogeneous processor cores of different processing capabilities and
multi-threading introduce a large degree of uncertainty and make it extremely hard to provide
performance and real-time guarantees. This brought a significant challenge (and also a great
opportunity) for embedded systems designers to explore the hardware parallelism.

1.1 Applications Areas
This tool is designed (and under development) for intended applications in safety-critical

domains where high-performance and real-time requirements must be ensured. Typical ap-
plication areas include automotive systems involving self-driving and 5G/6G networks, that
are computationally demanding real-time systems deployed on heterogeneous multi-core and
many-core platforms.

The tool offers two features. First, it allows the designers to simulate the timing behavior and
performance of a system with (a large number of randomly generated) possible configurations of
hardware and software components, and scheduling policies. The goal is to select and validate
the potentially best system configuration and run-time scheduling policy by simulating a large
number of randomly generated system configurations. Second, for a given system configuration
(a design), it shall provide a run-time schedule, with real-time and performance guarantees such
as worst-case response times and throughput.1

The tool uses directed acyclic graphs (DAG) to describe software components. The inher-
ent parallelism of embedded software can be truly modeled using the branching structures of
DAG’s. A DAG [12] is a directed graph where nodes represent parts of a program and edges
represent precedence constraints. In summary, DATooR provides the following utilities with
respects to timing analysis of DAG tasks running on multicore systems.

• Simulating the execution of a set of periodic real-time DAGs on a specified hardware
platform,

• Analytical computation of an upper-bound on the worst-case response-time of the tasks.

1In the current version, the configurations are specified by the user; then the tool evaluates the selected policy
over a number of randomly generated task sets.

2

CHAPTER 1. INTRODUCTION 3

Figure 1.1: A snapshot of the tool.

A user can specify the target hardware platforms with configuration parameters such as num-
ber and type of processor cores, as well as memory overheads. In addition, the mapping between
software components onto hardware resources as well as the intended run-time scheduling pol-
icy among a set of pre-specified policies can be specified.

1.2 An Overview of the Tool
Figure 1.1 shows the main window of the tool, which contains two main parts: configura-

tion (the left-hand side), and results (the right-hand side). In the configuration part, the user
can specify software and hardware configuration for which the timing analysis (simulation or
analytical) is to be done. The details of this part is presented in Chapter 5.

The result of the analysis is obtained in terms of performance and time-related measures
that are provided to the user through a number of charts. The formal definition of the calculated
measures as well as the meaning of the presented charts is given in Chapter 6.

Before describing the tool components, the related preliminaries are reviewed. Specifically,
the assumed system model is specified in Chapter 2. The supported scheduling algorithms are
described in Chapter 3. The methods for random task set generation are specified in Chapter 4.

1.3 How to Run
The tool is self-contained, and no additional software/package is required to be installed. To

run the tool,

• in Windows, one needs to double click on the executable file,

• in Linux, one needs to run the file from terminal.

Chapter 2

System Models

System model consists of two parts: (1) task model, and (2) processor model.

2.1 Task Model
DATooR adopts the reoccurring task model where each task is represented by a period and

a directed acyclic graph (DAG) of nodes and directed edges. We use the following notations.
Predecessor/Successor: Consider an edge in a DAG from a node u to a node v. Then, u is

a predecessor of v, and v is a successor of u. Nodes with no successor are called sink.
Critical Path: The critical path of a node u, denoted by cp(u), is the longest path from u to

a sink node [8]. Formally,

cp(u)
.
=

{
wcet(u), if u is a sink,
wcet(u) + max{cp(v)|v ∈ Succ(u)}, otherwise.

Here, wcet(u) and Succ(u) are the worst-case execution time and successors of u, respectively.

Example 1. Figure 2.1 shows a DAG with seven nodes. The number next to each node is its
WCET. The node J_0 has three successors: J_1, J_4, and J_6. The DAG has two sink nodes:
J_3 and J_5. The longest path from J_1 to a sink node is J_1→ J_5→ J_3, which implies
cp(J_1) = wcet(J_1) + wcet(J_5) + wcet(J_3) = 50.

Figure 2.1: A sample DAG structure.

4

CHAPTER 2. SYSTEM MODELS 5

A sporadic release model is assumed where each task releases instances with a minimum
inter-release separation time. In addition, tasks have implicit deadline, that is, for each task:
deadline = period.

The actual execution time of a node in a task instance is between 0 and its WCET. Each task
instance has an absolute deadline which is computed by adding the task’s (relative) deadline to
the release time of that instance.

For each node of a task instance its laxity is defined as below.
Laxity: Let d be the absolute deadline of a task instance. The laxity of a node u of the task

at time t is
laxity(u)

.
= d− (t+ cp(u)), (2.1)

where cp(u) is the critical path of u defined above.

2.2 Processor Model
In the current version, a homogeneous multicore platform is assumed. The overheads related

to memory access can be expressed in terms of three parameters, i.e., memory time (for initial
data loading), preemption time (when a preemtive scheduling is used), and communication time
(for inter-core migration). The details are provided in Sec. 5.3.1.

Chapter 3

Scheduling Algorithms

Real-time scheduling for multiprocessors (in particular heterogeneous platforms) providing
performance- and real-time guarantees is probably one of the most difficult challenges in em-
bedded systems design. There are various scheduling algorithms proposed in the literature for
single processors. These algorithms may be directly adopted to the multiprocessor setting. Un-
fortunately these algorithms perform often badly with low resource utilization; many of them
suffer also from anomalies due to the uncertainty introduced by complex hardware features and
software components deployed.

3.1 Preemption Strategies
To fulfill timing or QoS requirements, running tasks or nodes may be preempted by newly

released instances. Preemption may be (dis-)allowed at node- or task-level. Here only node-
level preemption shall be considered.

Non-preemptive scheduling: A running node should run until it is completed. One may con-
sider the case of task-level non-preemption: when a node is completed, only nodes from
the same task can be executed.

Preemptive scheduling: A running node can be preempted at any time by any eligible node.
One may consider the case of task-level preemption: a node can be preempted by only
nodes from the same task.

Restricted preemptive scheduling: It is preemptive scheduling, but preemption is allowed to
take place only at predefined time points. A special case is tick-based scheduling where
the time line is divided into ticks or time slots. Preemption is allowed to take place only
by the end of a time slot.

3.2 Scheduling Policies
At run time, whenever there is a processor core available, eligible nodes will be selected

according to their priorities. The priority of a node can be assigned statically or dynamically
at node- or task-level according to static task parameters or parameters representing the current
status of task executions.

Selecting and prioritizing the nodes for execution is accomplished by the scheduler. The
scheduler considers eligible nodes to dispatch. Formally, at a time instant t, a node is eligible if
by t (1) all of its predecessors have been finished, and (2) it is not finished.

6

CHAPTER 3. SCHEDULING ALGORITHMS 7

There are a number of basic scheduling approaches that are used (directly or a modified
version) in the tool.

EDF: Earliest-Deadline First assigns the highest priority to nodes with the earliest (absolute)
deadline.

RM: Rate-Monotonic assigns the highest priority to nodes of the tasks with the shorter period.

LLF: Least-Laxity First (LLF) prioritizes eligible nodes according to their laxity. Laxity of a
node in a DAG is the difference between the deadline and the longest path from that node
to any sink node [8], as defined in Eq. 2.1.

FIFO: In this approach, nodes are prioritized based on the arrival time (of the corresponding
task instance). Earlier arrival means higher priority.

Federated: In the Federated scheduling approach [6], tasks are partitioned based on the min-
imum number of required cores (e.g., m). For tasks with m > 1, exactly m cores are
exclusively dedicated. Other tasks (i.e., those with m ≤ 1) can share cores to execute.

Partitioned: The nodes are accommodated to the cores so that each node is always run on the
same core. Assigning the nodes to the cores can be done according to different criteria.
The work in [2] presents some heuristics for that.

Chapter 4

Random Task Generation

In order to assess a timing/schedulability analysis approach, a set of randomly generated task
sets are used. To generate a random (DAG) task, one needs to determine the graph structure,
the WCET of each node, and the period.

4.1 Random Graph Generation
Graph generation methods mainly specify a method to create graph structures. In DATooR

a number of well-known graph-generation methods have been implemented.

4.1.1 Layer-by-layer
In the layer-by-layer approach [3], the graph nodes are placed into some layers and then

edges are added between layers. Formally, the set of n nodes are first randomly distributed
among k layers. Then, for any pair of nodes a and b with layer(a) < layer(b), an edge is added
from a to b with the probability pedge .

Algorithm 1 layer_by_layer [3]
Input: n: number of nodes, k: number of layers, pedge : edge probability.

1: for i = 1 . . .n do
2: layer(i)← unif(1, k)
3: end for
4: for i = 1 . . .n do
5: for j = 1 . . .n do
6: if layer(i) < layer(j) then
7: if unif() < pedge then
8: Add an edge from i to j
9: end if

10: end if
11: end for
12: end for

unif() returns a uniformly distributed random real value between 0 and 1. As well, unif(i1, i2)
returns a uniformly distributed random integer between (and including) i1 and i2.

8

CHAPTER 4. RANDOM TASK GENERATION 9

4.1.2 Series-parallel graphs
This method comprises a recursive procedure. The procedure gets a source and a sink node,

as well as the number of outgoing branches from the source node. For each branch, either a
single node is inserted between source and sink, or the procedure is recursively called to insert
a new subgraph between source and sink.

This method properly considers fork and join structures, and provides an appropriate model
to specify many programming constructs in embedded software [10]. The generated graph
structure can be tuned through a number of parameters:

• npar : the maximum branching degree,

• ppar : the branching probability,

• pedge: the probably of adding an edge. (see Algorithm 4).

The pseudo-code of the process is seen in Algorithm 2.

Algorithm 2 series-parallel
1: Create two nodes src and sink
2: depth(src)← ndepth

3: depth(sink)← −ndepth

4: expand(src, sink , ndepth − 1, unif(2, npar))
5: addEdges()

Algorithm 3 expand

Input: src, sink : source and sink nodes, dep: current depth, nbr: number of branches.
1: for i = 1 . . .nbr do
2: if dep = 0 or unif() < ppar then
3: Create a new node v with depth(v) = dep
4: Add edges (src, v) and (v, sink)
5: else
6: Create new nodes v1, v2 with depth(v1) = dep and depth(v2) = −dep
7: Add edges (src, v1) and (v2, sink)
8: expand(v1, v2, dep − 1, unif(2, npar))
9: end if

10: end for

Algorithm 4 addEdges()

1: {n: num. of ndoes}
2: for all 1 ≤ i, j ≤ n do
3: if there is no edge from i to j then
4: if depth(i) < depth(j) and unif() < pedge then
5: Add edge (i, j)
6: end if
7: end if
8: end for

CHAPTER 4. RANDOM TASK GENERATION 10

4.1.3 The STR2RTS benchmark
The STR2RTS benchmark [11] contains a number of benchmark programs from streaming

applications. Each program is described as a DAG and the WCET of each node.

4.2 Selecting Periods
In designing the tool, a problematic approach have been taken. The focus is on two appli-

cation areas: 5G networks [7] and automotive systems designed according to the AUTOSAR
reference model AUTOSAR [5] (even though other task models with arbitrary task parameters
and release patterns will also be considered). These systems are typical real-time applications
but restrict the release and execution patterns of software components to harmonic periodic
tasks. For 5G networks, tasks may be released and activated according to their TTI’s, that is,
the task periods. According to the 5G protocol, the TTIs in a task system must be 0.125ms or a
multiple of 0.125ms up to 1ms. Similarly, a task period in AUTOSAR must also be a multiple
of a basic task period specified. In this way, the hyper-period of a task system is reduced signif-
icantly to the scale, allowing for the construction of a feasible schedule by simulation. The set
of periods in each case is given in the following table.

Application Period Values (milliseconds)

5G 0.125, 0.25, 0.5, 1
AUTOSAR 1, 2, 5, 10, 20, 50, 100, 200, 1000

Chapter 5

Tool Manual: Configuration

The user can specify the desired parameters (i.e., experiment settings). For this, four types
of configurations should be set, discussed in the following.

5.1 Scheduler
Figure 5.1 shows the scheduling configuration panel. Using this, the user determines the

desired scheduling policy, and the respective properties.

Figure 5.1: Scheduler configuration.

From an abstract point of view, system execution consists of a set scheduling instant (points)
where the scheduler is invoked, and determines which nodes should be run on which cores. At
each scheduling point, selecting the most eligible nodes to execute is determined by the schedul-
ing policy. In turn, scheduling points are determined according to the preemption method.

5.1.1 Scheduling Policy
Given a set of eligible nodes, the policy determines which one(s) has (have) the higher

priority to execute. Scheduling policies implemented in the tool are described in the following
table.

11

CHAPTER 5. TOOL MANUAL: CONFIGURATION 12

Policy Description

RM RM (Rate monotonic) scheduling. See Section 3.2.
EDF EDF (Earliest Deadline First) prioritizes the eligible nodes according to the

absolute deadline of the corresponding tasks; the earlier (i.e., the closer) the
deadline, the higher the priority. Ties (between nodes with the same deadline)
are broken according to a static priority.

LLED LLED (Least-Laxity Earliest-Deadline) is a version of EDF where ties are
broken by the laxity; the less the laxity, the higher the priority.

EDLL In EDLL (Earliest-Deadline Least-Laxity), the less the laxity, the higher the
priority. Ties are broken by deadline: if two nodes with the same laxity, the
one with the closer deadline gets higher priority.

Random Eligible nodes are randomly selected to execute.
FP_FIFO Jobs with earlier arrival time get higher priority. Ties are broken by a fixed

priority.
Federated For each task, the minimum number of required cores is computed and those

cores are exclusively dedicated to the task.
PReserved Once a new instance of a task is released, all required resources (based on

WCETs) are reserved for that. During time instants where a core is not used
by the task, this can be used to run other tasks.

Dynamic
Federated
[4]

This is similar to the Federated scheduling, but once a core is for sure not
required by the task instance anymore (according to an LL offline schedule),
the core is used to run other tasks. This helps better resource utilization.

Dynamic
Federated
BFS [4]

This is similar to Dynamic Federated, but the offline schedule is built by BFS
traversal of the nodes.

FP_Harmonic The same as RM, but the analysis optimized for harmonic tasks, It does not
apply to the general case.

5.1.2 Preemption
The preemption method determines if and when the scheduler is allowed to preempt (pause)

an executing job and give the resource to another one. Preemption approach can be tick based.
Roughly, in a tick-based approach, scheduling is done only at certain time points, called ticks.

Method Description

Non-Preemptive Node-level non-preemptive scheduling (some times called “limited
preemptive” approach in, e.g., [13]). Once a node is started, it is
continued until finished.

Preemptive There is no restriction on preempting the jobs.
Ticked-Preemptive This is similar to Non-Preemptive, but jobs can be preempted at

ticks.
NW-Ticked-Preemptive This is a Non-Work-Conserving version of Ticked-Preemptive. The

scheduler is invoked, and allowed to preempt the jobs, only at ticks,
where ticks are equally-distant time points (specified by the user).
If a job is finished before a tick, the core is idled until the next tick.

Figures 5.2 and 5.3 illustrate Ticked-Preemptive and NW-Ticked-Preemptive approaches, re-
spectively.

CHAPTER 5. TOOL MANUAL: CONFIGURATION 13

Figure 5.2: Ticked-Preemptive scheduling. Preemption is allowed only at ticks (Here, tick=20).

Figure 5.3: NW-Ticked-Preemptive scheduling. Scheduling is done only at ticks (Here,
tick=20). At t = 140, there is a tick where a job is preempted by a higher priority one.

5.2 Task Set
Real-time task parameters that can be set by the user are seen in Fig. 5.4. These parameters

are used for random task set generation. In particular, the following aspects will be specified.

Figure 5.4: DAG tasks parameters.

• DAG type (graph structure): Three types of DAG structures are included in the tool,
i.e., Layered, SeqParallel, and STR2RTS, which are described in Sec. 4.1.

• Period: The approach for assigning periods to the tasks. The period sets used for period
assignment are described in the following table.

CHAPTER 5. TOOL MANUAL: CONFIGURATION 14

Period type Description

RELAXED In this approach, tasks utilization are first generated using the
UUnifast algorithm [1] such that the total utilization equals
the desired value. Then, the period of each task is com-
puted through dividing its total WCET by its utilization, i.e.,
Ti = Ci/Ui.

5G The 5G periods (see Sec. 4.2).
AUTOSAR Periods from AUTOSAR (see Sec. 4.2).
AUTOSAR_EXT AUTOSAR periods extended to cover more diverse values

(obtained from [9]). The period values come from the set
{x× 10y|1 ≤ x ≤ 9, 3 ≤ y ≤ 5} ∩ [500, 100000]

AUTOSAR
HARMONIC

A subset of AUTOSAR periods that build a harmonic set; that
is, {1, 2, 10, 20, 100, 200, 1000} ms.

• Number of Tasks: There are two methods to determine the number of tasks in each task
set (i.e., task set size): FIXED, where all ask sets are of the same size, specified by the
user, and UTILIZATION_BASED, where randomly generated tasks are added to the task
set until reaching the desired utilization.

• Nodes WCET: The criteria for assigning WCET to the nodes is specific to the selected
DAG Type. For the Layered type, the range for WCET is obtained from the user, the
WCET of each node will be randomly selected with a uniform distribution from the range.
For the STR2RTS type, the WCETS come from the benchmark data. For SeqParallel
DAG tasks, the WCET is randomly selected from the range [1, 50].

The meaning of the other task parameters in the figure is described in Sec. 2.1.

5.3 Platform
Figure 5.5 shows the parameters from the hardware platform that the user can specify. Cur-

rently, a homogeneous multicore processor is assumed. Number of cores is determined by the
parameter labeled as # Cores, as seen in the figure. Other parameters are described below.

Figure 5.5: Platform parameters.

CHAPTER 5. TOOL MANUAL: CONFIGURATION 15

5.3.1 Memory-related timings
The execution time of a job not only depends on the time CPU is executing the respective

code, but also on the time it takes to access the memory. A task instance needs memory access
to load the required data upon initialization. The memory is supposed to be accessed only by
one task at each time instant. So, if more than one task instances are released at a time, they
will compete. This can add delays to the start of a task instance.

Additionally, the context-switch caused by preemption, and also, transferring data between
CPU cores should be considered as a part of the total job execution times. These platform-
related timings are captured by three parameters described in the following table.

Parameter Description

Memory Time The time it takes for each task instance to load initialization
data from memory (once it is granted the memory access).

Preemption Time Whenever a preempted job is dispatched to be executed again,
this (constant) delay is added to account the context-switch
overheads.

Communication Time Once a node is dispatched to be executed for the first time, if at
least one of its predecessors have been run on a different core,
a communication delay is added before this start.

As an illustrating example, consider Fig. 5.6a where a DAG with seven nodes is shown. In
this example, the initialization phase, i.e., reading from memory, has been represented by an
individual node J_0. A sample schedule of this task on three cores is depicted in Fig 5.6b.
During time interval [0, 1], the task is reading from memory.

(a) DAG structure (values next
to the nodes represent WCET.)

(b) A sample schedule. Initialization (reading from memory)
takes one time unit. Start of J_3 is delayed one time unit (com-
munication delay) since it has a predecessor (J_6) executed on
a different core (i.e., Core 3).

Figure 5.6: Scheduling of a DAG where Memory Time = Communication Time = 1

5.3.2 Time constraint
Time constraints on the tasks is either Soft or Firm. The meaning of each is described below.

Constraint Meaning Scheduler Behavior

Soft Completion of jobs after deadline is
of some value.

Jobs are dispatched and executed
even after deadline.

Firm Completion of jobs after deadline is
of no value.

A job is dropped out of the system
as soon as its deadline is passed.

CHAPTER 5. TOOL MANUAL: CONFIGURATION 16

5.4 Experiment Parameters
An experiment consists of generating a set of random DAG tasks, performing schedulabil-

ity and timing analysis, and presenting the results. Figure 5.7 shows the general experiment
configuration.

Figure 5.7: Experiment settings.

The experiment parameters are described in the following table.

Parameter Description

Experiment
Extensiveness

It can be a number between 1 and 20. A value of n means the experi-
ment will generate and evaluate n× 1000 random DAG tasks.

Save Tasks If checked, those generated task sets that are unschedulable will be
saved in an XML file readable by the TimesPro tool1.

Approach Determines whether evaluation of task sets is done through simulation
of one hyper-period, or through analytical methods.

Show Un-
schedulable
Cases

If checked, for each unschedulable task set, the simulated schedule is
graphically represented (see Fig. 5.8 as an example).

Time Unit Determines the time unit of the specified parameters (e.g., task parame-
ters). Smaller time unis allow more resolution in specifying the param-
eters, but more time-consuming simulations.

As seen, the approach employed for evaluation of task sets can be set by the Approach
parameter, which can be either Analytical or Simulation. Analytical methods usually provide
pessimistic but safe results. In contrast, simulation is done only for one possible scenario, and
it does not guarantee the result for all possible situations. More precisely, in the simulation,
the worst-case execution time (WCET) of the nodes is used as the actual execution time. The
obtained result does not necessary hold if the actual execution time is less than WCET.

As mentioned in the table above, the scheduling trace of unschedulable task sets is visualized
once the Show Unschedulable Cases parameter is checked. Such a sample trace is seen
in Fig. 5.8.

1http://www.it.uu.se/research/group/darts/timespro

CHAPTER 5. TOOL MANUAL: CONFIGURATION 17

Figure 5.8: Simulation trace of an unschedulable task set.

Chapter 6

Tool Manual: Analysis Results

The result of an experiment is a set of measures computed by the tool. These measures and
the representation method are described in this chapter.

6.1 Schedulability Ratio
During system execution, each DAG releases several DAG instances. A DAG instance meets

its deadline if all of the nodes inside the DAG are done by the deadline. A DAG is said to be
schedulable if all of its instances meet their deadline. In turn, a task set is schedulable if all
of its DAGs are schedulable. Given a set of task sets, a favorite measure is the percentage of
schedulable task sets.

Figure 6.1: Schedulability ratio.

Figure 6.1 shows the average percentage of task sets that are schedulable for each utilization.
The utilization of a DAG task is defined as the total WCET of its nodes divided by the task’s

18

CHAPTER 6. TOOL MANUAL: ANALYSIS RESULTS 19

period. Formally, the utilization of a DAG task G with period TG is computed by

U(G) =

∑
n∈nodes(G) wcet(n)

TG

Let τU be the set of all task sets, generated in an experiment, whose utilization is U . Further,

τs = {τ ∈ τU | task set τ is schedulable}.

The percentage of schedulable task sets, which is plotted by the diagram, is computed by
|τs|/|τU |, where |τs| and |τU | denote the size of τs and τU , respectively.

6.2 Throughput
In a system execution, a task set may be unschedulable while many of the task instances

meet their deadline. To account for this, the throughput measure is used. The throughput of a
task set is the number of DAG instances that meet their deadline divided by the total number of
DAG instances released in one hyper-period. The latter is computed by

∑n
i=1 (HP/Ti), where

HP is the hyper-period and Ti is the period of the i-th DAG task. Figure 6.2 shows the average
throughput of two scheduling policies. The average throughput of a set of n task sets is obtained
by dividing the sum of their throughput by n.

Figure 6.2: Throughput.

It is worth noting that for a set of task sets, throughput is always larger than or equal to the
schedulable percentage.

6.3 Lateness
Schedulability ratio and Throughput measures do not provide any information on how

late/how early DAG instances are finished. The lateness measure reflects this. The lateness

CHAPTER 6. TOOL MANUAL: ANALYSIS RESULTS 20

of a DAG instance with an absolute deadline of d finished at time f is defined by f − d. A
positive value of lateness means a deadline miss. Note that lateness may also be negative.

To represent the lateness data of an experiment, DATooRuses frequency plots. Consider
an execution of a task set τ in one hyper-period. Let n be the total number of DAG instances
released, and n(l) be the number of those DAG instances whose lateness equals l. The relative
lateness frequency is a function defined as

lf τ (l) =
n(l)

n
.

Based on this definition, it holds
∫∞
−∞ lf τ (l) = 1. In fact, lf τ (.) can be seen as a probability

mass function (PMF) [14], where lf τ (l) denotes the probability that a randomly selected DAG
instance have a lateness of l. The curve plotted by the tool is an average over all functions lf τ (.)
obtained for each task set. That is, if the experiment is done for a set of task sets T , the value
of the curve for a value of l in x-axis is obtained by∑

τ∈T

lf τ (l)/|T |

. Figure 6.3 shows the frequency plot of lateness for a simulation run.

Figure 6.3: Lateness frequency plot.

Chapter 7

Developers Guide

This section describes the code structure, and serves as a guide for those who want to extend
the tool. DATooR is developed by the Java programming language. The current version is
developed by OpenJDK 11.0.2.

7.1 Code Structure
The overal structure of the code is seen below.

Figure 7.1: The overall code structure.

21

CHAPTER 7. DEVELOPERS GUIDE 22

Figure 7.2: A more detailed view on the code structure.

Figure 7.3: The software model.

CHAPTER 7. DEVELOPERS GUIDE 23

<<abstract>>
AbsSchedulabilityAnalyzer

+ analyze(tasks : Task[], pf : Platform)

SchedulerSimulator<<abstract>>
AnalyticalScheduler

<<abstract>>
FixedPointBased

EDFAnalyzer RMAnalyzer

RMAnalyzer improved

Figure 7.4: The class hierarchy of analytical methods.

Bibliography

[1] Enrico Bini and Giorgio C Buttazzo. Measuring the performance of schedulability tests.
Real-Time Systems, 30(1-2):129–154, 2005.

[2] Daniel Casini, Alessandro Biondi, Geoffrey Nelissen, and Giorgio Buttazzo. Partitioned
fixed-priority scheduling of parallel tasks without preemptions. In IEEE Real-Time Sys-
tems Symposium (RTSS), pages 421–433, 2018.

[3] Daniel Cordeiro, Grégory Mounié, Swann Perarnau, Denis Trystram, Jean-Marc Vincent,
and Frédéric Wagner. Random graph generation for scheduling simulations. 2010.

[4] Gaoyang Dai, Morteza Mohaqeqi, and Wang Yi. Timing-anomaly free dynamic schedul-
ing of periodic DAG tasks with non-preemptive nodes. In IEEE 27th International Confer-
ence on Embedded and Real-Time Computing Systems and Applications (RTCSA), pages
119–128, 2021.

[5] Simon Kramer, Dirk Ziegenbein, and Arne Hamann. Real world automotive benchmarks
for free. In 6th International Workshop on Analysis Tools and Methodologies for Embed-
ded and Real-time Systems (WATERS), 2015.

[6] Jing Li, Jian Jia Chen, Kunal Agrawal, Chenyang Lu, Chris Gill, and Abusayeed Saifullah.
Analysis of federated and global scheduling for parallel real-time tasks. In 2014 26th
Euromicro Conference on Real-Time Systems, pages 85–96. IEEE, 2014.

[7] Shao-Yu Lien, Shin-Lin Shieh, Yenming Huang, Borching Su, Yung-Lin Hsu, and Hung-
Yu Wei. 5g new radio: Waveform, frame structure, multiple access, and initial access.
IEEE communications magazine, 55(6):64–71, 2017.

[8] Roberto Medina, Etienne Borde, and Laurent Pautet. Scheduling multi-periodic mixed-
criticality dags on multi-core architectures. In 2018 IEEE Real-Time Systems Symposium
(RTSS), pages 254–264. IEEE, 2018.

[9] Mitra Nasri, Geoffrey Nelissen, and Björn B Brandenburg. Response-time analysis of
limited-preemptive parallel dag tasks under global scheduling. In 31st Euromicro Confer-
ence on Real-Time Systems (ECRTS), pages 21–1, 2019.

[10] Bo Peng, Nathan Fisher, and Marko Bertogna. Explicit preemption placement for real-
time conditional code. In 2014 26th Euromicro Conference on Real-Time Systems, pages
177–188. IEEE, 2014.

[11] Benjamin Rouxel and Isabelle Puaut. Str2rts: Refactored streamit benchmarks into stati-
cally analyzable parallel benchmarks for wcet estimation & real-time scheduling. In 17th
International Workshop on Worst-Case Execution Time Analysis (WCET 2017). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

24

BIBLIOGRAPHY 25

[12] Abusayeed Saifullah, David Ferry, Jing Li, Kunal Agrawal, Chenyang Lu, and Christo-
pher D Gill. Parallel real-time scheduling of DAGs. IEEE Transactions on Parallel and
Distributed Systems, 25(12):3242–3252, 2014.

[13] Maria A Serrano, Alessandra Melani, Sebastian Kehr, Marko Bertogna, and Eduardo
Quiñones. An analysis of lazy and eager limited preemption approaches under dag-based
global fixed priority scheduling. In 2017 IEEE 20th International Symposium on Real-
Time Distributed Computing (ISORC), pages 193–202. IEEE, 2017.

[14] Kishor Shridharbhai Trivedi. Probability and Statistics with Reliability, Queuing, and
Computer Science Applications, volume 13. Wiley Online Library, 1982.

	Introduction
	Applications Areas
	An Overview of the Tool
	How to Run

	System Models
	Task Model
	Processor Model

	Scheduling Algorithms
	Preemption Strategies
	Scheduling Policies

	Random Task Generation
	Random Graph Generation
	Layer-by-layer
	Series-parallel graphs
	The STR2RTS benchmark

	Selecting Periods

	Tool Manual: Configuration
	Scheduler
	Scheduling Policy
	Preemption

	Task Set
	Platform
	 Memory-related timings
	Time constraint

	Experiment Parameters

	Tool Manual: Analysis Results
	Schedulability Ratio
	Throughput
	Lateness

	Developers Guide
	Code Structure

	References

