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1 Aim of the project
The project deals with large scale linear systems with complex symmetric matrices and their
solution using iterative methods. Consider the system

Cz = c, (1)

where z ∈ Cn, c ∈ Cn and C ∈ Cn×n.
The matrix is called complex symmetric if C = CT . We assume also that the real part of C is
symmetric positive definite.
The theory is valid also in more general cases, where the system to be solved has the structure
in the case when the symmetric part of the imaginary part of C, i.e., the matrix 1/2(imag(C) +
(imag(C))T ), is positive semidefinite.

2 Solution approaches

Approach 1:
Solve the system as it is given (i.e., as a complex system) using a suitable iterative solution
method. This is possible in Matlab and in various other packages.

Approach 2:
Use preconditioned iterative solution methods to solve the system using two techniques to con-
struct a preconditioner, referred to as ’PMHSS’ and ’PRESB’. As is seen below PMHSS is based
on a matrix splitting. PRESB is based on rewriting the complex matrix in the so-called complex-
to-real form. The complex system (1) is solved after rewriting it in a real form as a twice larger
real system of equations. This enables us to use the rich experience in solving real systems of
equations with iterative methods,
We describe the complex-to-real idea in more detail. The matrixC and the vector c have complex
entries. The solution z is a complex vector itself.
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We rewrite (1) and separate the equations for the real and the complex part of the solution vector
x. Let z = x + iy and similarly, C = A + i B and c = a + i b. We substitute the latter in (1)
and obtain the following real linear system of equations which, as already mentioned, is twice
larger: [

A −B
B A

] [
x
y

]
=

[
a
b

]
(2)

The matrix A =

[
A −B
B A

]
is skew-symmetric, i.e., AT = −A. (It has purely imaginary

eigenvalues.)
The system in (2) is now real and can be solved using standard iterative solution methods, such
as GMRES and others. Note that the blocks are square.
Systems of the above form arise in many contexts, for instance, from complex-to-real formulation
of complex symmetric matrices, distributed optimal control problems, constrained by partial
differential equations, multiphase flow problems solved as Kahn-Hilliard formulation and others.

Methods to solve systems with such matrices have been studied much in the scientific litera-
ture. As stated, we consider two preconditioning methods for this class of problems. The first
one is referred to as the Preconditioned Modified Hermitian Skew-Hermitian Splitting (PMHSS)
method ([3, 4] etc.) and the second one is referred to as PREconditioning for matrices with
Square Blocks (PRESB) ([1, 2] etc.).

• PMHSS
Let C = a+ iB and Cx = b. Consider an alternating direction type of method, described
in [?] and [4]. It has the form of a stationary (fixed point) iteration method,

(αV + A)xk+1/2 = (αV − iB)xk + b
(αV +B)xk+1 = (αV + iA)xk+1/2 − ib, k = 0, 1, . . . .

(3)

Here V and α are method parameters. The matrix V is a preconditioner, chosen as a sym-
metric and positive definite (spd) matrix ifA andB are symmetric and positive semidefinite
(spsd).

It can be shown that C = F − G, where F (V, α) = 1+i
2α

(αV + A)V −1(αV + B)−1 and
G(V, α) = 1+i

2α
(αV + A)V −1(αV − iB)−1.

It is also possible to use F as a preconditioner for a GMRES-type of method. This method
still involves some complex arithmetics, but to a lesser extent than if a method is applied
directly for (1).

In the numerical examples we apply PMHSS in (3) with α = 1 and V = A, as well as a
preconditioner for the GMRES method. Letting the initial approximation to be x0 = 0,
for this particular choice of the method parameters, the application of the preconditioner
simplifies significantly and becomes as in Algorithm 1. Here q is the current residual in
the iterative solution method. Thus, PMHSS requires only one solution with A + B and
complex arithmetic, while PRESB requires two solutions with A+B and real arithmetic.
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Algorithm 1 PMHSS preconditioner
1: Solve (A+B)z = q
2: Set x = 0.5 ∗ (1− i)z

• PRESB
Assume that A is symmetric and positive definite and B is positive semidefinite. The
PRESB preconditioner has the following form:

PPRESB ≡
[
A −B
B A+ 2B

]
=

[
I −I
0 I

] [
A+B 0
B A+B

] [
I I
0 I

]
(4)

It is shown that all eigenvalues of the preconditioned system P−1
PRESBA belong to the

interval [0.5, 1]. Thus, when solving the system (2) iteratively, using PPRESB as a precon-
ditioner, the number of iterations is bounded, independently of the size of the system. This
property guarantees high numerical efficiency of the preconditioner.

The factorization of PPRESB, shown in (4) leads to a very efficient algorithm to solve
systems with it. Since the PRESB preconditioner is applicable to more general class of
problems, where the off-diagonal blocks can be non-symmetric (but their symmetric part
is positive semi-definite), and even complex, we define the algorithm in a more general
form. Let

A =

[
A −B2

B1 A

]
.

Then

PPRESB ≡
[
A −B2

B1 A+B1 +B2

]
=

[
I −I
0 I

] [
A+B1 0
B1 A+B2

] [
I I
0 I

]
(5)

The steps to perform the action
[
x
y

]
= P−1

PRESB

[
p
q

]
are given in Algorithm 2.

Algorithm 2 PRESB preconditioner
1: Let H1 = A+B1, H2 = A+B2

2: Solve H1h = p+ q
3: Solve H2y = q −B1h
4: Compute x = h− y

Apart from two vector operations, the computational cost of applying the PRESB precondi-
tioner is the cost to solve two systems withH1 andH2 and one matrix-vector multiplication
with B1. Only real arithmetic is required. It is expected that when solving with H1 and
H2, we can use some standard out-of-the-box preconditioning technique.
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3 Tasks
1. You have at your disposal two sets of complex symmetric matrices, described in Problem

1 and Problem 2.

Using both sets. You could be curious and
(i) check the sparsity of the above matrices (spy) and their structure,
(ii) for some smaller-sized matrices compute the complete spectra by using the MATLAB
function eig and see how the spectrum changes with size.

2. The Quasi-Minimal Residual (QMR) method is one of the iterative solution methods,
recommended for solving complex linear systems. Read some theory about QMR and de-
scribe it briefly. What are the main features of this method? Is it computationally cheaper
than GMRES, for instance?

3. Solve Problem (1) using unpreconditioned QMR. Plot the convergence. (Please use semilogy
and not plot.)

For n = 50 you see that it takes exactly 50 iterations for QMR to converge. Is this an
illustration of the final termination property of the method?

4. Solve the problem in a real form (2) using a preconditioned GMRES or .

Implement the action of the preconditioner as follows:

Implement the preconditioners PPRESB and PPMHSS as defined via the algorithms. You
have to write a Matlab routine, called, say, blkprec.m, which implements the precondi-
tioners.

The way to use the preconditioner in MATLAB is as follows

[x,flag,relres,iter,resvec] = gmres(A,rhs,restart,tol,maxit,...
@blkprec,[],[],A,A)

The MATLAB function

function w = blkprec(v,A,B)

should implement the solution of the system Pxxw = v as sketched above. To solve
systems with A+B use MATLAB backslash operator.

Remark: Of course, one can use OMR, preconditioned by PPRESB. However, QMR re-
quires the action of the transposed of the preconditioner and some special attention should
be paid to that issue when implementing the preconditioner in blkprec.m.

5. As a theoretical exercise, include in the report the derivation of the spectral properties of
P−1
PRESBA or of P−1

PMHSSA.
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4 Test matrices
You have at your disposal two sets of complex symmetric test-matrices.

Problem 1 Consider the so-called R22−Padé approximation systems

A =
(
I +

(
1 + i

)
L
)

(6)

which arise in Padé type integration schemes for parabolic problems. The matrices are generated
by Pade_parabolic_matrix.m, available in the Dropbox directory.
Create consecutively matrices of increasing size: 50, 100, 500, 5000 · · · .

Problem 2 You have at hand six matrices, arising in simulating electromagnetic time-harmonic
Eddy current problems. The matrices are complex and parameter-dependent, namely, generated
for two values of a problem parameter ω, which denotes frequency and for three problem sizes,
293, 2903 and 25602. The PDE problem is in 3D, discretized by Nedelec finite elements.

Matrix_Eddy_0.0001_293.mat Matrix_Eddy_10000_293.mat
Matrix_Eddy_0.0001_2903.mat Matrix_Eddy_10000_2903.mat
Matrix_Eddy_0.0001_25602.mat Matrix_Eddy_10000_25602.mat

The files are uploaded in the dropbox directory.

5 Writing a report on the results
The report has to have the following issues covered:

1. Brief description of the problem and the methods used and the computational complexity
of the preconditioner P̂ .

2. Upon your choice, a theoretical derivation of the properties of one of the two precondition-
ers.

3. Numerical experiments

Describe the experiments (iteration counts, plots of the residual history, timing) for repre-
sentative cases. How does the number of iterations grow with the size? Which method is
to recommended for the given test problems and why? Please note, that iteration counts
should be reported preferably in a table and not as a graph.

4. Conclusions.

A printout of the Matlab code must be attached to the report.
Success!
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