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Direct solution methods for sparse matrices

Solve Ax = b, where A(n× n).
(1) Factorize A = LU , L lower-triangular, U upper-triangular.
(2) Solve LUx = b as follows:

(2.1) Solve Lz = b, i.e., zi =

bi−

i−1
P

j=1
ℓi,jzj

ℓi,i
, i = 1, 2, · · · , n

(2.2) Solve Ux = z, i.e., xi =

zi−

n−i
P

j=n

ui,jxj

ui,i
, i = n, n− 1, · · · , 1
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Direct methods for sparse matrices

As the title indicates, we will analyse the process of triangular factorization (Gaussian
elimination) and solution of systems with triangular matrices for the case of sparse
matrices.
The direct solution procedure consists of factorization step and two triangular solves
(forward and backward substitution).
Note: In general, during factorization we have to do pivoting in order to assure numerical
stability.
The computational complexity of a direct solution algorithm is as follows.

Type of matrix A Factor LU solve Memory

general dense 2/3n3 O(n2) n(n + 1)

symmetric dense 1/3n3 O(n2) 1/2n(n + 1)

band matrix (2q + 1) O(q2n) O(qn) n(2q + 1)
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What is a sparse matrix? - nnz(A) = O(N), A(N ×N).
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Let us see some sparse matrices.

The following slides are borrowed from Iain Duff.
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Special thanks.
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Why are we concerned separately with direct methods for
sparse matrices?
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The reason to consider especially factorizations of sparse matrices is the effect of fill-in,

namely, obtaining nonzero entries in the LU factors in positions where Ai,j is zero. This
is easy to be seen from the basic Gaussian elimination operation:

a
(k+1)
i,j ←− a

(k)
i,j +

a
(k)
i,k

a
(k)
k,j

a
(k)
k,k
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Concerns during the factorization phase:
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(a) Arrow matrix
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(b) The structure of the L-factor

The arrow matrix structure - the L and U factors are full.
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(c) Arrow matrix permuted
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(d) The structure of the L-factor

We can permute the matrix A first and then factorize!
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We pose now the the question to find permutation matrices P and Q, such that when we

factorize eA = QT AP T , the fill-in in the then obtained L and U factors will be minimal.
The solution algorithm takes the form:
(1) Factorize QT AP T = LU (2) Solve PLz = b and UQx = z.
How to construct P and Q in general?
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Two possible situations will be considered:

(M) We are given only the matrix, thus we can utilize only the structure of A

(matrix-given strategies);

(P) We know the origin of the sparse linear system and we are permitted to use this
knowledge to construct A so that it has a favourable structure (problem-given
strategies).

Along the road, we will also briefly discuss the suitability of the approaches for parallel
implementation on HPC/parallel computers.
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The aim of sparse matrix algorithms is to solve the system Ax = b in time and space

(computer memory requirements) proportional to O(n) + O(nnz(A)), where nnz(A)

denotes the number of nonzero elements in A.

Even if the latter target cannot be achieved, the complexity of sparse linear algebra is far

less than that of the dense case:

Order Time in sec

of A nnz(A) Dense solver Sparse solver

680 2646 0.96 0.06

1374 8606 6.19 0.70

2205 14133 24.25 2.65

2529 90158 36.37 1.17

Time on Cray Y-MP (results taken from I. Duff)
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The strive to achieve complexity O(n) + O(nnz(A)) entails very complicated sparse
codes. We name some aspects which fall out of the scope of the present course but play
and important role when implementing the direct solution techniques for sparse matrices
in practice.

- sparse data structures and manipulations with those;
- computer platform related issues, such as handling of

indirect addressing; lack of locality; difficulties with cache-based
computers and parallel platforms; short inner-most loops;
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Extra difficulties come from the fact that we have to choose a pivot element and its
proper choice may contradict to the strive to minimize fill-in.
As an illustration, we consider the following strategy for maintaining sparsity (due to
Markowitz, 1957). Consider the k-th step of the Gaussian elimination:

0

*

A(k)

A(k) =

a
(k)
k,k · · · a

(k)
k,j · · · a

(k)
k,n

...
...

a
(k)
i,k · · · a

(k)
i,j · · · a

(k)
i,n

...
...

a
(k)
n,k · · · a

(k)
n,j · · · a

(k)
n,n

A(k) is of order n− k + 1. Let n
(k)
i and n

(k)
j be the number of nonzero entries in the ith

row and the jth column of A(k), respectively. Choose pivot a
(k)
i,j such that the expression

(n
(k)
i − 1)(n

(k)
j − 1) is minimized.
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Condition min[(n
(k)
i − 1)(n

(k)
j − 1)] can be seen as

- choosing a pivot which will modify the least number of coefficients in the remaining
submatrix;
- choosing a pivot that involves least multiplications and divisions;

- as a means to limit the fill-in since it will produce at most (n
(k)
i − 1)(n

(k)
j − 1) new

nonzero entries.
However, in general the entry a

(k)
i,j has to obey some other numerical criteria also, for

example,

|a
(k)
i,j | ≥ τ |a

(k)
i,s |, i ≥ s,

where τ ∈ (0, 1) is a threshold parameter.
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The following table illustrates how the choice of τ can influence the stability of the
factorization.

τ nnz(L, U) Error in solution

1.0 16767 3e-09
0.25 14249 6e-10
0.10 13660 4e-09
0.01 15045 1e-05
1e-4 16198 1e+02

1e-10 16553 3e+23
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"Given-the-matrix" strategy
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Given-the-matrix strategy

In the given-the-matrix case the only source of information is the matrix itself and we will
try to reorder the entries so that the resulting structure will limit the possible fill-in.
What is the matrix structure to aim at?
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Given-the-matrix strategy
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(e) Diagonal matrix

• diagonal

• block-diagonal

• block-tridiagonal

• arrow matrix
• band matrix
• block-triangular
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(f) block-diagonal matrix
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(g) The structure of the L-factor
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(h) Block-tridiagonal matrix
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(i) The structure of the L-factor
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We will consider the case of symmetric matrices (P = Q) and three popular methods
based on manipulations on the graph representation of the matrix.
- (generalized) reverse Cuthill-McKee algorithm (1969);
- nested dissection method (1973);
- minimum degree ordering (George and Liu, 1981) and variants.
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Some common graph notations:

Given a graph G(A) = (V, E) of a symmetric matrix A, where V is a set of vertices, E -
a set of edges.

– A pair of vertices (vi, vj), i 6= j, is an edge in G(A) if and only if aij 6= 0.
– Two vertices v, w called adjoint, if (v, w) ∈ E.
– If W ∈ V is a given set of vertices of the graph G(A), then an adjoint set

for W (with respect to V ) is Adj(W ) = {v ∈ V − Wsuch that {v, w} ∈

E for some w ∈W}.

– A degree |W | of W ∈ V is the number of elements in Adj(W ). In particular,
the degree of a vertex w is defined as a number of vertices adjoint to w.

– p. 24/49



A matrix from somewhere
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Generalized Reverse Cuthill-McKee alg.(RCM)

Aim: minimize the envelope (in other words a band of variable width) of the permuted
matrix.

1. Initialization. Choose a starting (root) vertex r and set

v1 = r.

2. Main loop. For i = 1, ..., n find all non-numbered neigh-

bours of vi and number them in the increasing order of their

degrees.

3. Reverse order. The reverse Cuthill-McKee ordering is

w1, ..., wn, where wi = vn+1−i.
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Generalized Reverse Cuthill-McKee alg.(RCM)

One can see that GenRCM tends to number first the vertices adjoint to the already
ordered ones, i.e., it gathers matrix entries along the main diagonal.

The choice of a root vertex is of a special interest.

The complexity of the algorithm is bounded from above by O(m nnz(A)), where m is a
maximum degree of vertices, nnz(A) - number of nonzero entries of matrix A.
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Generalized Reverse Cuthill-McKee alg.(RCM)
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The Quotient Minimum Degree (QMD)

Aims to minimize a local fill-in taking a vertex of minimum degree at each elimination
step. The straightforward implementation of the algorithm is time consuming since the
degree of numerous vertices adjoint to the eliminated one must be recomputed at each
step. Many important modifications have been made in order to improve the
performance of the MD algorithm and this research remains still active .
In many references the MD algorithm is recommended as a general purpose fill-reducing
reordering scheme. Its wide acceptance is largely due to its effectiveness in reducing fill
and its efficient implementation.
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The Quotient Minimum Degree (QMD)
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The Nested Dissection algorithm

A recursive algorithm which on each step finds a separator of each connected graph
component. A separator is a subset of vertices whose removal subdivides the graph into
two or more components. Several strategies how to determine a separator in a graph are
known. Numbering the vertices of the separator last results in the following structure of
the permuted matrix with prescribed zero blocks in positions (2, 1) and (1, 2)

0

B

@

A11 0 A13

0 A22 A23

A31 A32 A33

1

C

A
.
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The Nested Dissection algorithm

Under the assumption that subdivided components are of equal size the algorithm

requires no more than log2 n steps to terminate.

ND is optimal (up to a constant factor) for the class of model 9-point two-dimensional grid
problems posed on regular m×m-meshes. In this case a direct solver based on the ND
ordering requires O(m3) arithmetic operations for matrix factorization and O(m2log2m)

arithmetic operations to solve triangular systems. Accordingly, the Cholesky factor
contains O(m2log2m) nonzero entries. These are the best low order bounds derived for
direct elimination methods. In the three dimensional case and model 27-point grid
problems on cubic m×m×m meshes the number of factorization operations is
estimated as O(m6).
Therefore one can expect iterative methods to be in general superior for 3D grid
problems and for large enough 2D problems. This holds in particular for reasonably
well-conditioned problems and not too irregular grids.
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A comparison...

Direct
Method RCM ND QMD ND∗

Time (sec) 45.82 39.54 171.84 783.88

Comparison results, problem size n = 92862
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Direct methods, 2D problem: Bridge

Method Ordering Factorization Solution Total time True res.

n = 6270 nzA = 80726

RCM 0.0321 0.3311 0.0356 0.3987 1.81-09

ND 0.1270 0.5167 0.0390 0.6826 1.33-09

QMD 0.6852 0.3735 0.0350 1.0937 1.30-09

n = 23838 nzA = 316752

RCM 0.1440 3.4762 0.2550 3.875 1.72-09

ND 0.6476 4.0399 0.2062 4.894 1.25-09

QMD 9.1588 3.5092 0.1952 12.863 1.22-09

n = 92862 nzA = 1254552

RCM 0.601 43.306 1.908 45.82 9.25-09

ND 3.296 35.139 1.109 39.54 5.73-09

QMD 138.65 32.046 1.139 171.84 6.15-09

n = 366462 nzA = 4993118

RCM 2.552 1100.7 25.01 1127.7 5.18-08

ND 15.86 320.8 5.43 342.1 2.41-08

QMD 2168.6 410.8 6,23 2585.6 2.66-08
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Direct methods, 2D problem: Dam

Method Ordering Factorization Solution Total time True res.

n = 13474 nzA = 182502

RCM 0.0688 3.0018 0.1853 3.256 2.58-12

ND 0.3141 3.4374 0.1314 3.883 1.32-12

QMD 2.5228 2.6335 0.1237 5.280 1.30-12

n = 53058 nzA = 729582

RCM 0.3179 47.014 1.4091 48.841 1.30-11

ND 1.7335 31.600 0.6948 34.028 5.17-12

QMD 40.9980 31.200 0.7148 72.913 5.51-12

n = 210562 nzA = 2917310

RCM 1.41 1303.30 11.366 1316.0 6.32-11

ND 9.41 300.10 3.558 313.1 1.91-11

QMD 777.35 310.97 3.838 1091.2 2.08-11

n = 838914 nzA = 11667410

RCM 5.442 out of memory - -

ND 41.48 2696.36 17.16 2755.0 6.66-11

QMD 12751.00 3819.30 40.97 16612.0 7.54-11
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Direct methods, 3D problem: Bricks

Method Ordering Factorization Solution Total time True res.

n = 135 nzA = 4313

RCM 0.0017 0.0040 0.0003 0.0059 2.95-14

ND 0.0019 0.0062 0.0005 0.0086 1.14-14

QMD 0.0109 0.0056 0.0004 0.0170 1.62-14

n = 675 nzA = 32817

RCM 0.0119 0.1042 0.0031 0.119 1.05-13

ND 0.0190 0.2303 0.0060 0.255 4.72-14

QMD 0.1552 0.2560 0.0063 0.417 5.92-14

n = 4131 nzA = 255515

RCM 0.0987 9.1881 0.1085 9.40 4.85-13

ND 0.2252 16.892 0.1645 17.28 2.55-13

QMD 1.9759 25.543 0.1991 27.72 2.74-13

n = 28611 nzA = 2016125

RCM 0.821 1189.4 4.903 1195.1 3.85-12

ND 1.907 650.9 2.134 654.9 1.05-12

QMD 35.654 3537.8 5.607 3579.1 1.55-12
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Direct methods, 3D problem:Soil

Method Ordering Factorization Solution Total time True res.

n = 375 nzA = 15029

RCM 0.0040 0.0297 0.0013 0.0350 9.03-15

ND 0.0071 0.0544 0.0021 0.0636 6.29-15

QMD 0.0475 0.0574 0.0022 0.1070 6.06-15

n = 2187 nzA = 122441

RCM 0.0337 4.2352 0.0599 4.329 4.77-14

ND 0.0901 3.8116 0.0619 3.964 2.55-14

QMD 0.5192 3.3087 0.0466 3.875 2.28-14

n = 14739 nzA = 500688

RCM 0.3280 672.82 1.918 675.07 3.69-13

ND 1.3481 243.76 1.110 246.21 1.03-13

QMD 8.5856 707.95 1.549 718.09 1.43-13

n = 107811 nzA = 7925773

RCM 2.643 out of memory - -

ND 15.627 18420.3 27.695 18464.0 4.67-13

QMD 319.297 out of memory - -
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"Given-the-problem" strategy
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Given-the-problem strategy

Assume we know the origin of the linear system of equations to be solved. In many

cases it comes from a numerically discretized (system of) PDEs, and we know the
domain of definition of the problem (Ω), its geomethical properties, the discretization
method (finite differences (FD), finite elements (FE), finite volumes (FV), boundary
integral (BE) method). In such cases the system matrix enjoys a special structure.
This information can be utilized while computing the matrix so that it will be constructed
in (almost) favourable form.
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Edge-research in direct solution methods for sparse matri-

ces

• Ordering techniques to singly bordered block-diagonal forms for unsymmetric parallel
direct solvers
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• MUMPS, MUltifrontal Massively Parallel Solver: an international project to design and
support a package for the solution of large sparse systems using a multifrontal method
on distributed memory machines.
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Borowed from Iain Duff

AUDI-CRANKSHAFT
Order: 943695
Nonzero entries: 39 297 771

Analysis
Entries in factors: 1 435 757 859

11.2 GBytes

Operations required: 5.9 1012

Factorization (SGI ORIGIN at Bergen)
1 Processor: 32000 sec

16 GBytes
2 Processors: 22000 sec

20 GBytes
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Assembly time (s) Total solution time (s)

N Abaqus Iterative Abaqus Iterative
time iterations

2D

6043 1 0.2178 1.098 1.02 (0.4863) 13 (1,1)
23603 3.326 0.8857 4.718 4.225 (1.995) 12 (1,1)
93283 13.02 3.978 18.05 19.38 (9.813) 11 (2,1)

370883 50.54 17.71 72.98 89.34 (49.43) 11 (2,1)
1479043 269.1 77.7 317.5 431.8 (257.6) 12 (2,1)

3D

12512 1.525 1.899 3.049 8.009 (3.465) 12 (2,1)
89700 14.09 8.756 43.29 63.34 (33.08) 13 (2,1)

678116 110.3 65.8 1347 749.3 (506.8) 15 (4,1)
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Summary:

• There is no one good buy.

• The best code in any situation will depend on
- the solution environment;
- the computing platform;

- the structure of the matrix.
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