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Abstract
We consider multilevel Toeplitz matrices Tn(f) generated by Lebesgue integrable functions

f defined over Id, I = [−π, π), d ≥ 1. We are interested in the solution of linear systems with
coefficient matrix Tn(f) when the size of Tn(f) is large. Therefore the use of iterative methods
is recommended for computational and numerical stability reasons. In this note we focus our
attention on the (preconditioned) conjugate gradient (P)CG method and on the case where the
symbol f is known and univariate (d = 1): the second section treat spectral properties of Toeplitz
matrices Tn(f); the third deals with the spectral behavior of T−1

n (g)Tn(f) and the fourth with the
band Toeplitz preconditioning; in the fifth section we consider the matrix algebra preconditioning
through the Korovkin theory. Then in the sixth section we study the multilevel case d > 1 by
emphasizing the results that have a plain generalization (those in the Sections 2, 3, and 4) and
the results which strongly depend on the number d of levels (those in Section 5): in particular
the quality of the matrix algebra preconditioners (circulants, trigonometric algebras, Hartley etc.)
deteriorates sensibly as d increases.

A section of conclusive remarks and two appendices treating the theory of the (P)CG method
and spectral distributional results of structured matrix sequences.

key words Linear system, conjugate gradient method, Toeplitz matrix, structured matrix, precon-
ditioner.
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1 Introduction

Toeplitz matrices and operators arise in a wide variety of fields of pure and applied mathematics such
as probability theory, harmonic analysis, statistics, Markov chains, signal theory, image processing
etc. A matrix is called Toeplitz matrix (of finite, infinite or bi-infinite order) if its (i, j) entry depends
only on the difference i − j of the subscripts. In this note we are interested in finite dimensional
Toeplitz problems in which the n × n Toeplitz matrix Tn(f) is an n–section of an infinite Toeplitz
operator whose entries on the k–th diagonal are the Fourier coefficients ak of an assigned Lebesgue
integrable function f defined on the fundamental interval I = [−π, π) and periodically extended to
the whole real axis:

ak =
1

2π

∫ π

−π
f(x)e−ikxdx, i2 = −1.
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Indeed, if f is a real valued function we have ak = ā−k and, consequently, Tn(f) is Hermitian; more-
over, if f(x) = f(−x), then the coefficients ak are real and Tn(f) is symmetric. We emphasize (see
[23]) that the generating function f is given in many applications (such as finite difference discretiza-
tion of partial differential equations (PDEs), some linear estimation problems etc.) but it is unknown
in many others (such as some inverse problems arising in signal/image restoration applications etc.).
In the following we suppose to know some information about the analytic properties of f : the case
where f is unknown in briefly sketched at the end of Section 4 where some relevant references are
also provided. Of particular interest in the applications are the solution of Toeplitz linear systems and
the analysis of the extremal behavior of the spectra of such matrices. By using a combination of ele-
mentary techniques of linear algebra and calculus, we discuss linear algebra tools to obtain estimates
regarding the smallest and the greatest eigenvalue of a Toeplitz matrix. Moreover we stress that the
knowledge of the asymptotic behavior of the spectra of the family of matrices {Tn(f)} is crucial in or-
der to understand how ill–conditioned are these matrices (see Section 2 and [14, 66]): this information
is, obviously, useful to design a suitable solver for the related Toeplitz linear system. Actually, since
we deal with very large problems, it is imprudent to use direct methods [17]; consequently, for this
reason and for computational convenience both in sequential and in parallel model of computation,
a lot of attention has been paid to the application of iterative methods, such as preconditioned con-
jugate gradient (PCG) and, more recently, multigrid methods [33, 35]. In the following, we analyze
in detail the application of a class of PCG methods whose preconditioners Tn(g) are positive definite
Toeplitz matrices generated by essentially nonnegative functions g. In view of this, we deeply analyze
the properties of the spectra of the preconditioned matrices T−1

n (g)Tn(f) in terms of the dimension
n and of the analytic behavior of the functions f and g (see Section 4 and [18, 30, 61, 64, 62]). In
this way we arrive at the design of efficient algorithms for the solution of linear systems of the form
Tn(f)x = b. In the second part we consider preconditioners of O(n log(n)) arithmetic cost coming
from matrix algebras (circulants, trigonometric matrix algebras, Hartley matrices etc.) for which we
introduce the Frobenius optimal approach introduced by Tony Chan [24]: their analysis is carried out
in a unified way by means of the Korovkin theory of which we present the classical version [49] in
Approximation Theory and our matrix version [71]. Finally we consider the more challenging multi-
level case which often appear in multivariate problems (imaging, PDEs etc.): we focus our attention
on the band approach and on the matrix algebra approach by emphasizing both the generalizable parts
of the theory and the intrinsic difficulties of the multilevel setting.

The organization of these notes follows the scheme given in the index. In particular, in Section 2
we analyze the localization, the distribution and the extremal properties of the spectra of Hermitian
Toeplitz matrix sequences. In Section 3 we make the same analysis about the spectra of the precondi-
tioned matrices. These results are crucial to design efficient preconditioned iterative methods and, in
fact, in Section 4 we perform a detailed analysis of the various cases (f ≥ 0, f ≤ 0 in Subsections 4.2
and 4.3, f with nondefinite sign in Subsection 4.4, f with zeros of odd orders in Subsection 4.5, f with
zeros of generic orders in Subsection 4.6, and more involved cases in Subsection 4.7), obtaining suit-
able band Toeplitz preconditioners and good algorithms to solve a given linear system Tn(f)x = b.
Section 5 is devoted to the matrix algebra preconditioning which is introduced through the Korovkin
theory. Section 6 deals with the multilevel case by emphasizing the results that have a plain general-
ization (those in the Sections 2, 3, and 4) and the results which strongly depend on the number d of
levels (those in Section 5). A section of conclusions 7 and two appendices on convergence theory of
(P)CG methods and advanced spectral results conclude these notes.
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2 Spectral features of Tn(f)

The main purpose of this section is the study of the eigenvalues and especially of the extreme eigen-
values of Tn(f), i.e., λ(n)

1 and λ(n)
n : we write λ(n)

j (Tn(f)) in place of λ(n)
j when the matrix is not clear

from the context and in any case we always consider a nondecreasing order i.e. λ(n)
1 ≤ · · · ≤ λ

(n)
n .

Starting from the pioneering work by Szegö (see e.g. [37]), we know that many spectral properties
of Tn(f) are well understood by considering its generating function f . In the following we denote
by essinf f and esssup f the essential infimum and the essential supremum of f , i.e., inf f and sup f
up to a zero–measure set; we denote by C0 the set of the continuous functions with bounded support
defined on the real line, by m{·} the usual Lebesgue measure, and by MN (C) the set of all N by
N matrices with complex entries. The following result due to Szegö in L∞(I) and generalized by
Tyrtyshnikov and Zamarashkin in L1(I) holds true.

Theorem 2.1 Let λ(n)
j , j = 1, . . . , n, be the eigenvalues of Tn(f) with f real valued and belonging

to L1(I). Then for every F ∈ C0 the following limit relation holds:

lim
n→∞

1

n

n∑
j=1

F
(
λ

(n)
j

)
=

1

2π

∫
I
F (f(x)) dx. (1)

The most suggestive interpretation of relation (1) is as follows: a suitable ordering of the eigenval-
ues λ(n)

j , j = 1, . . . , n, can be seen as an approximation of the function f(·) sampled on an equispaced
grid on the domain I = [−π, π). Therefore it is quite evident that the symbol f decides the asymptotic
inertia (asymptotic definiteness), the asymptotic size of the ill-conditioned spaces (and its nature) of
the associated matrices Tn(f). These features are discussed in more detail in Subsection 2.1

2.0.1 Extensions and generalizations of Theorem 2.1

Some possible extensions of the class of the test functions have been considered. For instance in
[67], the test functions have not necessarily bounded support since they are obtained as intersection
of the continuous functions with the L∞ closure of J where J is the set of the linear combinations
of characteristic functions of unbounded intervals: the resulting space is given by the continuous
functions having finite limits at∞ and−∞ (see item d of Theorem 3.1). Furthermore, in [91] relation
(1) is proved for any F ∈ UCB (i.e. uniformly continuous and bounded on R). We observe that this
class strictly contains the class of test functions Cblimits = J L

∞
given in [67].

A bigger class (in some sense the biggest class) is considered in [76] for which the considered limit
relation holds for any function f ∈ Lp(I): the considered class is C(p) which defined as the set of
all continuous functions F on the real line such that F (z)

1+|z|p belongs to L∞(R). The meaning is that
the test functions should satisfy a growth condition at infinity which is vacuous when the symbol f
is in L∞(I) and is stronger when f ∈ L1(I) (in this case F can have at most a linear growth). The
crucial facts used for proving such results are contained in the following inequalities obtained in [83]
and valid also for complex valued (and multivariate) symbols: for any f ∈ Lp(I) with p ∈ [1,∞), we
have

‖Tn(f)‖pp ≤ (2π)−1 n‖f‖pLp and ‖Tn(f)‖ ≤ ‖f‖∞ (if f ∈ L∞(I)), (2)

where ‖X‖p =

 N∑
j=1

σpj

1/p

denotes the Schatten p norm of the matrix X ∈ MN (C) with singular

values {σj} (see e.g. [7]) and ‖X‖ = maxj σj . We use inequalities (2) for giving a simple matrix
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theoretic proof of Theorem 2.1 in Appendix B.1.

In a completely different direction we can consider the case of complex valued symbols: in this
case the finite sections Tn(f) are not necessarily Hermitian and the natural extension of relation (1)
holds with the eigenvalues replaced by the singular values and with the symbol f replaced by |f | in
the righthand side (see Theorem 9.1 and Definition 9.1 in Appendix B).

Very deep results are derived by Tilli [89] for the eigenvalues in the non Hermitian case: in this
case the (1) is satisfied for every f if we restrict the test functions F to the set of the analytic functions
on a certain annulus of the complex plane. This set of test functions is very poor (the analyticity is a
restrictive condition) and gives very weak information, consequently, if we want as test functions the
class C0 on C, then we have to focus our attention on symbols f such that the essential range does
not disconnect the complex plane (see the beautiful paper [92]): an interesting and somehow strange
consequence of this statement is that we cannot have good distribution results for most of the regular
symbols such as the polynomials.

Finally mention has to be made to notion of approximating class of sequences [74]: it represents
a basic tool for developing an approximation theory for matrix sequences and it has been successfully
used for obtaining global distribution results for more involved matrix sequences including multilevel
Toeplitz structures, discretization of partial differential equations with variable coefficients and over
general domains, the algebra generated by (multilevel) Toeplitz matrices with L∞(Id) symbols etc.
A sketch of the use of this tool and of the related results is given in Appendix B.

2.1 Localization and extreme spectral results

Here is a sample of some spectral results that are described through the symbol f : many of these can
be proven by using Theorem 2.1.

Theorem 2.2 Let λ(n)
j be the eigenvalues of Tn(f) sorted in nondecreasing order, and mf =essinf f ,

Mf =esssup f .

a. If mf < Mf then λ(n)
j ∈ (mf ,Mf ) for every j and n; if mf = Mf then f is constant and trivially

Tn(f) = mfIn with In identity of size n;

b. the following asymptotic relationships hold: lim
n→∞

λ
(n)
1 = mf , lim

n→∞
λ(n)
n = Mf .

Proof. Concerning the first item, we observe that mf = Mf implies that f is constant almost
everywhere (a.e.) and hence a0 = mf and ak = 0 for all k 6= 0. Therefore Tn(f) = mfIn and any
eigenvalue of Tn(f) coincides with mf .
When mf < Mf the proof is given as follows. Any eigenvalue λ(n)

j can be viewed as a special
Rayleigh quotient uHTn(f)u with unitary vector u (more precisely u is a unitary eigenvector related
to λ

(n)
j ). Therefore the thesis claimed in the first item is proven if we prove that uHTn(f)u ∈

(mf ,Mf ) for every unitary vector u i.e., by linearity of Tn(·), if we prove that uHTn(f −mf )u > 0
and uHTn(Mf − f)u > 0 for every unitary vector u. We consider the first inequality the second one
being completely similar:

uHTn(f −mf )u =
n∑

j,k=1

ūj (Tn(f −mf ))j,k uk
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=
n∑

j,k=1

ūjuk
1

2π

∫
I
(f(x)−mf )e−i(j−k)xdx

=
1

2π

∫
I
(f(x)−mf )

n∑
j,k=1

ūje
−ijxuke

ikxdx

=
1

2π

∫
I
(f(x)−mf )

n∑
j,k=1

ūje
−i(j−1)xuke

i(k−1)xdx

=
1

2π

∫
I
(f(x)−mf )

∣∣∣∣∣
n∑
k=1

uke
i(k−1)x

∣∣∣∣∣
2

.

Therefore uHTn(f−mf )u is nonnegative since f(x)−mf is nonnegative a.e. and
∣∣∣∑n

k=1 uke
i(k−1)x

∣∣∣2
is nonnegative being the square of a polynomial. To prove the strict inequality we observe that the
set A+ where f(x) −mf is strictly positive has positive measure since Mf > mf and therefore the

integral over A+ of (f(x)−mf )
∣∣∣∑n

k=1 uke
i(k−1)x

∣∣∣2 must be positive by the fundamental theorem of

algebra since the complex polynomial
∑n
k=1 ukz

k−1 (which is not identically zero due to the normal-
ization condition uHu =

∑n
k=1 |uk|2 = 1) can have at most n− 1 zeros in A+.

For item b, we observe that for every positive n the matrix Tn(f) is a principal submatrix of Tn+1(f).
Therefore, by the Cauchy interlace Theorem [7, 55], we obtain that λ(n)

1 > mf is a non increasing
sequence and λ(n)

n < Mf is a nondecreasing sequence. As a consequence both the sequences have
limits and, more precisely, we deduce

lim
n→∞

λ
(n)
1 = m ≥ mf , lim

n→∞
λ

(n)
1 = M ≤Mf .

By contradiction we assumem > mf (orM < Mf ). Then we can construct a continuous nonnegative
function F ∈ C0 such that F (z) = 0 for z ≥ m or z ≤ mf − 1, with F (mf ) = 1 and being linear
in [mf − 1,mf ] and [mf ,m] (or F (z) = 0 for z ≤ M or z ≤ Mf + 1, with F (Mf ) = 1 and being
linear in [Mf ,Mf + 1] and [M,Mf ]): in such a way we have

1

2π

∫
I
F (f(x)) dx ≥ 1

2π

∫
{x∈I: f(x)∈[mf ,(m+mf )/2]}

F (f(x)) dx

≥ 1

2π

∫
{x∈I: f(x)∈[mf ,(m+mf )/2]}

1

2
dx

=
1

4π
m{x ∈ I : f(x) ∈ [mf , (m+mf )/2]} > 0

while
1

n

n∑
j=1

F
(
λ

(n)
j

)
= 0, ∀n ≥ 1

since no eigenvalue of Tn(f) lies below m. Obviously the latter two relations cannot be simultane-
ously true due to (1). •

It is worthwhile observing that a simple variation on the theme of the proof of the second item
allows to obtain the following quite strong results:

lim
n→∞

λ
(n)
i(n) = mf , lim

n→∞
λ

(n)
n+1−i(n) = Mf , ∀ i(n) ≥ 1 with i(n) = o(n). (3)
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Further interesting results can be obtained by manipulating relation (1).

Theorem 2.3 If m{x ∈ I : f(x) = a} = m{x ∈ I : f(x) = b} = 0 then

lim
n→∞

#{j : λ
(n)
j ∈ [a, b]}
n

=
m{x ∈ I : f(x) ∈ [a, b]}

2π
.

Proof. We observe that the wanted relation is the same as (1) where the test function F is the
characteristic function of the set [a, b] i.e. F (z) = 1 if z ∈ [a, b] and 0 elsewhere: the problem is
that this function is not continuous as required by the hypotheses of Theorem 2.1. However, by using
equalities m{x ∈ I : f(x) = a} = m{x ∈ I : f(x) = b} = 0, it is possible to prove that for
every ε > 0 the number of the eigenvalues belonging to a ε neighborhood of a and b are bounded by
nθ(ε) with θ(ε) infinitesimal as ε becomes infinitesimal. The latter is used with relation (1) with the
globally continuous test functions F ε+ and F ε−. Here F ε+(z) = F (z) for z ∈ [a, b]∪ (R\[a− ε, b+ ε]),
is linear on [a− ε, a] and on [b, b+ ε]; analogously F ε+(z) = F (z) for z ∈ [a+ ε, b− ε]∪ (R\[a, b]),
is linear on [a, a+ ε] and on [b− ε, b]. It is clear that

F ε−(z) ≤ F (z) ≤ F ε+(z) (4)

and, by relation (1), we have

lim
n→∞

1

n

n∑
j=1

F ε±

(
λ

(n)
j

)
=

1

2π

∫
I
F ε± (f(x)) dx.

Therefore, by (4), for every ε > 0 we deduce

1

2π

∫
I
F ε+ (f(x)) dx ≥ lim sup

n→∞

1

n

n∑
j=1

F
(
λ

(n)
j

)

≥ lim inf
n→∞

1

n

n∑
j=1

F
(
λ

(n)
j

)
≥ 1

2π

∫
I
F ε− (f(x)) dx.

Because F is the L1 limit of both F ε− and F ε+ we have

lim
ε→0

1

2π

∫
I
F ε− (f(x)) dx = lim

ε→0

1

2π

∫
I
F ε+ (f(x)) dx =

1

2π

∫
I
F (f(x)) dx,

and therefore the desired result follows since both the lim inf
n→∞

and the lim sup
n→∞

of
1

n

n∑
j=1

F
(
λ

(n)
j

)
co-

incide with
1

2π

∫
I
F (f(x)) dx. •

Let ER(f) be the essential range of f defined by y ∈ ER(f) if and only if ∀ε > 0 we have
m{x : f(x) ∈ (y − ε, y + ε)} > 0). Let B(A, δ) be the closed δ-fattening of A with positive δ and
A ⊂ R, i.e., B(A, δ) =

⋃
x∈A
{y : |y − x| ≤ δ}. From Theorem 2.1 it follows

7



Proposition 2.1 Let δ > and X = (mf ,Mf )/B(ER(f), δ), then
∞⋃
n=1

⋃
j≤n

λ
(n)
j in dense in ER(f)

while only “few” eigenvalues of Tn(f) belong to X . Actually, for every positive δ independent of n,
#{j : λ

(n)
j ∈ X} = o(n) and n−#{j : λ

(n)
j ∈ B(ER(f), δ)} = o(n).

Proof. The main idea is to use the function G defined as

G(z) = dist(z, ER(f))

where dist(K1,K2) is the distance in Euclidean norm between two sets K1 and K2. It is easy to
prove that G is continuous (indeed it is Lipschitz continuous). For ε > 0, we consider the functions

F ε = exp(−G(z)/ε)

for z ∈ [mf −1,Mf +1]: outside the interval [mf −1,Mf +1] we complete the function F ε is such a
way that it belongs to C0. Since G is zero if and only if x ∈ ER(f) and positive elsewhere, it follows
that F ε ≥ F with F being the characteristic function of the set ER(f)) and F is the L1 limit of F ε.
Therefore the use of Theorem 1 with test function F ε and an asymptotic argument with ε arbitrarily
small complete the proof. •

Therefore almost all the eigenvalues of Tn(f) are in every fixed fattening of the essential range of
f ; anyway in [101] the following somehow surprising result is proved.

Theorem 2.4 With the previous notations, the set
∞⋃
n=1

⋃
j≤n

λ
(n)
j is dense in [mf ,Mf ].

2.2 More on the extreme eigenvalues

We present simple linear algebra techniques (see [66, 63]) in order to evaluate the rate of convergence
of λ(n)

1 to mf (and λ(n)
n to Mf ). By using these tools we obtain asymptotic results which extend

previous estimates provided by Kac, Murdoch, Szegö [46], Parter [56], Widom [99] under certain
regularity assumptions on the generating functions. In fact they obtained that λ(n)

1 − mf ∼ n−2k

in the case where f is globally continuous on I and of class C2k in a suitable neighborhood of the
unique zero x0 of f −mf with f(x) −mf ∼ |x − x0|2k (in other words the key assumption is that
f −mf has at x0 a zero of order 2k). The smoothness hypotheses impose severe restrictions which
might be hard to verify or they may be not satisfied in some areas of application such as prediction
theory of stationary processes and signal processing, where f is viewed as a spectral density of a
stationary stochastic process [57]. However it is simple to prove that the smoothness features do not
have any influence on the convergence speed of λ(n)

1 tomf and indeed also the uniqueness of the point
where the minimum is attained is a removable assumption. We remark that the statements concern
the smallest eigenvalue of Tn(f) but the same holds for the biggest since it is enough to consider the
smallest eigenvalue of Tn(−f).

The following theorem is useful both for devising good preconditioners and for obtaining extremal
spectral results.

Theorem 2.5 Let f and g be two real valued integrable functions where g is nonnegative and with
positive essential supremum; then for any n the matrix T−1

n (g)Tn(f) has eigenvalues in the open
interval (r,R) where r =essinf f

g and R =esssup f
g if r < R. In the case where r = R we have

T−1
n (g)Tn(f) = rIn with In being the identity matrix and trivially every eigenvalue of T−1

n (g)Tn(f)
coincides with r.

8



Proof. From the first item of Theorem 2.2, the matrix Tn(g) is Hermitian and positive definite and
therefore by the Schur normal form Theorem [7] there exists its square root and is a Hermitian and pos-
itive definite matrix. ThusGn = T−1

n (g)Tn(f) is similar to T−1/2
n (g)Tn(f)T

−1/2
n (g) which is Hermi-

tian thanks to the Hermitianity of T 1/2
n (g) and of Tn(f): consequently any eigenvalue of T−1

n (g)Tn(f)
is a real number. Let λ be an eigenvalue of T−1

n (g)Tn(f). Then the matrix Cn(λ) = Tn(f)− λTn(g)
is singular and Cn(λ) is a Toeplitz matrix generated by cλ(x) = f(x)− λg(x) where we assume that
cλ(x) is not zero a.e. (i.e. r < R). In view of the first item of Theorem 2.2, cλ(x) cannot have essen-
tially constant sign. Therefore f − λg cannot be nonnegative a.e. and f − λg cannot be nonpositive
a.e., i.e., f − λg is essentially nondefinite (m{x ∈ I : cλ(x) < 0}, m{x ∈ I : cλ(x) > 0} > 0).
Since g ≥ 0 a.e. and cλ = gc∗λ we find that c∗λ = f

g − λ is essentially nondefinite. This means

that essinf c∗λ < 0 and esssup c∗λ > 0, that is, essinf f
g < λ < esssup f

g . The second part of the the-
orem is trivial and its proof is left to the reader (it corresponds to the case cλ(x) zero a.e. i.e. r = R). •

Now we can introduce the following definitions:

Definition 2.1 Let f, g be two nonnegative integrable functions on I (not essentially zero), then f ∼
g if there exists a constant r > 0 such that f

g ,
g
f ≥ r, a.e. Moreover f � g if esssup f/g =

∞, essinf f/g = r > 0.

With these definitions the following simple result is true.

Theorem 2.6 Let f, g be two integrable functions on I satisfying the condition f − mf ∼ g −
mg, where mf (and analogously mg) is defined as in Theorem 2.2, then λ

(n)
j (Tn(f)) − mf ∼

λ
(n)
j (Tn(g)) − mg, j = 1, . . . , n. In particular for j = 1 we deduce that the minimal eigenvalue

of Tn(f) tends to mf with the same asymptotic speed of the convergence of λ(n)
1 (Tn(g)) to mg.

Proof. By the minmax characterization it is well known that the j-th eigenvalue (λ1(A) ≤ · · · ≤
λn(A)) of a Hermitian matrix A ∈Mn(C) is described as

λ
(n)
j (A) = min

dim(V)=j
max

x∈V, x 6=0

xHAx

xHx
.

By the assumption, we know that there exists positive r and R such that r(g − mg) ≤ f − mf ≤
R(g −mg) and therefore by the first item of Theorem 2.2 and by the linearity of the operator Tn(·),
we have

rTn(g −mg) ≤ Tn(f −mf ) ≤ RTn(g −mg).

We recall that for Hermitian matrices A and B, A ≤ B is equivalent to say that B − A is positive
semidefinite. Consequently, for every j = 1, . . . , n

λ
(n)
j (Tn(f))−mf = λ

(n)
j (Tn(f)−mfIn)

= min
dim(V)=j

max
x∈V, x 6=0

xH(Tn(f −mf ))x

xHx

≤ min
dim(V)=j

max
x∈V, x 6=0

xHR(Tn(g −mg))x

xHx

= min
dim(V)=j

max
x∈V, x 6=0

R
xH(Tn(g −mg))x

xHx

= Rλ
(n)
j (Tn(g)−mgIn) = R(λ

(n)
j (Tn(g))−mg).

9



In a completely analogous way we deduce that

λ
(n)
j (Tn(f))−mf ≥ r(λ

(n)
j (Tn(g))−mg)

i.e. λ(n)
j (Tn(f))−mf ∼ λ

(n)
j (Tn(g))−mg, ∀j = 1, . . . , n. •

If f and g are such that f −mf � g−mg, by means of the same arguments of the previous theorem,
it is easy to show that

λ
(n)
1 (Tn(f))−mf = o(λ

(n)
1 (Tn(g))−mg).

Consequently, the set of all the functions f ∈ L∞(I) such that f −mf has a unique zero of order ρ, is
a class of equivalenceZρ with respect to the equivalence relation fRg if and only if f−mf ∼ g−mg,
that is, f −mf and g −mg have a zero of the same order ρ. In this way all the Toeplitz matrices Tn
possessing the generating function f in Zρ have minimal eigenvalue which tends tomf with the same
asymptotical rate of convergence depending only on ρ. Now we are ready to generalize a result of
Kac, Szegö and Murdoch [46] where it is proven that if f−mf ∼ (sin2k((x−x0)/2) for some x0 ∈ I ,
I = [−π, π) and f ∈ C(Ī)∩C2k(J), for some neighborhood J of x0, then λ(n)

1 (Tn(f))−mf ∼ n−2k.
The following more general result can be easily proven.

Corollary 2.1 f −mf ∼ sin2k((x− x0)/2), then λ(n)
1 (Tn(f))−mf ∼ n−2k.

Proof. The thesis holds for g(x) = sin2k((x − x0)/2) [46] which is infinitely differentiable. Now,
since f −mf ∼ g, by using Theorem 2.6 we have λ(n)

1 (Tn(f))−mf ∼ λ
(n)
1 (Tn(g)) ∼ n−2k. •

In addition by following the same reasoning we obtain

Corollary 2.2 If sin2k((x− x0)/2) � f −mf , for every positive integer k (i.e., the order of the zero
of f −mf is∞), then λ(n)

1 (Tn(f))−mf = o
(
n−2k

)
for every positive k. Therefore we have super

polynomial convergence of λ(n)
1 (Tn(f)) to mf .

Finally we end this subsection mentioning the case of several minima. It is interesting to point
out that in some areas of application such as prediction theory of stationary processes and signal
processing, where f is viewed as the spectral density of a stationary process, the density f may have
many zeros and essinf f = 0 is attained at several points, so that the assumption of a unique minimum
is not fulfilled [57]. In this case as well the same type of result holds. More specifically, if f−mf has a
finite number of (essential) zeros of finite order with maximal order α, then λ(n)

1 (Tn(f))−mf ∼ n−α
(for such a type of results see [14]).

As an example, let us consider the symbol f(x) = x2 which has a unique zero of order two at x0 =

0. The matrix Tn(f) is a dense one (since the expansion is not finite x2 =
π2

3
+ 2

∞∑
k=1

(−1)k

k2
(eikx +

e−ikx)) and its eigenvalues are not explicitly known. Conversely, the simple band Toeplitz matrix (oc-
curring in the Finite Differences discretization of the one dimensional Laplace operator with Dirichlet
boundary conditions)

Tn(g) =



2 −1

−1
. . . . . .
. . . . . .

. . . . . . −1
−1 2


, (5)
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with g(x) = 2 − 2 cos(x) = 4 sin2(x/2), belongs to the matrix algebra [10, 33] diagonalized by the
sine transform DST I: its eigenvalues are explicitly known and are given by a sample of g over the

grid
jπ

n+ 1
. Therefore the minimal eigenvalue is given by

4 sin2
(

π

2(n+ 1)

)
.

In conclusion by Theorem 2.6 we deduce that λ(n)
1 (Tn(f)) is in the open interval

(
4 sin2

(
π

2(n+1)

)
, π2 sin2

(
π

2(n+1)

))
since 1 = min f/g and π2/4 = max f/g. Moreover the maximal eigenvalue λ(n)

1 (Tn(f)) converges
to max f = π2 by the second item of Theorem 2.2 and therefore the spectral condition number of
Tn(f) grows asymptotically as n2: we mention that the matrix Tn(f) appears in the discretization
of the one dimensional Laplace operator with Dirichlet boundary conditions when using the super
polynomially convergent Sinc Galerkin method [52].

3 Spectral properties of T−1
n (g)Tn(f)

In this section we take a nonnegative not identically zero function g and we consider the positive
definite matrix Tn(g) (the positive definiteness follows from Theorem 2.2). The motivation is com-
putational since for a given Toeplitz matrix Tn(f) we choose a function g such that Tn(g) is a good
preconditioner for Tn(f). In particular for analyzing the performances in terms of convergence speed
of such a preconditioner we need to study the spectral behavior of the sequence {T−1

n (g)Tn(f)}. The
present section deals with the eigenvalue analysis of Gn = T−1

n (g)Tn(f) where we show that almost
all the results of Section 2 can be generalized to Gn where the crucial role of the generating function
is played by f/g.

Theorem 3.1 Let f and g be two integrable functions over I and let us suppose that g is nonnegative
and not identically zero. Let us order the eigenvalues λ(n)

j of Gn = T−1
n (g)Tn(f) in nondecreasing

way and let r and R be the essential infimum and the essential supremum of f/g ; the following
relations hold.

a. Gn has eigenvalues in the open set (r,R) if r < R and it coincides with rIn if r = R.

b. If m{x ∈ I : g(x) = 0} = 0 then
∞⋃
n=1

⋃
j≤n

λ
(n)
j is dense in ER(f/g) where ER(f/g) is the

essential range of f/g (we recall that y ∈ ER(h) if and only if for any ε > 0 the Lebesgue
measure of the set {x ∈ I : h(x) ∈ (y − ε, y + ε)} is positive).

c. The extreme eigenvalues of Gn are such that lim
n→∞

λ
(n)
1 = r, lim

n→∞
λ(n)
n = R.

d. Let Cblimits = {F : R → R, F continuos and with finite limits at ± ∞}; then for every
F ∈ Cblimits we have

lim
n→∞

1

n

n∑
j=1

F
(
λ

(n)
j

)
=

1

2π

∫
I
F (f(x)/g(x)) dx. (6)

Proof. Part a is contained in Theorem 2.5.
For part b, we demonstrate the general result under the only hypothesis that g is essentially nonnega-
tive and m{x ∈ I : g(x) = 0} = 0. Actually, the thesis is equivalent to the following statement:

∀α ∈ ER(f/g), ∀ε > 0, ∃n ∈ N and λ ∈ Σn such that |λ− α| < ε. (7)
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Here, we indicate by Σn the set of all the eigenvalues of Gn. Let Hn,α = Tn(f)−αTn(g): if Hn,α is
singular for some value n then there exists λ ∈ Σn such that λ = α and (7) is fulfilled. OtherwiseHn,α

is nonsingular for any positive integer n. Moreover Hn,α = Tn(cα(x)) where the function cz(x) is
defined as f(x)−zg(x), with z real parameter. Now we considermα

ε = m{x ∈ I : f−(α+ε)g < 0}
andmα

−ε = m{x ∈ I : f−(α−ε)g < 0}. Since g > 0 a.e. we have f−(α+ε)g < f−(α−ε)g a.e.,
that is, f/g−(α+ε) < f/g−(α−ε) a.e.. But α ∈ ER(f/g) and thereforemα

ε > mα
−ε. By Theorem

2.3, for every a, b, a < b, and for every f ∈ L1(I) such that m{x ∈ I : f(x) = a or f(x) = b} = 0,
we have

lim
n→∞

#{j : λ
(n)
j (Tn(f)) ∈ (a, b)}

n
=
m{x ∈ I : f(x) ∈ (a, b)}

2π
.

Consequently

lim
n→∞

#{j : λ
(n)
j (Tn(cα+ε)) < 0} =

mα
ε n

2π
, (8)

lim
n→∞

#{j : λ
(n)
j (Tn(cα−ε)) < 0} =

mα
−εn

2π
. (9)

By using the relation mα
ε > mα

−ε it follows that, for n large enough, “many” eigenvalues of Tn(cz)
move from positive values to negative values when the parameter z moves from α − ε to α + ε.
As a consequence, for a large value of n, by using a continuity argument, we have to find λ(n) ∈
(α − ε, α + ε) such that the matrix Tn(cλ(n)(x)) is singular, i.e., λ(n) ∈ Σn. Therefore part b is
proved. In equations (8), (9) we have supposed that m{x ∈ I : f − (α + ε)g = 0} + m{x ∈ I :
f − (α − ε)g = 0} = 0. In the case where this assumption is not verified we can obviously choose
ε∗, 0 < ε∗ < ε such that

m{x ∈ I : f − (α+ ε∗)g = 0} = m{x ∈ I : f − (α− ε∗)g = 0} = 0.

Moreover if the thesis of part b is proved for ε∗ such that 0 < ε∗ < ε then the thesis holds for ε.
Concerning part c we first prove that the extreme eigenvalues are monotone sequences. Indeed the
matrix Tn(g) is Hermitian and positive definite and therefore by the Schur normal form Theorem its
square root is Hermitian positive definite. Therefore

λ
(n)
1 = λ

(n)
1 (T−1/2

n (g)Tn(f)T−1/2
n (g))

= min
x 6=0

xHT
−1/2
n (g)Tn(f)T

−1/2
n (g)x

xHx

= min
z=T

−1/2
n (g)x, x 6=0

zHTn(f)z

zHTn(g)z

≤ min
z=(w,0), w 6=0, size(w)=n−1

zHTn(f)z

zHTn(g)z

= min
w 6=0

wHTn−1(f)w

wHTn−1(g)w

= λ
(n−1)
1 (T

−1/2
n−1 (g)Tn−1(f)T

−1/2
n−1 (g)) = λ

(n−1)
1 .

Analogously λ(n)
n ≥ λ

(n−1)
n−1 . Part c is a consequence of the monotonicity of λ(n)

1 and λ(n)
n and of part

a and b.
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Finally we prove the last item. By Theorem 2.3, ∀s ∈ R such that m{x ∈ I : f(x)−sg(x) = 0} = 0
we have

lim
n→∞

#{j : λ
(n)
j (Tn(f)− sTn(g)) > 0}

n
=
m{x ∈ I : f(x)− sg(x) > 0}

2π
. (10)

Since m{x ∈ I : g(x) = 0} = 0 and since g is nonnegative, the set {x ∈ I : f(x) − sg(x) > 0}
coincides with {x ∈ I : f(x)/g(x) > s} up to zero measure sets. Moreover the matrices

Tn(f)− sTn(g) and T−1
n (g)Tn(f)− sIn

have the same inertia since T−1
n (g)Tn(f)− sIn is similar to

T−1/2
n (g)Tn(f)T−1/2

n (g)− sIn

and the latter coincides with

T−1/2
n (g)[Tn(f)− sTn(g)]T−1/2

n (g).

Therefore equation (10) is equivalent to

lim
n→∞

#{j : λ
(n)
j (Gn) > s}
n

=
m{x ∈ I : f(x)/g(x) > s}

2π
(11)

∀s such that m{x ∈ I : f(x)/g(x) > s} = 0, i.e., setting Fs the characteristic function of the set
(s,+∞), we find

lim
n→∞

1

n

n∑
j=1

Fs
(
λ

(n)
j (Gn)

)
=

1

2π

∫
I
Fs (f(x)/g(x)) dx. (12)

∀s such that m{x ∈ I : f(x)/g(x) > s} = 0. Now we observe that the set of the real number s such
that m{x ∈ I : f(x)/g(x) = s} 6= 0 is at most countable since∑

s

m{x ∈ I : f(x)/g(x) = s} ≤ m{I} = 2π.

Therefore the set of the real number s such that m{x ∈ I : f(x)/g(x) = s} = 0 must be dense in R.
The latter remark is sufficient to conclude the proof because the infinity norm closure of the functional
space I spanned by Fs coincides with Cblimits under the assumption that the numbers s can be chosen
densely in R. •

Even for the preconditioned matrices, it is interesting to analyze the extremal properties of the
spectrum of T−1

n (g)Tn(f). In the former theorem two properties concerning the extremal eigenvalues
are proven: λ(n)

1 > r, λ
(n)
n < R and λ(n)

1 → r, λ
(n)
n → R. Now the question is: which are the rates

of convergence of λ(n)
1 to r and λ(n)

n to R? A partial answer in contained in the following result.

Proposition 3.1 [62] Let f = |x − x0|α, g = |x − x0|β with 0 < β < α (r =essinf f/g = 0 and
0 < R =esssup f/g <∞) and Gn = T−1

n (g)Tn(f). Then λ(n)
1 (Gn) ∼ n−(α−β).

We observe that the latter property is very useful to design good preconditioners for the problem
Tn(f)x = b in the case where f has zeros of noninteger orders too (see Subsection 4.6).
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3.1 The spectral behavior of Tn(f) and T−1
n (g)Tn(f)

What Theorem 3.1 and Proposition 3.1 emphasize is that, except for minor differences in the assump-
tions, the spectral behavior of the preconditioned sequences is formally similar to the one of Toeplitz
sequences: part a of Theorem 3.1 corresponds to part a of Theorem 2.2; part b of Theorem 3.1 cor-
responds to Theorem 2.3; part c of Theorem 3.1 corresponds to part b of Theorem 2.2; part d of
Theorem 3.1 corresponds to the Szegö Theorem 2.1: more precisely part d of Theorem 3.1 contains
Theorem 2.1 since T−1

n (g)Tn(f) = Tn(f) for g ≡ 1 a.e. and generalizes Theorem 2.1 since C0 is
a proper subset of Cblimits. Finally the analogous of Proposition 3.1 is expressed by the results in
Subsection 2.2. In particular we stress that the role played by the generating function f is played by
f/g. We notice that while f has to be Lebesgue integrable, the function f/g is only measurable and
in fact for every measurable function h defined over I we can find f and g in L1(I) with nonnegative
g such that h = f/g.

The only result which is not mentioned is Theorem 2.4 for which a counterpart in the precon-

ditioned case cannot be found. Indeed, while the closure of
∞⋃
n=1

⋃
j≤n

λ
(n)
j with λ(n)

j being the eigen-

values of Tn(f) coincides with [essinf f, esssup f ] (even when the set ER(f/g) is not connected),

the closure of
∞⋃
n=1

⋃
j≤n

λ
(n)
j with λ(n)

j being the eigenvalues of T−1
n (g)Tn(f) is a closed subset of

[essinf f/g, esssup f/g] (containing ER(f/g)) which can be disconnected if ER(f/g) is discon-
nected (see [42]). This property has a computational impact in the preconditioning algorithms for
nondefinite systems as discussed in Subsection 4.4.

4 The band Toeplitz preconditioning

The main idea of this section is to use Tn(g) as preconditioner for Tn(f). Of course this proposal
makes sense only if the cost of solving a generic system with coefficient matrix Tn(g) is sensibly
lower than the cost of solving a generic system with coefficient matrix Tn(f): for instance if Tn(f) is
full and Tn(g) is banded then by using a band solver for the last one (by exploiting the band structure
and by ignoring the Toeplitz structure), we have a sensible gain if the spectrum of the preconditioned
matrix T−1

n (g)Tn(f) is far away from zero and from infinity uniformly with respect to n.
Consider the function f(x) = x2 which has a unique zero of order two at x0 = 0. The matrix

Tn(f) is full and ill-conditioned (as shown a the end of Section 2 its spectral condition number is
asymptotic n2), but can be optimally preconditioned by the simple band Toeplitz matrix

Tn(g) =



2 −1

−1
. . . . . .
. . . . . .

. . . . . . −1
−1 2


with g(x) = 2 − 2 cos(x) = 4 sin2(x/2). By the parts a and d of Theorem 3.1, we deduce that the
eigenvalues of T−1

n (g)Tn(f)

1. are contained in the interval (1, π2/4), 1 = min f/g, π2/4 = max f/g and

2. are globally distributed as the function f/g.
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Therefore, from item 1. and by invoking classical convergence results on the preconditioned
conjugate gradient (PCG) method [3], we know that a constant number of iterations is sufficient for
reaching the solution within a preassigned accuracy. Moreover the distribution result in item 2. tells
us that the estimate that we obtain from the Axelsson and Linskog bounds are tight (see also [5]) since
the eigenvalues are more or less equally distributed in (1, π2/4).

In the next subsections first we introduce the notion of asymptotically difficult problems and of
optimal methods and then we discuss how to obtain optimal PCG methods for (difficult) Toeplitz
problems

4.1 Iterative methods and Toeplitz matrices

Often in applications a (large) linear system Anxn = bn is obtained as an approximation (discretiza-
tion) of a problem in a infinite dimensional space: this situation typically occurs in the case of PDEs,
integral equations etc. Then usually the larger is the dimension the more accurate is the solution but,
in most of the cases, the condition number of An diverges to infinity as n tends to infinity: in the
positive definite case, without loss of generality, we can assume that the maximal eigenvalue tends
to a positive constant and therefore we say that the sequence of problems with coefficient matrices in
{An} is difficult if the minimal eigenvalue λ(n)

1 tends to zero as n tends to infinity. In the Toeplitz
setting, by Theorem 2.4, we know that this phenomenon arises if and only if zero in contained in the
convex hull of ER(f). If the symbol f is nonnegative the latter is equivalent to say that f has essential
zeros. In the case of difficult problems the direct methods can be unstable and often are too costly
since they do not exploit the structure while the iterative ones are more accurate and have moderate
cost per iteration since in general it is quite easy to exploit the structure of the problem: however they
can be very slow due to the vanishing eigenvalues.

Therefore for these types of difficult problems we are interested in optimal methods that is in
methods such that the cost of the (inverse) problem of solving Anxn = bn with generic bn is at most
proportional to the cost of multiplying the coefficient matrix An by a generic vector cn. In the context
of iterative solvers, the latter can be translated in the following definition (see also notions opt1 and
opt2 in Appendix A and [4]).

Definition 4.1 An iterative method is optimal for a class of problems

Anxn = bn,

if, uniformly with respect to the dimension n of the problem, we have:

1. the cost per iteration is proportional to the matrix vector product with a generic vector;

2. for any fixed accuracy ε, the number of iterations for reaching the solution within the given
accuracy is bounded by a constant independent of n and possibly depending on ε.

Focusing our attention on the preconditioned conjugated gradient (PCG) method [41] as an iter-
ative solver, the above definition implies that for every n we should be able to find a preconditioner
Pn such that a) the solution of a generic system Pnyn = cn has computational cost bounded by the
matrix vector product with matrix An and b) the spectrum of P−1

n An is bounded away from zero
and from infinity uniformly with respect to n: for more details on the (P)CG methods and on their
convergence results see Appendix A and especially Theorem 8.3. Clearly, the two issues a) and b)
are often conflicting since when a matrix Pn is too close to An (requirement b)) it also requires the
same computational effort to invert (so contradicting requirement a)). However in the case of Toeplitz
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matrices associated to a symbol (An = Tn(f)) a satisfactory solution can be found: tools for deal-
ing with requirement b) have been reported in the last section while for dealing with requirement a)
we have study the computational cost of a matrix vector product when a Toeplitz matrix is involved.
This computational cost is proportional to n log(n) and can be achieved by using the Fast Fourier
Transform (FFT) [97] as reported in the next subsection.

4.1.1 Toeplitz, circulants and the Fourier matrix: the matrix vector product

A generic circulant matrix An of size n is defined by n parameters a0, . . . , an−1 and is characterized
by a circular structure:

An =



a0 a1 a2 . . . an−3 an−2 an−1

an−1 a0 a1 a2 . . . an−3 an−2

. . . . . . . . .
...

. . . . . . . . .
...

. . . . . . . . .
a2 . . . an−3 an−2 an−1 a0 a1

a1 a2 . . . an−3 an−2 an−1 a0


. (13)

The j-th of An is the periodic forward shift of the preceding (j − 1)-th row (periodic since the last
element of the row j−1 becomes the first of the subsequent row j): we observe that also the concepts
of “preceding” and “subsequent” have to be intended periodically because for j = 1 the preceding
row is the n-th and analogously for j = n the subsequent row is the first row.

We denote by Cn the class of circulant matrices

Cn = {An ∈Mn(C) such that An is of the form (13) with aj ∈ C}. (14)

It is is easy to verify that Cn is a vector space since it is closed under complex linear combinations.
By denoting by Tn the space of complex n by n Toeplitz matrices, it is evident that Cn is a proper set
of Tn.

By a direct check in the structure displayed in (13), every An ∈ Cn can be written as

A = a0Z0 + a1Z1 + a2Z2 + . . .+ an−1Zn−1, (15)

where

Z0 =

 1 0
. . .

0 1

 , Z1 =



0 1 0 . . . 0
...

. . . . . . . . .
...

...
. . . . . . 0

0
. . . 1

1 0 . . . . . . 0


,

Z2 =



0 0 1 0 0
...

. . . . . . . . . 0

0
. . . . . . . . . 1

1
. . . . . . . . . 0

0 1 0 . . . 0


, . . . , Zn−1 =



0 . . . . . . 0 1

1
. . . 0

0
. . . . . .

...
...

. . . . . . . . .
...

0 . . . 0 1 0


.
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The matrices {Zj : j = 0, . . . , n− 1} are special circulant matrices which are linear independent
since every Zj has ones in positions where all the Zk, k 6= j, have null values. Therefore {Zj : j =
0, . . . , n−1} is a canonical basis for Cn and its dimension is n (the number of the parameters). Again
by direct computation it can be proven that the matrices Zj , j = 0, . . . , n− 1, are related each other;
more precisely we have

Zj = Zj1 ∀j = 0, . . . , n− 1,

Zj1 = Zjmodn
1 ∀j ∈ Z (16)

and hence the generic circulant matrix An is represented as

A =
n−1∑
j=0

ajZ
j
1 ≡ p(Z1) p(z) =

n−1∑
j=0

ajz
j , z ∈ C. (17)

A consequence of (17) and of (16) is that Cn is closed under the matrix product and therefore, by
the Cayley-Hamilton, it is closed under inversion: we give an explicit proof of these two statements.
Let An, Bn ∈ Cn, then

An =
n−1∑
j=0

αjZ
j
1 ,

Bn =
n−1∑
j=0

βjZ
j
1

and therefore

AnBn =
2n−2∑
j=0

γjZ
j
1

with γj =
∑
k+t=j αkβt. Now we recall (16) i.e. Zn1 = I , Zjn+k

1 = Zk1 and we conclude

AnBn =
n−1∑
j=0

(γj + γj+n)Zj1 ∈ Cn γ2n+1 = 0

and in addition AnBn = BnAn. For the closure under inversion it is enough to use the closure under
matrix product and the Cayley-Hamilton theorem (see e.g. [86]).

Theorem 4.1 Let A ∈ Mn(C) and let pA its characteristic polynomial defined as pA(t) = det(A−
tI), then

a. pA(A) = 0;

b. moreover pA(t) = det(A)− tqA(t) with qA suitable polynomial of degree at most n− 1:

Therefore by combining items a and b of the Cayley-Hamilton Theorem 4.1, the inverse of an
invertible matrixA is a polynomial of the matrix and more precisely we haveA−1 = det−1(A)qA(A).
Finally, in the circulant case, by the closure under matrix products and linear combinations, the inverse
of an invertible circulant matrix is still circulant.
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Now we prove a spectral decomposition of a generic circulant matrix An. The key tool is the
Fourier matrix

Fn =
1√
n

(
e

i2πkj
n

)n−1

j,k=0
.

A simple computation shows the following features:

p1. Fn is unitary i.e. FHn Fn = I;

p2. FHn = PFn with P permutation matrix with Pi,j = 1 if and only if (i+ j)mod n = 2;

p3. Fn is complex symmetric i.e. Fn = F Tn and therefore FHn = FnP by p2.

Now, if we define fj the j-th column of Fn

fj =
1√
n

(
e
i2πkj
n

)n−1

k=0
,

we have

Z1fj =
1√
n



e
i2πj
n

e
i2πj2
n

...

e
i2πj(n−1)

n

e
i2πj0
n


=

1√
n
e
i2πj
n



e
i2πj0
n

e
i2πj1
n

...

e
i2πj(n−2)

n

e
i2πj(n−1)

n


= e

i2πj
n fj ,

and therefore e
i2πj
n is an eigenvalue of Z1 with unitary eigenvector fj , i.e., setting ω1 = e

i2π
n , we

deduce

Z1fj = ωj1fj , ∀j = 0, . . . , n− 1.

By putting together all the previous relations, we find Z1 = FnΛFHn where Λ is diagonal with j-th
diagonal entry given by ωj1, j = 0, . . . , n− 1: in other words the eigenvalues of Z1 are all the n-th
roots of unity. Now we observe that Zj1 = FnΛjFHn , j = 0, . . . , n− 1, and we conclude that

An =
n−1∑
j=0

ajZ
j
1

=
n−1∑
j=0

ajFnΛjnF
H
n

= Fn

n−1∑
j=0

ajΛ
j
n

FHn
= FnΛn(a)FHn

where

(Λn(a))kk =
n−1∑
j=0

aj(ω
k
1 )j , (18)
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i.e., calling λ the vector whose k-th entry is (Λn(a))kk and a the vector whose k-th entry is ak we
have

λ =
√
nFna. (19)

In conclusion the circulants coincide with the set of all the matrices which are simultaneously
diagonalized by the discrete Fourier transform Fn. Therefore if we have to compute a matrix vector
product or we have solve a linear system with circulant coefficient matrix An, then, thanks to the
Schur decompositionAn = FnΛn(a)FHn , thanks to item p2 (FHn = PFn) and thanks to relation (19),
three discrete Fourier transforms are sufficient for performing the above mentioned calculations. In
view of the complexity of a Fast Fourier Transform (see Subsection 4.1.2), the circulant matrix vector
product can be performed in 9/2n log(n) +O(n) arithmetic operations.

Now we prove that the Toeplitz matrix vector product can be achieved in O(n log(n)) operations
by using a suitable circulant embedding.

Theorem 4.2 Let Tn ∈ Tn be a generic Toeplitz matrix and let v ∈ Cn. The matrix vector prod-
uct Tnv can be performed in O(f(n)log(f(n))) floating point operations where f(n) is a function
bounded from below by 2n and bounded by above by 4n − 4. More precisely the computation of
Tnv is carried out by performing a circulant matrix vector product Af(n)v

∗ with Af(n) ∈ Cf(n) and
v∗ ∈ Cf(n) (Af(n) depending on Tn and v∗ depending on v).

proof Let Tn ∈ Tn; then

Tn =



t0 t−1 . . . t−(n−2) t−(n−1)

t1
. . . . . . . . . t−(n−2)

...
. . . . . . . . .

...

tn−2
. . . . . . . . . t−1

tn−1 tn−2 . . . t1 t0


.

The idea. We “embed” the matrix Tn into a circulant matrix Af̂(n) ∈ Cf̂(n) with f̂(n) minimal
dimension:

Af̂(n) =



t0 t−1 . . . t−(n−2) t−(n−1) tn−1 . . . t1

t1
. . . . . . . . . t−(n−2) t−(n−1)

. . . t2
...

. . . . . . . . . . . . . . . . . .
...

tn−2
. . . . . . . . . t1 t2

. . . tn−1

tn−1 tn−2 . . . t1 t0 t−1
. . . t−(n−1)

t−(n−1)
. . . . . . . . . t1 t0

. . . t−(n−2)
...

. . . . . . . . . . . . . . . . . .
...

t−1 t−2 . . . t−(n−1) tn−1 tn−2 . . . t0



.

The minimal dimension is exactly f̂(n) = 2n− 1. The problem is that 2n− 1 is an odd number and
the classical FFT implementation of O(n log(n)) cost is obtained on dimensions which are powers of
2 (this assumption can be relaxed in many ways [97]). Therefore we add in the first row of Af̂(n) as
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many zeros between t−(n−1) and tn−1 so that we reach a suitable power of 2. More precisely we are
interested in f(n) = 2k, such that does not exist h for which 2n − 1 < 2h < 2k (we take as f(n)
the closest power of 2 which approximates from above 2n − 1): the optimal configuration is when
n = 2q for a given positive integer q. In such a case, 2n − 1 = 2q+1 − 1 and it is enough to choose
f(n) = 2q+1 = 2n; the worst case is observed for n = 2q + 1 for a given positive integer q. In such
a case 2n− 1 = 2q+1 + 1 and therefore we have f(n) = 2q+2 = 4n− 4.

Therefore the matrix Af(n) is defined and it can be partitioned as

Af(n) =

(
Tn X1

X2 X3

)
;

as vector v∗ we consider (
v
w

)
with w = 0. Therefore

Af(n)v
∗ =

(
Tnv +X1w
X2v +X3w

)

and therefore by recalling that w = 0 we conclude that the first n entries of Af(n)v
∗ form exactly the

vector Tnv. In that way, thanks to the cost analysis of the FFT reported in (20), the total arithmetic
cost is given by 9

2f(n)(log(f(n)))− f(n)
2 which is bounded by 18n log(n) + o(n). •

4.1.2 The product Fnv: the basics of the FFT algorithm

Let n be a power of two, n = 2k, k positive integer, and let N = n
2 . We consider the product

y = Vnx

with Vn =
√
nFn scaled Fourier matrix and x generic vector of Cn. The k-th entry yk of the resulting

vector y is given by

yk =
n−1∑
j=0

e
i2πkj
n xj .

Let us decompose the whole into two partial sums the first containing all the even indices j and the
second containing all the odd indices j:

yk =
N−1∑
j=0

e
i2πk2j
n x2j +

N−1∑
j=0

e
i2πk(2j+1)

n x2j+1

=
N−1∑
j=0

e
i2πkj
N x2j +

N−1∑
j=0

e
i2πkj
N x2j+1

 e i2πkn .

We observe that the first summation for k = 0, . . . , N − 1 represents the k-th entry of product
between VN and the vector xeven whose k-th entry is given by the (2k)-th entry x2k of x. Analogously,
setting D(n) = diag0≤k≤N−1

(
e
i2πk
n

)
, the second summation for k = 0, . . . , N − 1 represents the
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product between D(n)VN and xodd whose k-th entry is given by the (2k + 1)-th entry x2k+1 of x.
Therefore in matrix vector notation we have

(y)N−1
k=0 = VNxeven +D(n)VNxodd,

For the remaining part of the vector y that is for the indices k = N, . . . , n − 1, we need to use a
slightly modified argument. We set k = k′ +N con k′ = 0, . . . , N − 1, and we get

e
i2πk
n = e

i2π(k′+N)
n = e

i2πk′
n e

i2πN
n = e

i2πk′
n e

i2πn
2n = e

i2πk′
n eiπ = −e

i2πk′
n ,

so that

(y)n−1
k=N = VNxeven −D(n)VNxodd.

From the preceding expansions we clearly see the recursive structure of the matrix Vn to which it
is naturally associated a recursive (divide and conquer) algorithm:

Vn = (V2 ⊗ IN )

(
IN

D(n)

)
(I2 ⊗ VN )Peven−odd

with Peven−odd permutation matrix that puts in the first N positions the ordered vector of the even
numbers and in the last N positions the ordered vector of the odd numbers.

Therefore to compute a discrete Fourier transform of size n we have compute two discrete Fourier
transforms of order N = n

2 plus a linear amount of multiplicative and additive operations. From this
we can derive the computational cost of this algorithm which represents the essence of the FFT: we
denote by Cm(n) and Ca(n) the multiplicative and additive cost of a FFT of length n. A FFT of size
n requires:

- two FFTs of size N = n
2 ,

- one product D(n)[VNxodd],

- two sums of vectors of length N = n
2 .

Therefore

Cm(n) = 2Cm

(
n

2

)
+
n

2
(first recursive call)

= 2

(
2Cm

(
n

4

)
+
n

4

)
+
n

2

= 4Cm

(
n

4

)
+ 2

n

2
(second recursive call)

= 2j
(
Cm

(
n

2j

))
+ j

n

2
(j-th recursive call).

The maximal number of recursive calls is log2(n)−1, since the multiplicative cost of a FFT of length
2 is zero due to the special structure of

V2 =

(
1 1
1 −1

)
.
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In summary we find

Cm(n) = (log2(n)− 1)
n

2
.

For the evaluation of the additive cost we proceed analogously:

Ca(n) = 2Ca

(
n

2

)
+ n (first recursive call),

= 2

(
2Ca

(
n

4

)
+
n

2

)
+ n

= 4Ca

(
n

4

)
+ 2n (second recursive call),

= 2j
(
Ca

(
n

2j

))
+ j · n (j-th recursive call).

In this case the reasonable maximal number of recursive calls is log2(n) and consequently

Ca(n) = n log2(n).

In conclusion the total cost is exactly given by

Calgorithm = Cm(n) + Ca(n) (20)

= (log2(n)− 1)
n

2
+ n log2(n) =

3

2
n log2(n)− n

2
,

if we assume that one multiplication/division takes approximately the same time as an algebraic sum
(see the subsequent remark).

Remark The use of the primary school algorithms for making a division and a multiplication between
numbers with t digits emphasizes that their cost in terms of digit operations is proportional to
t2 while the digit cost of an algebraic sum is proportional to t. Therefore it seems unreasonable
to assume that the multiplicative unit cost and the additive unit cost are roughly equal. However
thanks to the use of FFT based algorithms it has been shown that the product and the division
between numbers of t digits can be performed in tp(log(t)) digit operations where p is a suitable
low degree polynomial (see e.g. [13]). In the light of these results, it makes sense to assume
that the 4 basic operations have approximately the same time cost.

4.2 The case of f (essentially) nonnegative

In the case of f ≥ 0 (and similarly f ≤ 0), since we are looking for band Toeplitz preconditioners, we
consider nonnegative trigonometric polynomials g having the same zeros of f and the same orders.
But g is a polynomial and therefore infinitely differentiable: it follows that it can have only a finite
number of zeros of even orders. As a consequence we have to restrict our attention to the case where
f is nonnegative and has only a finite number of zeros of even orders. Under to above mentioned
assumptions, in the light of Corollary 2.1 (and its generalizations to many zeros [14]) and of the item
a of Theorem 3.1, the condition number of the system moves from O(n2k) -condition number of the
original coefficient matrix Tn(f)- to O(1) -the (spectral) condition number of T−1

n (g)Tn(f)- where
2k is the maximum of the orders of the zeros of f . The PCG method proposed in the case of f ≥ 0
a.e. with zeros of even orders is the following.
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Algorithm 4.1(f ≥ 0, zeros of even order)

Input. The zeros x1, . . . , xj of f with orders 2k1, . . . , 2kj , Tn(f), b.

Step 1. Consider the polynomial g = gmin of smallest degree with the same zeros of f and with the
same orders: gmin =

∏j
i=1(2− 2 cos(x− xi))li , b = degree(gmin) =

∑j
i=1 2ki.

Step 2. Apply the PCG method to the system Tn(f)x = b using Tn(g) as preconditioner.

The calculation of the coefficients of Tn(g), g = gmin can be done in a time independent of n as its
bandwidth is 2b+1 which is constant with respect to n. Since 0 < r ≤ f

g ≤ R <∞, it is obvious that
the number of iterations N(ε) performed in order to reach the solution within a preassigned accuracy
ε, is bounded by a constant and, in particular, the following relation holds (see Theorem 8.3):

N(ε) = k∗(r,R, ε) =

⌈
log

[
2ε−1

]
/ log

[√
R+
√
r√

R−
√
r

]⌉
. (21)

Finally by using a standard band solver for the systems whose coefficients matrix is Tn(g) we have a
sequential cost of O(n log(n)) arithmetic ops, due to the applications of few FFTs in the product of
Tn(f) by a vector. In a parallel PRAM model of computation Algorithm 4.1 takes O(log(n)) steps if
we use one of the algebraic methods proposed in [8] in the solution of the preconditioning systems.

As an example, consider the function f(x) = x2. The matrices Tn(f) show a condition number
growing as n2 as proven at the end of Section 2. From the discussion above, the preconditioner of
minimal bandwidth is given by

g(x) = 2− 2 cosx.

In the following, for n = 200 we report the error reduction in∞-norm when we choose In and Tn(g)
as preconditioners; all the calculations have been made in MATLAB.

Table 1: PCG, original coefficient matrix Tn(f), f(x) = x2, convergence history with no precondi-
tioning and preconditioner Tn(g), g(x) = 2− 2 cos(x)

step In Tn(g)
1 9.49644E − 01 3.92508E − 01
2 9.44697E − 01 1.27115E − 01
3 9.03174E − 01 3.56149E − 02
4 8.28545E − 01 7.74028E − 03
5 7.96437E − 01 1.77635E − 03
6 7.63530E − 01 4.34434E − 04
7 7.37671E − 01 1.02930E − 04
8 7.13113E − 01 2.35099E − 05
9 6.99331E − 01 5.97104E − 06
10 6.81484E − 01 1.36921E − 06

The mean reduction rates are 0.9264 and 0.2592 respectively: the difference is not trivial since
after 10 steps we have (0.9264)10 ≈ 0.6815 when no preconditioning is used and (0.2592)10 ≈
1.369 ∗ 10−6 when an appropriate band Toeplitz preconditioner is applied.
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4.3 Fast band Toeplitz preconditioning

When f has zeros of even orders (f ≥ 0), as discussed in Subsection 4.1, the main idea is to find
a nonnegative trigonometric polynomial g for which 0 < r ≤ f

g ≤ R < ∞ a.e. The associated
band Toeplitz preconditioner Tn(g) is the desired preconditioner in the sense that the spectrum of
T−1
n (g)Tn(f) lies (see Theorem 3.1) in the open interval (r,R) for any dimension n.

A further possibility (see [23]) is to to increase the bandwidth of Tn(g) to get extra degrees of
freedom. The generating function g = gopt is computed by using an adapted version of Remez
algorithm with the aim of minimizing the relative error h = ‖(f − g)/f‖∞ over all the polynomials
g of fixed degree l. In [65] it is proven that this minimization property enables one not only to match
the zeros of f but also to minimize R/r and consequently N(ε): indeed in the light of (21) it is
evident that the quantity k∗(r,R, ε) is an increasing function of R/r. Therefore, from items a and c
of Theorem 3.1, we obtain that Tn(g), g = gopt, is the best band Toeplitz preconditioner in the class
of all the band Toeplitz matrices of fixed bandwidth 2l + 1.

However the Remez algorithm can be heavy from a computational point of view, it is not easy
to implement and can suffer from instabilities since its basis in our specific context is made by
{1, sin(qx)/f(x), cos(qx)/f(x) : q = 1, . . . , l} where 1/f is unbounded. There exist quasi opti-
mal alternatives that we can consider [65] where the idea is again to minimize “in a certain sense”
(f − g)/f . If gmin is the polynomial of minimum degree k containing all the zeros of f with their
orders, then the generating function g of our preconditioners it is chosen in the following way:

g = gming l−b, degree(g) = l ≥ b, b = degree(gmin).

g l−b is a trigonometric polynomial of degree l − b and is defined, for example, in the light of these
two strategies.

A g l−b is the best Chebyshev approximation of f̂ = f/gmin, i.e.,

‖f̂ − g l−b‖∞ = min
g∈Pl−b

‖f̂ − g‖∞.

In this case we set g = gA.

B g l−b is the trigonometric polynomial of degree at most l − b interpolating f̂ at the l − b+ 1 zeros
of the (l − b+ 1)–th Chebyshev polynomial of the first kind. In this case we set g = gB .

Observe that we cannot choose g directly like the best Chebyshev approximation of f for two
reasons: we are not guaranteed that g is nonnegative since f has zeros (as a consequence, by the
second item of Theorem 2.2, Tn(g) is not positive definite for n large enough and cannot be used
as preconditioner) and we are not sure that f/g and g/f are bounded because, in general, g has
different zeros with respect to f . From a computational point of view we remark that g l−b in A can
be calculated by using the standard Remez algorithm [58] with respect to the classical trigonometric
basis {1, sin(qx), cos(qx) : q = 1, . . . , l − b}, while the calculation of gopt in [23] is performed by
using a modified version of the Remez algorithm [88] with the basis {1, sin(qx)/f(x), cos(qx)/f(x) :
q = 1, . . . , l}, in this case it is possible to observe instability problems due to the fact that f has zeros.
On the other hand, for the calculation of g l−b in B we do not observe computational problems: this
polynomial can be calculated, very easily, with few FFTs of order (l − b) by means of a classical
trigonometric representation of the interpolating polynomial at Chebyshev zeros. On the other hand,
by defining

r∗ = infx∈I f(x)/gopt(x), R∗ = supx∈I f(x)/gopt(x),
rA = infx∈I f(x)/gA(x), RA = supx∈I f(x)/gA(x),
rB = infx∈I f(x)/gB(x), RB = supx∈I f(x)/gB(x),
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and

µ∗ =
R∗

r∗
, µA =

RA

rA
, µB =

RB

rB
,

it is easy to prove that
µ∗ ≤ µA ≤ µB (22)

and therefore by relation (21) we have that the performances (in terms of convergence speed) of the
strategy A are better than those of strategy B and of course worse than those of the optimal strategy:
however, as shown in some subsequent numerical tests, the convergence speed in the three cases is
practically equal and therefore the third strategy results to be the best one since it is the cheapest and
the simplest.

In conclusion in both the strategies A and B the polynomial g is easier to calculate and the precon-
ditioned systems have an O(1) condition number for which upper bounds, depending on l, n and on
the regularity features of f , can be derived by using standard approximation theory tools (see [65]).
Therefore we can estimate the number of iterations to reach the solution within a preassigned accuracy
ε; on the other hand, the solution of a system Tn(g)y = c can be obtained in O(l2n) arithmetic oper-
ations (ops) by using a classic band solver [36]. Hence, balancing the cost of a single iteration of the
PCG and the number of required iterations, it is possible to estimate the optimal bandwidth l, which
allows to minimize the total amount of calculations to reach the solution of Tn(f)x = b within a pre-
assigned tolerance ε. Moreover by choosing l = l(n) diverging function of n and g ∈ {gopt, gA, gB},
if f is smooth enough then

lim
n→∞

µ∗ = lim
n→∞

µA = lim
n→∞

µB = 1

and therefore for n large enough by equation (21) only one iteration is needed (the method becomes
a direct one). We can say that such a kind on method is a superlinearly convergent PCG method
becoming faster as n becomes larger. For the solution of the systems related to the preconditioner we
can use a Golub band solver of cost O(l2n) and therefore we have to choose l(n) = O(log1/2(n)); if
we use a multigrid strategy (see [33]) of cost O(ln) then we have to set l(n) = O(log(n)): with these
positions the total cost of O(n log(n)) arithmetic ops.

Finally, in all the cases g = gmin, g = gopt, g = gA, g = gB we stress that we use the basic
Algorithm 4.1 defined in the former Subsection 4.1.

Now we present some numerics in order to substantiate our claims. More specifically we com-
pare the convergence rate of the band Toeplitz preconditioner (strategy B), with the optimal band
Toeplitz preconditioner [23] and with the optimal circulant preconditioner [24] on three different gen-
erating functions having zeros. They are (x − 1)2(x + 1)2, 1 − e−x

2
and x4 and are associated

to ill-conditioned matrices Tn(f) having Euclidean condition numbers equal to O(n2), O(n2) and
O(n4) respectively (see Corollary 2.1). The matrices Tn(f) are formed by evaluating the Fourier
coefficients of the generating functions by using FFTs (see [23]). In the considered tests, the vector
of all ones is the right-hand side vector, the zero vector is the initial guess and the stopping criterion
is ‖rq‖2/‖r0‖2 ≤ 10−7, where rq is the residual vector after q iterations. All computations are done
by using MATLAB.
In the subsequent Tables 2, 3, and 4, In denotes that no preconditioning is used, Φn,C is the circulant
Frobenius optimal preconditioner (see [24] and Subsection 5.2), B∗n,l is the optimal band Toeplitz
preconditioner [23] and BB

n,l is the band Toeplitz preconditioner defined according to the strategy B;
here l denotes the half-bandwidth of the band preconditioners.
We do not make explicit comparison with the preconditioner related to the strategy A because, by
virtue of equation (22), the associated PCG method has a convergence speed between the R. Chan, P.
Tang one and the “B” one.
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We observe that the “optimal” and the “B” band Toeplitz PCG methods perform, substantially, in the
same way, but the second one is much more economical with respect to the computation of the re-
lated generating function. This fact is not so considerable when the bandwidth is fixed, but it becomes
crucial in order to increase l, say, as log(n). Actually, in this case, for any dimension n, it is not expen-
sive to calculate a different preconditioner Tn(gB(l)), since the related cost O(log(n) log(log(n))) is
strongly dominated by the cost O(n log(n)) of each PCG iteration.
Finally, the reduction of the number of required iterations, as the dimension increases, shown in Table
5 gives a numerical evidence of the superlinear convergence when l = l(n) is a (mildly) diverging
function. We stress that the exceptional convergence behavior of the PCG algorithm related to BB

n,6

is explained by the good approximation properties of the first-kind Chebyshev interpolation: to have
a practical measure of this, it is sufficient to notice that the reduction of the condition number from
Tn(f) to (BB

n,6)−1Tn(f), for n = 256 and f(x) = 1− e−x2 , is from 2.7 ∗ 104 to 1 + 5 ∗ 10−4.

Table 2: PCG, comparison with generating function f(x) = (x2 − 1)2

n I Φn,C B∗n,3 = BB
n,3 B∗n,4 B

B
n,4 B∗n,5 B

B
n,5 B∗n,6 B

B
n,6

16 11 9 9 9 7 8 6 7 6
32 27 14 13 11 9 9 7 7 6
64 74 17 16 11 10 8 8 7 7
128 193 22 18 11 11 8 8 7 7
256 465 28 19 11 11 8 9 7 7
512 > 1000 34 19 11 11 8 8 7 7

Table 3: PCG, comparison with generating function f(x) = 1− e−x2

n I Φn,C B∗n,2 = BB
n,2 B∗n,3 B

B
n,3 B∗n,4 B

B
n,4 B∗n,5 B

B
n,5

16 9 6 9 7 8 4 4 3 3
32 14 7 15 7 8 5 5 3 3
64 24 8 17 8 9 5 5 3 3
128 42 10 17 8 9 5 5 3 3
256 77 13 17 8 9 5 5 3 3
512 143 17 17 8 9 5 5 3 3

Table 4: PCG, comparison with generating function f(x) = x4

n I Φn,C B∗n,3 = BB
n,3 B∗n,4 B

B
n,4 B∗n,5 B

B
n,5 B∗n,6 B

B
n,6

16 12 10 9 9 8 9 7 7 6
32 34 16 15 10 10 11 8 9 7
64 119 26 21 13 12 11 10 9 8
128 587 77 24 15 15 12 11 10 10
256 > 1000 179 27 16 16 12 13 10 10
512 > 1000 406 29 16 16 13 13 10 11
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Table 5: Superlinear PCG with generating function f(x) = 1 − e−x2 , Preconditioner= BB
n,l(n),

l(n) = log2(n)− 2

n 16 32 64 128 256 512
l(n) 2 3 4 5 6 7
Iter 9 7 5 3 2 2

4.4 The case of f with (essentially) nondefinite sign

In some applications of Toeplitz matrices, we have observed that Tn(f) is guaranteed to be positive
definite, but in other fields such as eigenfilter problems, linear prediction theory, eigenvalue compu-
tation etc. the matrices may also be indefinite [25] and hence, in this subsection, we assume that
the generating function f has (essentially) nondefinite sign. Following [64], the original nondefinite
sysyem (potentially singular) is transformed into an equivalent positive definite (at least nonnegative
definite) system whose coefficients matrix is somehow related to the Toeplitz structure: the conver-
gence analysis is strongly related to the tools of Section 3. The method is outlined by the following
steps:

Algorithm 4.4(f with nondefinite sign)

Input. The zeros of f , Tn(f), b.

Step 1. Find g such that ER
(
f
g

)
is contained in [α−, β−]

⋃
[α+, β+] where α− ≤ β− < 0 < α+ ≤

β+; for instance, if we set g = |f | then we have α− = β− = −1, α+ = β+ = 1.

Step 2. Compute the Toeplitz matrix Tn(g), which is Hermitian and positive definite, and consider
the equivalent system Gnx = b̂ where b̂ = T−1

n (g)b and Gn = T−1
n (g)Tn(f). The vector b̂

can be calculated in O(n log(n)) arithmetic ops and O(log n) parallel steps if we use the PCG
procedures of the former two subsections and if f has only zeros of even order.

Step 3. Consider the new equivalent (spectrally) positive definite system (at least (spectrally) non-
negative definite) G2

nx = b̃ where b̃ = Gnb̂ and solve it by the PCG method : here Tn(g) is
the preconditioner and Tn(f)T−1

n (g)Tn(f) is the new coefficient matrix.

Observe that G2
n is similar to T−1/2

n (g)Tn(f)T−1
n (g)Tn(f)T

−1/2
n which is at least semidefinite

positive (Gn is singular if and only if Tn(f) is singular). By using the fact that the product between
a Toeplitz matrix and a vector costs O(n log(n)) ops (O(log(n)) parallel steps with n processors in
the PRAM model) it is easy to prove that Step 2 costs O(n log(n)) ops, provided that the entries of
Tn(g) can be computed within this time. Concerning Step 3 we have that its cost is O(N(ε)n log(n))
ops where N(ε) is the number of iterations required by the PCG method to reach the solution within
a preassigned accuracy. Thus the main goal is to evaluate N(ε). Now, by the second item of Theorem
3.1 we know that the union of the spectra of the matrices Gn is dense in ER

(
f
g

)
and, by the first

item of the same theorem, it is contained in (α−, β+). Moreover in [64] it is shown that, in the case
where f and g are rational symmetric functions, setting c− = min{α+, |β−|}, c+ = max{|α−|, β+},
there exists a constant q independent of n such that Σ(G2

n) ⊂ {λ(n)
1 , . . . , λ

(n)
q }

⋃
[c−, c+], where

λ
(n)
1 , . . . , λ

(n)
q ∈ [0, c−) and Σ(X) denotes the set of the eigenvalues of X . In the general case

we have q = o(n), but for sufficiently regular nonrational functions f and g it can be proved that

27



the eigenvalues stay uniformly away from zero: this phenomenon known as gap phenomenon has
been observed and proved in some special cases in [41]. Therefore by applying the result of [3]
(see Theorem 8.3), the conjugate gradient method applied to the system G2

nx = b̂, converges to the
solution with a preassigned accuracy ε in N(ε) = k∗(c, [c+]2, ε) + q iterations where the function
k∗ is the one defined in Theorem 8.3 and c is any bound from below for the minimal eigenvalue of
of G2

n. Since ε is fixed if c is an absolute constant independent of n, then the desired precision is
obtained through a constant number of iterations, an arithmetic cost of O(n log(n)) and O(log(n))
parallel steps. The evaluation of c is tricky but, as shown in the next examples, it seems that the
minimal eigenvalues of G2

n stay away from zero (or approaches zero very slowly). Here we discuss
some examples in order to substantiate the previous claims. Let

f(x) ≡ x =
∞∑
k=1

i(−1)k

k
(eikx − e−ikx), x ∈ I

and choose Tn(g) generated by

g(x) ≡ |x| = π

2
−
∞∑
k=1

1− (−1)k

πk2
(eikx + e−ikx), x ∈ I.

According to the Theorem 3.1, we expect that the eigenvalues of Gn = T−1
n (g)Tn(f) form two

clusters around −1 and 1 since f/g =sign(x): for n = 16 we have

Σ(Gn) = {±1.000 (4 times),±0.9997,±0.9946,±0.9287,±0.4773}. (23)

For n = 64 we find

Σ(Gn) = {±1.000 (27 times),±0.9995,±0.9963,±0.9737, (24)

±0.8470,±0.3830}.

As a second example, let us consider

f(x) ≡ sign(x)x2 =
∑∞
k=1

i
πk2

(
(−1)kπ2 + 2

k2
(1 + (−1)(k+1)

)
(eikx − e−ikx), x ∈ I;

we propose two different functions g1 and g2:

g1(x) ≡ x2 =
π2

3
+ 2

∞∑
k=1

(−1)k

k2
(eikx + e−ikx), x ∈ I,

g2(x) = 2− 2 cos(x), x ∈ I.

According to the results of the previous section we expect that Σ(Gn) = Σ(T−1
n (g1)Tn(f)) forms

two clusters around −1 and 1 since f/g1 =sign(x).
For n = 16 we have

Σ(Gn) = {±1.000 (4 times),±0.9998,±0.9961,±0.9412,±0.500}. (25)

For n = 64 we have

Σ(Gn) = {±1.000 (27 times),±0.9997,±0.9972,±0.9787, (26)

±0.8640,±0.4002}.
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In the case ofGn = T−1
n (g2)Tn(f), from Theorem 3.1, we expect that most of the eigenvalues belong

to ER (f/g2) = [−π2/4,−1]
⋃

[1, π2/4]. For n = 16 we obtain

14 eigenvalues in [−π2/4,−1]
⋃

[1, π2/4],
2 eigenvalues = ±0.7078 in (−1, 1).

For n = 64 we have

60 eigenvalues in [−π2/4,−1]
⋃

[1, π2/4],
2 eigenvalues = ±0.9938 in a small neighbourhood

of −1 and 1 respectively, and
2 eigenvalues = ±0.5698 in (−1, 1).

Furthermore let
f(x) ≡ ex − 1 =

∑∞
k=−∞

(−1)k(eπ−e−π)
2π(1+k2)

(1 + ik)eikx − 1, x ∈ I;

and
g(x) ≡ |ex − 1| =

∑∞
k=−∞ tk + 1+ik

2π(1+k2)

((eπ − e−π)(−1)k − 2)eikx, x ∈ I,

where tk is
2i

πk
if k is odd and 0 elsewhere.

According to the Theorem 3.1 we expect two clusters around −1 and 1 for the spectrum of Gn =
T−1
n (g)Tn(f): for n = 16 we obtain

Σ(Gn) = {±1.000 (4 times), 0.9950,−0.9987, 0.9741, (27)

−0.9740, 0.6755,−0.6842, 0.3395,−0.3384}.

For n = 64 we find

Σ(Gn) = {1.000 (27 times),−1 (26 times), 0.9999, (28)

−0.9998, 0.9993,−0.9978, 0.9950,−0.9824,

0.9710,−0.8764, 0.4212,−0.4076}.

Now we consider a function with a higher order zero: let

f(x) ≡ x3 =
∑∞
k=1

i(−1)k

k

(
π2 − 6

k2

)
(eikx − e−ikx)

and
g(x) ≡ |x|(2− 2 cos(x)) =

∑∞
k=−∞ cke

ikx,

where c0 = π − 2a1(|x|), cj = 2aj(|x|) − aj−1(|x|) − aj+1(|x|) = c−j and aj(|x|) are the Fourier
coefficients of the function |x| shown in the first example.
According to the theoretical results, we expect that most of the eigenvalues Gn = T−1

n (g)Tn(f)
belong to ER (f/g) = [−π2/4,−1]

⋃
[1, π2/4] which is the closure of the image of f/g. For n = 16

we obtain
14 eigenvalues in [−π2/4,−1]

⋃
[1, π2/4],

2 eigenvalues = ±0.7409 in (−1, 1).
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For n = 64 we have

60 eigenvalues in [−π2/4,−1]
⋃

[1, π2/4],
2 eigenvalues = ±0.9980 in a small neighbourhood

of −1 and 1 respectively, and
2 eigenvalues = ±0.5937 in (−1, 1).

It is very interesting to remark that f/g2 in the second example coincides with f/g in this example
and, as a consequence, we have that the behavior of the spectra of the related matricesGn, n = 16, 64,
are practically the same.

Let
f(x) ≡ x

(
x− π

2

)
=
∑∞
k=−∞ ak(f)eikx,

ak(f) = ak(x
2)− π

2ak(x),

be a function having two zeros in the fundamental interval I . Let

g(x) ≡
∣∣x (x− π

2

)∣∣ =
∑∞
k=−∞ cke

ikx,

where the values ck are obtained by the Fourier coefficients of f in the following way:

c0 = 17π2

48 ,

rk = π
2k ie

−ikπ/2 + 1
k2

(
e−ikπ/2 − 1

)
, k 6= 0,

sk = π2

4k ie
−ikπ/2 − 2

k irk, k 6= 0,
ck = ak(f)− 1

πsk + 1
2rk, k 6= 0.

According to the Theorem 3.1, we expect two clusters around −1 and 1 for the spectrum of Gn =
T−1
n (g)Tn(f): for n = 16 we have

Σ(Gn) = {1.000 (3 times), 0.9999 (6 times), 0.9993, 0.9863, (29)

0.7947,−0.9999,−0.9967,−0.9244,−0.2314}.

For n = 64 we find

Σ(Gn) = {1.000 (35 times),−1 (4 times), (30)

0.9999 (9 times),−0.9999 (7 times), 0.9992,

−0.9997, 0.9933,−0.9972, 0.9467,−0.9750,

0.6624,−0.8199,−0.1723}.

We remark that the interval where f/g = −1 is small with respect to I and, in fact, the number of the
negative eigenvalues of Gn close to −1 is less than the number of those close to 1: this is a numerical
evidence of the result displayed in item d of Theorem 3.1. Moreover, it is worth pointing out that the
presence of two zeros causes a partial deterioration of the clustering property of the spectrum of Gn
with respect to the case where the generating function f has a unique zero.

In the cases (23)–(24), (25)–(26),(27)–(28), f/g is the function sign(x) (because g(x) = |f(x)|
and f(0) = 0) and it is interesting to compare these spectra with the spectrum of Tn(sign(x)); the
similarities are very deep: for n = 16 we have

Σ(Tn(sign(x))) = {±1.000 (4 times),±0.9995,±0.9913,±0.9013,±0.4294}.

For n = 64 we have

Σ(Tn(sign(x))) = {±1.000 (26 times),±0.9999,±0.9993,±0.9945,

±0.9636,±0.8122,±0.3487}.
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4.5 The case of f with zeros of odd order

In this subsection we deal with the case of zeros of odd order (they occur frequently when f is
nondefinite), in the special case where Tn(f) is a symmetric real matrix, i.e., f(x) = f(−x). We use
a linear algebra trick to transform the system Tn(f)x = b into a new system in which we have to solve
the linear system Tn(fg)x = c where fg has only zeros of even orders. Moreover, if f ≥ 0 then fg
has nondefinite sign, otherwise if f is nondefinite then fg is nonnegative. Therefore, in the first case,
we use Algorithm 4.4, otherwise Algorithm 4.1. Finally, since the costs of this transformation have
been proved to be bounded by O(n log(n)) arithmetic ops and O(log(n)) parallel steps (see [62]),
then the total cost is the one between Algorithm 4.1 and Algorithm 4.4. The proposed algorithm is
outlined in the following steps:

Algorithm 4.5(f symmetric having a unique zero of odd order)

Input. f, Tn(f), b where f is a function having, for the sake of simplicity, a unique zero of odd
order 2k + 1.

Step 1. Find a polynomial g of degree 1 with the same zero (of first order) of f ; Tn(g) is a symmetric
tridiagonal matrix whose eigenvalues and eigenvectors are known (Tn(g) belongs to the algebra
[10] of all the symmetric matrices simultaneously diagonalized by the discrete sine transform
DST I).

Step 2. If Tn(g) is singular we take the matrix E = viv
T
i , ε > 0 and we define the nonsingular

matrix Ãn(g) = Tn(g) + E, vi being the unitary eigenvector of Tn(g) associated with the null
eigenvalue; we set Ãn(g) = Tn(g) in the case where Tn(g) is nonsingular.

Step 3. Consider the equivalent systems Ãn(g)Tn(f)x = b̃; T = Ãn(g)Tn(f) where b̃ = Ãn(g)b.
Observe that Ãn(g)Tn(f) = Tn(fg) +L where L is a low rank correction matrix (in particular
rank(L) = 2 if Tn(g) is nonsingular and rank(L) = 3 if Tn(g) is singular).

Step 4. Solve the former system by the Sherman–Morrison–Woodbury (see e.g. [36]) formula which
involves the solution of some systems where the coefficients matrix is Tn(fg), |fg| ≥ 0 and
fg has a zero of even order 2(k + 1). Therefore, if f is nonnegative then fg is nondefinite and
we can apply the PCG Algorithm 4.4 proposed in [64], otherwise if f is nondefinite then fg is
nonnegative and we apply Algorithm 4.1. In both the cases we observe a total arithmetic cost
of O(n log(n)) and O(log(n)) parallel steps.

4.6 The case of f with zeros of any order

If we have to solve the linear system Tn(f)x = b where f is nonnegative and has, for the sake
of simplicity, a unique zero x0 of order ρ > 0, then, in Algorithm 4.1, we choose Tn((x − x0)2k)
as preconditioner, 2k being the even number which minimizes the distance from ρ. In the light of
Proposition 3.1, the condition number of T−1/2

n ((x−x0)2k)Tn(f)T
−1/2
n ((x−x0)2k) grows as n|ρ−2k|

and therefore, by (21), the related PCG method requires a number of steps N(ε) proportional to

log (1/ε) · n
|ρ−2k|

2 ), i.e., in the worst case of ρ odd number, O(n1/2) PCG steps. Recalling that the
solution of a system with coefficient matrix Tn((x − x0)2k) costs O(n log(n)) arithmetic ops and
O(log(n)) parallel steps if we use Algorithm 4.1, we can conclude a general statement. If we want to
solve a linear system of the form Tn(f)x = b where f has a zero of order ρ then the preconditioning
by means of Tn((x−x0)2k) (2k being the even number which minimizes the distance from ρ) produces
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a PCG method having a total cost of O
(
n
|2k−ρ|

2 n log(n)

)
arithmetic ops and O

(
n
|2k−ρ|

2 log(n)

)
parallel steps. Finally this idea can be used in Algorithm 4.4, for the solution of the preconditioning
systems, in order to deal successfully with the case of zeros of any order and f with nondefinite sign.

We discuss some numerical tests. The aim of these experiments is twofold: we want to show,
by numerical evidence, the correctness of the asymptotical spectral analysis about the preconditioned
matrices performed in Section 3 and we want to verify the good features of the PCG methods related
to this kind of preconditioners. Actually, as shown in the subsequent tables, the theoretical prediction
are fully confirmed. In addition, we point out that, very recently, this technique has been proved to be
“robust” in the sense that an approximate knowledge of the position of the points where f vanishes is
enough to define a good preconditioner [72].

In the first example we deal with a linear system Tn(f)x = b where the generating function
is f(x) = x2|x|

1
10 ; therefore, as ρ = 2.1 we choose g(x) = 2 − 2 cos(x) which is associated

to the tridiagonal matrix Tn(g) and has a zero of order 2k = 2. In the light of Theorem 3.1, the
condition number of the preconditioned matrix is asymptotical to n

1
10 and, consequently, by virtue

of the powerful convergence analysis of Axelsson and Lindskög [3], we expect that the number of
iterations N(ε) of the PCG method, in order to reach the solution within the fixed accuracy ε, is
proportional to n

1
20 . Since n

1
20 grows very slow, we expect that N(ε) is “weakly” depending on n and

is “practically” constant. Actually, as shown in Table 6, for n = 128, 256, 512, we find N(ε) = 20,
22, 22 which confirms the results of the theoretical analysis.

In this second case the generating function is f(x) = x2|x|
1
2 with ρ = 2.5 and g(x) = 2−2 cos(x)

with 2k = 2. According to Theorem 3.1, the condition number of the preconditioned matrix is
asymptotical to n

1
2 and therefore the number of iterations N(ε) of the PCG method, in order to reach

the solution within the fixed accuracy ε, is proportional to n
1
4 . As shown in Table 7, for n = 128, 256,

512, we find N(ε) = 29, 35, 40; we observe the perfect agreement with the theoretical analysis: in
fact, the quantity N(ε) varies practically as n

1
4 since 29 · 2

1
4 ≈ 35 and 35 · 2

1
4 ≈ 41 which is close to

40.
In the third example the generating function is f(x) = x2|x|

1
3 with ρ = 2.3 and g(x) =

2 − 2 cos(x) with 2k = 2. By Theorem 3.1, the condition number of the preconditioned matrix
is asymptotical to n

1
3 and we expect that the number of iterations N(ε) of the PCG method, in order

to reach the solution within the fixed accuracy ε, is proportional to n
1
6 . As shown in Table 8, for

n = 128, 256, 512, we find N(ε) = 22, 25, 28; we notice again the perfect agreement with the theo-
retical analysis: in fact, the quantityN(ε) grows practically as n

1
6 since 22 ·2

1
6 ≈ 25 and 25 ·2

1
6 ≈ 27

which is close to 28.
In the last case the generating function is f(x) = x4|x|

1
12 with ρ = 4.08 and g(x) = 2− 2 cos(x)

with 2k = 4. In the light of Theorem 3.1, the condition number of the preconditioned matrix is
asymptotical to n

1
12 and as a consequence the number of iterations N(ε) of the PCG method, in

order to reach the solution within the fixed accuracy ε, is proportional to n
1
24 . We recall that the

original condition number grows asymptotically more than n4 (compare Corollary 2.1 and Theorem
2.6) and this is confirmed by the dramatic slowness of the CG method (without preconditioning). In
this case the acceleration due to the preconditioning technique is really evident: as shown in Table 9,
for n = 128, 256, 512, we find N(ε) = 21, 22, 22 so that we conclude a substantial independence
with respect to the dimension n.

Finally we stress that all the computations have been done in MATLAB by using the zero vector as
starting point and the vector of all ones as vector b. In all the considered cases the stopping criterion
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has been ‖rq‖2‖r0‖2 < 10−7 where rj is the residual vector at the j-th iteration. Moreover, in all the tables
the numbers in the first row are the dimensions of the linear systems, the numbers appearing in the
second row are the numbers of iterations without preconditioning (preconditioner = In) and those
appearing in the third row are the numbers of iterations when the preconditioner Tn(g) is used.

Table 6: PCG, f(x) = x2|x|
1
10 , ρ = 2.1, 2k = 2, Preconditioner = Tn(g), g(x) = 2− 2 cos(x)

n 128 256 512
In 86 187 397
Tn(g) 20 22 22

Table 7: PCG, f(x) = x2
√
|x|, ρ = 2.5, 2k = 2, Preconditioner = Tn(g), g(x) = 2− 2 cos(x)

n 128 256 512
In 110 266 643
Tn(g) 29 35 40

Table 8: PCG, f(x) = x2|x|
1
3 , ρ = 2 + 1/3, 2k = 2, Preconditioner = Tn(g), g(x) = 2− 2 cos(x)

n 128 256 512
In 99 227 516
Tn(g) 22 25 28

4.7 Further results and generalization to indefinite, non Hermitian problems

The main message of the band Toeplitz approach is that we have to choose a trigonometric polynomial
g which matches the zeros (with the right order) of the symbol f of the original coefficient matrix
Tn(f). The only constraint given in Theorem 3.1 is that g has to be nonnegative and not identically
zero in order to ensure the positive definiteness of the preconditioner Tn(g). Here we relax this
assumption by allowing g to be indefinite (when f is indefinite) and even not real valued (when f is
not real valued). The theory is more involved and not completely developed: for precise statements
we refer to [44, 43]. Here in Subsections 4.7.1 and 4.7.2 we just discuss some numerical evidences to
give an idea of the results. Finally, in Subsection 4.7.3, we show the robustness of the band Toeplitz
approach. Indeed, if the zeros of f are not analytically known, it is possible to recover them with
their order (see [72]) by using cheap numerical procedures: only a low precision is required in order
to preserve the optimality of the band Toeplitz preconditioning [79].

4.7.1 Indefinite preconditioning for indefinite problems

Since the preconditioner and the coefficient matrices are essentially indefinite, we perform our tests
by using both the PCG (for which there is no theoretical guarantee that a break down it is impossible)
and the preconditioned GMRES [59]. However, as the numerics show, the PCG is effective and even
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Table 9: PCG, f(x) = x4|x|
1
12 , ρ = 4 + 1/12, 2k = 4, Preconditioner = Tn(g), g(x) = (2 −

2 cos(x))2

n 128 256 512
In 383 1562 4663
Tn(g) 21 22 22

Table 10: P[CG/GMRES], f(x) = (0.1x2(2 − 2 cos(2x) + 1) sin(x) + 0.2(2 − 2 cos(2x)), g(x) =
sin(x), µsp = λmax/λmin

size=n λmin λmax µsp #(it) #(outliers)
16 0.5146 2.2336 4.3397 13/13 1
32 0.5146 2.2489 4.3696 15/15 1
64 0.5146 2.2526 4.3767 16/15 1
128 0.5146 2.2540 4.3794 16/15 1
256 0.5146 2.2543 4.3801 16/15 1
512 0.5146 2.2544 4.3803 16/15 1

optimally convergent.
Test 1 We consider the family of indefinite Toeplitz whose generating function is

f(x) = (γ1 + γ2x
2(2− 2 cos(2x)) sin(x) + γ3(2− 2 cos(2x)),

with indefinite preconditioner generated by g(x) = sin(x). We can choose the real parameters γ1,
γ2, and γ3 in such a way that f/g is strictly positive and bounded (γ1 positive and large enough)
and f − g has nonnegative sign (γ3 − γ2 positive and large enough): the first choice ensures that the
zeros of f are matched while the second ensures that the eigenvalues of the preconditioned matrices
Gn = T−1

n (g)Tn(f) are real (see [44]). In particular, we expect that most of the eigenvalues of Gn
belong to a positive bounded interval since f/g is positive and bounded.

For instance with γ1 = 1, γ2 = 0.1, γ3 = 0.2 we deduce that the range of f/g is an interval
whose extremes are the following

inf f/g = 0.63, sup f/g = 2.29.

In actuality, the numerics in Table 10 show that all the eigenvalues of the preconditioned matrix are
real, they strictly belong to the interval [0.63, 2.29] with one very stable outlier equal to 0.5146. More-
over both the preconditioned GMRES and CG are optimal in the sense that the number of iterations
does not increase with the size of the algebraic problem.

Test 2 We consider the indefinite Toeplitz problem with indefinite preconditioner whose generating
functions are

f(x) = (x2 + 5) sin(x), g(x) = sin(x),

with
inf f/g = 5, sup f/g = 14.8696.

The numerical results displayed in Table 11 show that all the eigenvalues of the preconditioned
matrix are real, they strictly belong to the interval [5, 14.8696] with no outliers. Moreover both the
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Table 11: P[CG/GMRES], f(x) = (x2 + 5) sin(x), g(x) = sin(x), µsp = λmax/λmin

size=n λmin λmax µsp #(it) #(outliers)
16 5.1252 13.0190 2.5402 8/8 0
32 5.0346 13.8726 2.7554 12/12 0
64 5.0091 14.3511 2.8650 15/12 0
128 5.0023 14.6050 2.9196 13/13 0
256 5.0006 14.7359 2.9468 13/13 0
512 5.0002 14.8024 2.9604 14/13 0

preconditioned GMRES and CG are optimal in the sense that the number of iterations is practically
constant with regard to the size of the algebraic problem.

4.7.2 Non Hermitian preconditioning for non Hermitian problems

In the following we consider 4 basic examples in which we cover different situations. The common
point is that the generating functions have (essential) zeros so that the related Toeplitz sequences
{Tn(f)} have asymptotical unbounded inverses and consequently the classic iterative solvers, when
convergent, are all sublinear (i.e. they require a number of iterations exploding to infinity as n tends
to infinity). The iterative solver is the preconditioned GMRES with band Toeplitz preconditioning.
Test 1 We consider the non Hermitian Toeplitz problem with non Hermitian preconditioner whose
generating functions are

f(x) = (1− eix)(5 + x2), g(x) = 1− eix.

We use a non Hermitian band preconditioning for a dense non Hermitian problem where f/g is real
valued, bounded and strictly positive. We observe a very favorable picture (see the first part of Table
12) since all the eigenvalues are real and belong to the the interior of the range of the function f/g
(as predicted for the real eigenvalues by a theorem in [43]). We recall that the interior of the range of
the function f/g is (5, 5 + π2) = (5, 14.8696) in very good agreement with the numbers reported in
the first two columns of Table 12. Furthermore, the number of iterations is bounded by an absolute
constant independent of n and this is a confirmation of the optimality of the proposed technique.
Test 2 We consider the non Hermitian Toeplitz problem with positive definite preconditioner whose
generating functions are

f(x) = (2− 2 cos(x))(1 + ix), g(x) = 2− 2 cos(x).

We use a positive definite band preconditioning for a dense non Hermitian problem having real part
coinciding with the preconditioner. Therefore

T−1
n (g)Tn(f) = In + iT−1

n (g)Tn(g(x)x).

Thus, all the eigenvalues have real part equal to one. Moreover the imaginary part of the eigenvalues
is distributed as the function x and is localized in (−π, π) since −π = infI x and π = supI x (see
items a and d of Theorem 3.1). All the theoretical forecasts are fully honored as displayed in the
second part of Table 12: moreover the proposed preconditioning is optimal as in the first case since
we observe a stabilization to a fixed number of the related iteration count.
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Test 3 We consider once a time the non Hermitian Toeplitz problem with positive definite precondi-
tioner whose generating functions are

f(x) = x2(1 + ix), g(x) = 2− 2 cos(x).

We use a positive definite band preconditioning for a dense non Hermitian problem having positive
definite real part which is spectrally equivalent to the preconditioner since 2− 2 cos(x) ∼ x2. There-
fore

T−1
n (g)Tn(f) = T−1

n (g)Tn(x2) + iT−1
n (g)Tn(x3).

Thus, from Theorem 3.1, we know that the all the eigenvalues have real part belonging to the inter-
val (1, π2/4), π2/4 = 2.4674, while the imaginary part of the eigenvalues belongs (−π3/4, π3/4),
π3/4 = 7.7516, since −π3/4 = infI x

3/(2− 2 cos(x)) and π3/4 = supI x
3/(2− 2 cos(x)). These

theoretical expectations are confirmed in the part of Table 12 where we also notice the optimality of
the proposed preconditioned GMRES method.
Test 4 We consider a non Hermitian Toeplitz problem with indefinite preconditioner whose generating
functions are

f(x) = sin(x)(1 + i(x2 + 1)), g(x) = sin(x).

We use an indefinite band preconditioning for a dense non Hermitian problem having indefinite real
part coinciding with the preconditioner. Therefore T−1

n (g)Tn(f) = In + iT−1
n (g)Tn(g(x)(x2 + 1)).

Thus, by the results in [44], we have all the eigenvalues with real part equal to 1 and imaginary part
distributed as the function x2 + 1 (infI x

2 + 1 = 1 and supI x
2 + 1 = π2 + 1 = 10.8696). In this case

theory on indefinite preconditioning is the basic tool for devising good preconditioning strategies for
non Hermitian problems whose real part is indefinite. Indeed, in this last example, the main interest is
that the indefinite preconditioning is effective for the given non Hermitian problem as we can observe
in the last part of Table 12.

4.7.3 Robustness of the band Toeplitz preconditioning

Here we just report one that shows the robustness of the band Toeplitz approach. We consider the
Toeplitz problem with symbol f(x) = (x2 − 1)2: the exact band Toeplitz preconditioner has generat-
ing function g(x) = (2 cos(1)−2 cos(x))2. We assume that the zeros of f , which clearly coincide with
±1, are not known exactly and we define an approximated preconditioner with generating function
g̃(x) = (2 cos(0.994) − 2 cos(x))2 whose zeros are ±0.994. As reported in Table 13, the perfor-
mances of the approximate preconditioner are similar to those of the exact one and are both much
better with respect to the circulant Frobenius optimal preconditioners Φn,C (see [24] and Subsection
5.2).

More generally, if the zeros of f are not analytically known, it is possible to recover them with
their order (see [72]) by using cheap numerical procedures: only a low precision (bounded by n−1) is
required in order to preserve the optimality of the band Toeplitz preconditioning (see [72, 79]).

5 Matrix algebra preconditioning

We introduce some class of important (unitary) matrix algebras whose unitary transforms have a cost
proportional to n log(n). The idea is to find preconditioners in these spaces: the convergence analysis
is carried via the Korovkin theory (Subsection 5.1) and is postponed to Subsection 5.2.
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Table 12: P[GMRES], the four tests in the non Hermitian case

size=n min{Re(λ)} max{Re(λ)} min{Im(λ)} max{Im(λ)} #(it)

Test 1
16 5.1252 14.0246 0 0 8
32 5.0346 14.4332 0 0 12
64 5.0091 14.4646 0 0 13
128 5.0023 14.4757 0 0 13
256 5.0006 14.4813 0 0 13
512 5.0001 14.4841 0 0 13

Test 2
16 1 1 -2.7174 2.7174 16
32 1 1 -2.9022 2.9022 32
64 1 1 -3.0099 3.0099 46
128 1 1 -3.0702 3.0702 50
256 1 1 -3.1034 3.1034 52
512 1 1 -3.1213 3.1213 52

Test 3
16 1.1890 2.0133 -2.6857 2.6857 16
32 1.0464 2.1829 -2.8826 2.8826 32
64 1.0243 2.2998 -2.9986 2.9986 41
128 1.0128 2.3726 -3.0643 3.0643 45
256 1.0067 2.4152 -3.1003 3.1003 46
512 1.0034 2.4391 -3.1197 3.1197 47

Test 4
16 1 1 1.1252 9.0192 8
32 1 1 1.0346 9.8726 16
64 1 1 1.0091 10.3510 22
128 1 1 1.0023 10.6049 24
256 1 1 1.0006 10.7358 24
512 1 1 1.0001 10.8023 24

In general, given the class αn of matrices arising from a given problem, when dealing with the
PCG method we have to face two challenges:

A. choose a suitable class βn of matrices “close” enough to αn and whose elements are easy to invert.

B. devise a suitable projection operator Pn : αn → βn to obtain the best approximation Pn ∈ βn for
any given An ∈ αn.

One of the promising ways to meet point A is to look for preconditioners within matrix algebras like
the circulant class [27] and other special algebras of matrices [10, 12, 47]. This typically offers a
better knowledge of how close we may choose the approximation and the possibility to use a uniform,
and often efficient, algorithm to solve the preconditioned system.

When dealing with real problems point B becomes delicate since we need to reduce the “informa-
tive content” of the original matrix in order to have cheap invertibility in the approximation space βn.
In these cases some averaging schemes (see (40), (41), and e.g. [19]) have proved to be useful: they
are related the the so-called Frobenius optimal approximation [24] that we describe in Subsection 5.2.

Here we focus our attention on the spaces αn which are of interest for us: given Un unitary matrix
(i.e. UHn Un = In), we consider the associated (unitary) algebra of matrices defined as

An = {X = UnDU
H
n : D diagonal matrix}. (31)
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Table 13: PCG, f(x) = (x2−1)2, g(x) = (2 cos(1)−2 cos(x))2, g̃(x) = (2 cos(0.994)−2 cos(x))2:
#(iterations) for different preconditioners

n 128 256 512
In 182 449 > 1000
Φn,C 22 28 34
Tn(g) 18 19 19
Tn(g̃) 19 20 22

The diagonal matrix in the above definition has entries in the same field where the entries of Un
are defined: thus we have real algebras of symmetric matrices and complex algebras of matrices. A
classical example of (unitary) complex matrix algebra is the algebra of circulants which has been
introduced in Subsection 4.1. The transform Un is the Fourier matrix Fn.

Starting from circulants many other circulant-like algebras can be defined; this is the case of the
Hartley class [12]. Here we report the transforms Un both for circulants and Hartley matrices:

Un = Fn =

(
1√
n
eijx

(n)
k

)
, j, k = 0, . . . , n− 1,

Wn =
{
x

(n)
k = 2kπ

n : k = 0, . . . , n− 1
}
⊂ [0, 2π],

Un = Hn =
(

1√
n

[
sin(jx

(n)
k ) + cos(jx

(n)
k )

])
, j, k = 0, . . . , n− 1,

Wn =
{
x

(n)
k = 2kπ

n : k = 0, . . . , n− 1
}
⊂ [0, 2π].

The setWn is called the set of grid points and plays an important role in the study of preconditioners in
these algebras. For the class of the ω-circulants [27, 9] we may consider value ω on the unit complex.
More precisely, if ω = ei2πψ then the matrix Un has the following representation

Un = Fn,ω =

(
1√
n
ei(j+ψ)x

(n)
k

)
, j, k = 0, . . . , n− 1,

Fn = Fn,1, Wn =
{
x

(n)
k = 2kπ

n : k = 0, . . . , n− 1
}
⊂ [0, 2π].

In all these settings the matrices Un are unitary. The Hartley transform Hn is also real and so the
algebra is a real one. For all these cases the matrix vector product with matrix Un and a generic
vector can be performed in O(n log(n)) arithmetic operations (real in the Hartley case) and therefore,
as proved for circulants in Subsection 4.1, all the matrix operations such as eigenvalue computation,
solution of a linear system, matrix vector product etc. can be performed in O(n log(n)) arithmetic
operations when a matrix in one of these algebras is concerned.

The same remarks hold for the 8 cosine/sine algebras (all real algebras) whose transform Un is
explicitly reported.

Discrete cosine/sine transform matrices Un.
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Discrete transform Inverse transform

DCT-I CIn =
√

2
n−1

[
g(j, k) cos kjπ

n−1

]n−1

k,j=0
[CIn]T = CIn

DCT-II CIIn =
√

2
n

[
ηk cos k(2j+1)π

2n

]n−1

k,j=0
[CIIn ]T = CIIIn

DCT-III CIIIn =
√

2
n

[
ηj cos (2k+1)jπ

2n

]n−1

k,j=0
[CIIIn ]T = CIIn

DCT-IV CIVn =
√

2
n

[
cos (2k+1)(2j+1)π

4n

]n−1

k,j=0
[CIVn ]T = CIVn

DST-I SIn =
√

2
n+1

[
sin kj

n+1π
]n
k,j=1

[SIn]T = SIn

DST-II SIIn =
√

2
n

[
ηk sin k(2j−1)

2n π
]n
k,j=1

[SIIn ]T = SIIIn

DST-III SIIIn =
√

2
n

[
ηj sin (2k−1)j

2n π
]n
k,j=1

[SIIIn ]T = SIIn

DST-IV SIVn =
√

2
n

[
sin (2k−1)(2j−1)

4n π
]n
k,j=1

[SIVn ]T = SIVn

Here η0 = ηn = 1
2 , ηk = 1 for k = 1, 2, . . . , n − 1 and g(j, k) = ηkηn−1−kηjηn−1−j . The grid

points of the above mentioned 8 cosine/sine transforms belong to [0, π] and are defined as follows:

DCT− I, Wn =
{
x

(n)
k = kπ

n−1 : k = 0, . . . , n− 1
}
,

DCT− II, Wn =
{
x

(n)
k = kπ

n : k = 0, . . . , n− 1
}
,

DST− I, Wn =
{
x

(n)
k = (k+1)π

n+1 : k = 0, . . . , n− 1
}
,

DST− II, Wn =
{
x

(n)
k = (k+1)π

n : k = 0, . . . , n− 1
}
,

DCT− III, DCT− IV,
DST− III, DST− IV,

Wn =
{
x

(n)
k = (k+1/2)π

n : k = 0, . . . , n− 1
}
.

We notice that all the sequences of unitary algebras considered so far have grid points Wn which are
uniformly distributed in the reference interval. For a formal definition of quasi-uniform and uniform
distribution see the following

Definition 5.1 A sequence of grids {Wn = {x(n)
k : k = 0, . . . , n− 1}} belonging to an interval J is

called quasi-uniform in J if

lim
n→∞

n−1∑
k=0

∣∣∣∣ |J |n − (x
(n)
k − x

(n)
k−1)

∣∣∣∣ = 0, (32)

with |J | being the width of J . If the previous relation in (32) holds with a decay of O(n−1), then the
mesh-sequence {Wn} is called uniform.

Concerning requirement A, it is evident that any invertible matrix belonging to one these algebras
is easy to invert (O(n log(n)) ops required). What about the closeness of these spaces with respect
to the Toeplitz matrices? The answer is positive and indeed if αn is the space of Toeplitz matrices
with generic symbol, then any of the trigonometric spaces An with complex transform can be used
as βn; if we restrict the attention to the Toeplitz matrices with real and even symbol (then Tn(f) is
real and symmetric), then as space βn we can use any of the above mentioned algebras. We prove this
closeness on the space of band Toeplitz matrices i.e. on the class of Toeplitz matrices with polynomial
symbols.
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Theorem 5.1 Let An be any of the ω-circulant, Hartley, or of the 8 cosine/sine algebras. Setting

An(g) = UnDgU
H
n , Dg = diag0≤k≤n−1

(
g
(
x

(n)
k

))
, x

(n)
k ∈Wn, (33)

we have the following:

• if p is a real valued even trigonometric polynomial, then there exists a constant c such than
rank(Tn(p)−An(p)) ≤ c with c being linear with respect to the degree of p;

• if p a (complex valued) trigonometric polynomial and if An is the circulant algebra or any of
the ω-circulant algebras, then there exists a constant c such than rank(Tn(p) − An(p)) ≤ c
with c being linear with respect to the degree of p.

Proof. We give the proof only for the circulant algebra: the other cases are similar but require
some additional technical details concerning the structure of the remaining algebras. Let p(x) =∑
−q1≤k≤q2 ake

ikx. Therefore for n large enough, we have

Tn(p) =



a0 a−1 . . . a−q1

a1
. . . . . . . . . . . .

...
. . . . . .

aq2
. . . . . . a−q1
. . . . . .

...
. . . . . . . . . . . . a−1

aq2 . . . a1 a0


.

We choose the circulant matrix An (known in the literature as Strang preconditioner [87])

An =



a0 a−1 . . . a−q1 aq2 . . . a1

a1
. . . . . . . . . . . . . . .

...
...

. . . aq2

aq2
. . .
. . . . . .

. . . a−q1

a−q1
. . .

...
...

. . . . . . . . . . . . . . . a−1

a−1 . . . a−q1 aq2 . . . a1 a0



.

It is clear that rank(Tn(p) − An) ≤ c with c = q1 + q2. Finally a simple computation based on
the formula (18) shows that An = An(p). •

The formula (33) is very important for the approximation of Toeplitz matrices by using unitary
matrix algebras. Indeed it can be proved that a necessary condition for An(g) to be a good pre-
conditioner for Tn(f) is that g = Sn(f) where Sn(f) converges to f as n tends to infinity; if f
is strictly positive and bounded then the condition is also sufficient (see [68]). A very popular pre-
conditioning technique is Strang approximation [87, 22]: it corresponds to Sn(f) = Fdn/2e(f) with
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Fq(f) =
∑
−q≤k≤q ake

ikx being the Fourier sum of f (with Fourier coefficients ak). The algebraic
expression of the Strang preconditioner corresponds to take the matrix Tn(f) and to copy only its
dn/2e central diagonal by replacing the others in order to obtain a circulant structure. A further im-
portant alternative is the T. Chan preconditioner related to the Frobenius optimal approximation whose
features are discussed in a more general setting in Subsection 5.2.

5.1 The classical Korovkin theory

Our aim is to approximate continuous functions over a compact domain K ⊂ Rd, d ≥ 1, by means
of functions which are simpler from the computational viewpoint. A natural choice is the polynomial
model since the evaluation of a generic polynomial implies only a finite number of sums and products.
Concerning the notion of approximation, the idea is to replace the given continuous function f with a
polynomial p which is close to it in the whole domain K. More precisely we endow the set C(K) of
all continuous functions on K with the sup distance d(f, g) = ‖f − g‖∞,K where ‖ · ‖∞,K indicates
the sup norm namely

‖h‖∞,K = sup
x∈K
|h(x)|, h ∈ C(K).

In this way the pair (C(K), d(·, ·)) is a Banach space i.e. any Cauchy sequence has limit in it. In
view of the Weierstrass Theorem (on the existence of points of the compact set K where a continuous
functions f attains its minimum and maximum), it is evident that the sup can be replaced by a max
(K is a compact set of Rd, d ≥ 1) and therefore

‖h‖∞,K = max
x∈K
|h(x)|, h ∈ C(K). (34)

Now the problem is posed. We observed that the space of polynomials is a good idea from a
computational point of view but is a good choice from an approximation viewpoint?

The Weierstrass Theorem on the polynomial approximation gives a complete answer to this ques-
tion.

Theorem 5.2 (Weierstrass) Let f ∈ C(K) with K ⊂ Rd, d ≥ 1, compact set. For every ε > 0 there
exists a polynomial pε such that

‖f − pε‖∞,K ≤ ε.

In the following with the help of the Korovkin theorem and with the help of the Bernstein polyno-
mial, we give a constructive proof of the Weierstrass Theorem (and indeed we provide a general tool
for proving Weierstrass Theorems in many different contexts).

The power of the Korovkin Theorem can be resumed as follows: its assumptions are simple and
easy to verify, the claim is strong and the proof is elementary in the sense that it does not require
advanced mathematical knowledge. More specifically, given a sequence of operators Φn from C(K)
into itself, it is enough to verify that they are definitely linear and positive and that converge on a finite
number of simple functions (some polynomials of degree at most 2) in order to conclude that they
converge on every continuous function f i.e.

d(Φn(f), f)→ 0, as n→∞.

In the following we report the definition of linear positive operator (LPO) and the notion of linear
approximation process.

Definition 5.2 Let S be a vector space of functions taking values in K (with K being R or C) and
let us consider an operator Φ from S to S satisfying the following pair of properties: Φ:
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1. for every α and β in K for every f and g in S, Φ(αf + βg) = αΦ(f) + βΦ(g) (linearity);

2. for every f ≥ 0, f ∈ S, Φ(f) ≥ 0 (positivity).

An operator Φ fulfilling both the conditions is said linear and positive (LPO).
Analogously, if S is linear space (over K) of matrices and Φ is an operator from S into S satisfying
the following two properties,

1. for every α and β in K for every f and g in S, Φ(αf + βg) = αΦ(f) + βΦ(g) (linearity);

2. for every A ∈ G Hermitian and nonnegative definite, Φ(A) is Hermitian and nonnegative
definite.

Under the above mentioned assumptions, the operator Φ is said linear and positive (matrix) operator
(LPO).

Definition 5.3 Let (S, d(·, ·)) be a Banach space of functions taking values in K (with K being R or
C) and let us consider a sequence {Φn} of operators from S into S. The sequence is called sequence
of operators of approximation or more briefly process of approximation if for every f ∈ S we have

lim
n→∞

d(Φn(f), f) = 0.

(In other words {Φn} converges pointwise to the identity operator).

We now give a proof of the Korovkin Theorem. With ‖ · ‖2 we denote the Euclidean norm over

Rd that is ‖x‖2 =
(∑d

i=1 |xi|2
)1/2

for any x ∈ Rd.

Theorem 5.3 (Korovkin) Let K be a compact set of Rd and let C(K) be the Banach space of the
continuous functions (real valued or complex valued) over K with the sup norm. We consider the set
of functions T = {1, xi, ‖x‖22 : i = 1, . . . , d}, that we call the Korovkin set. Let {Φn} be a LPO
sequence over C(K). If for every g ∈ T

Φn(g) converges uniformly to g

then {Φn} is an approximation process i.e.

Φn(f) converges uniformly to f, ∀f ∈ C(K).

The same statement holds if the uniform convergence is replaced by the pointwise convergence or the
convergence on the domain K is replaced by the convergence on any sub domain J .

Proof We fix f ∈ C(K), we fix ε > 0 and we show that there exists n̄ large enough such that, for all
n ≥ n̄, we have ‖f − Φn(f)‖∞,K ≤ ε. Therefore we assume that x is a generic point of K and we
consider the difference

f(x)− (Φn(f(y)))(x)

where y is the “dummy” variable where the function f acts as argument of Φn. Now the constant
function 1 belongs to the “Korovkin set” T and therefore 1 = (Φn(1))(x)− (εn(1))(x) where εn(1)
converges uniformly to zero over K. From the linearity of the operators Φn, we deduce

f(x)− (Φn(f(y)))(x) = [(Φn(1))(x)− (εn(1))(x)]f(x)− (Φn(f(y)))(x)

= (Φn(f(x)− f(y)))(x)− (εn(1))(x)f(x).

Therefore we can find a value n1 such that for n ≥ n1

|(εn(1))(x)f(x)| ≤ ‖εn(1)‖∞,K‖f‖∞,K ≤ ε/4
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and consequently, by exploiting the linearity and the positivity of Φn, we have

|f(x)− (Φn(f(y)))(x)| ≤ |(Φn(f(x)− f(y)))(x)|+ ε/4 (35)

≤ (Φn(|f(x)− f(y)|))(x) + ε/4. (36)

The remaining part of the proof is now a manipulation of the term |f(x) − f(y)| where we look for
a “clever” upperbound in order to properly exploit the positivity of the operators and the convergence
assumptions on the Korovkin test.

First of all we notice that a continuous function over a compact set is also uniformly continuous
and therefore, in correspondence to our fixed ε > 0, there exists a value δ > 0 for which if ‖x−y‖2 ≤
δ then |f(x) − f(y)| ≤ ε/4. In association to the parameter δ and therefore in association to the
behavior of |f(x)− f(y)|, we define the pair of sets

Qδ(x) = {y ∈ K : ‖x− y‖2 ≤ δ}, QCδ (x) = K\Qδ,

where |f(x)−f(y)| as function of y (x is fixed and therefore it acts as a parameter) is bounded by ε/4
on Qδ(x) and, as a consequence of the triangle inequality, is bounded by da 2‖f‖∞,K over QCδ (x).
Denoted by χJ the characteristic function of J , we remark that ∀y ∈ QCδ (x) we have ‖x− y‖2 > δ
i.e.

1 ≤ ‖x− y‖22/δ2.

Hence we deduce the following chain of inequalities:

|f(x)− f(y)| ≤ ε/4χQδ(x)(y) + 2‖f‖∞,KχQC
δ

(x)(y)

≤ ε/4χQδ(x)(y) + 2‖f‖∞,KχQC
δ

(x)(y)‖x− y‖22/δ2

≤ ε/4 + 2‖f‖∞,K‖x− y‖22/δ2.

In spite of the use of discontinuous functions (the characteristic functions), we observe that the last
term of the inequality chain is a continuous functions: as a consequence we can apply the operator Φn

and its positivity allows us to conclude

Φn(|f(x)− f(y)|) ≤ Φn

(
ε/4 + 2‖f‖∞,K‖x− y‖22/δ2

)
.

Therefore by means of the linearity of Φn and setting (∆n(f))(x) = |f(x) − (Φn(f(y)))(x)|, from
(35) we deduce the following further chain of relationships:

(∆n(f))(x) ≤ (Φn(|f(x)− f(y)|))(x) + ε/4

≤
(
Φn

(
ε/4 + 2‖f‖∞,K‖x− y‖22/δ2

))
(x) + ε/4

= ε/4(Φn(1))(x) + 2‖f‖∞,K/δ2
(
Φn

(
‖x− y‖22

))
(x) + ε/4

= ε/4(Φn(1))(x) + 2‖f‖∞,K/δ2(
Φn

(
d∑
i=1

x2
i − 2xiyi + y2

i

))
(x) + ε/4

= ε/4(Φn(1))(x) + 2‖f‖∞,K/δ2

d∑
i=1

(
Φn

(
x2
i − 2xiyi + y2

i

))
(x) + ε/4
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= ε/4(Φn(1))(x) + 2‖f‖∞,K/δ2

d∑
i=1

[
x2
i (Φn(1))(x)− 2xi(Φn(yi))(x) + (Φn(y2

i ))(x)
]

+ ε/4

= ε/4(Φn(1))(x) + 2‖f‖∞,K/δ2[
d∑
i=1

[
x2
i (Φn(1))(x)− 2xi(Φn(yi))(x)

]
+ (Φn(‖y‖22))(x)

]
+ε/4.

We have reduced the original problem to linear combinations of products among continuous func-
tions where the operator Φn is applied only over the functions of the Korovkin set. Therefore we can
proceed with explicit computations: setting Φn(g) = g + εn(g), with g ∈ T and εn(g) converging to
zero uniformly over K, we have

∆n(f) ≤ ε/4(1 + (εn(1))(x)) + 2‖f‖∞,K/δ2[
d∑
i=1

[
x2
i (Φn(1))(x)− 2xi(Φn(yi))(x)

]
+ (Φn(‖y‖22))(x)

]
+ ε/4

= ε/4(1 + (εn(1))(x)) + 2‖f‖∞,K/δ2[
d∑
i=1

[
x2
i (εn(1))(x)− 2xi(εn(yi))(x)

]
+ (εn(‖y‖22))(x)

]
+ ε/4.

Finally, by virtue of the uniform convergence to zero of the functions εn(g), we infer that there
exists a value n̄ ≥ n1 such that ∀n ≥ n̄ we have (εn(1))(x)) ≤ 1 and

2‖f‖∞,K/δ2

[
d∑
i=1

[
x2
i (εn(1))(x)− 2xi(εn(yi))(x)

]
+ (εn(‖y‖22))(x)

]
≤ ε/4.

Finally, by combining all the partial results, we have proved the desired result that is, uniformly with
respect to x,

(∆n(f))(x) = |f(x)− (Φn(f(y)))(x)| ≤ ε, ∀n ≥ n̄.

The proof in the case of pointwise convergence or in the case of convergence on a sub domain of K
follow exactly the same lines of the proof above. •

A periodic version of the latter result holds; the proof is virtually unchanged so that we leave it to
the reader.

Theorem 5.4 (Korovkin) Let K = [−π, π]p and let Cp(K) be the Banach space of the (2π)-periodic
continuous functions (real valued or complex valued) over K with the sup norm. We consider the set
of functions T = {1, eijxi : i = 1, . . . , d, j = ±1}, that we call the Korovkin set. Let {Φn} be a LPO
sequence over Cp(K). If for every g ∈ T

Φn(g) converges uniformly to g

then {Φn} is an approximation process i.e.

Φn(f) converges uniformly to f, ∀f ∈ Cp(K).

The same statement holds if the uniform convergence is replaced by the pointwise convergence or the
convergence on the domain K is replaced by the convergence on any sub domain J .
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Finally we briefly report a bit of the quantitative Korovkin theory.

Theorem 5.5 Under the assumptions of Theorem 5.3 (under the assumptions of Theorem 5.4), if
maxg∈T ‖Φn(g) − g‖∞,K = θn (T being the Korovkin set), then every polynomial p (then for every
trigonometric polynomial p) of fixed degree (independent of n) we find

‖Φn(p)− p‖∞,K = O(θn).

Proof. We give only an idea of the proof for d = 1, in the nonperiodic case. Let p be a standard
polynomial of the real variable x ∈ K of given degree. Then

p(x)− p(y) = p′′(η(x, y))(x− y)2

and therefore

|p(x)− (Φn(p(y)))(x)| = |[(Φn(1))(x)− (εn(1))(x)]p(x)− (Φn(p(y)))(x)|
≤ |(Φn(p(x)− p(y)))(x)|+ |(εn(1))(x)p(x)|
≤ |(Φn(p′′(η(x, y))(x− y)2))(x)|+ θn‖p‖∞,K
≤ (Φn(|p′′(η(x, y))|(x− y)2))(x) + θn‖p‖∞,K
≤ ‖p′′‖∞,K(Φn((x− y)2))(x)|+ θn‖p‖∞,K
≤ ‖p′′‖∞,KCθn + θn‖p‖∞,K

with C universal constant depending only the set K.
The multilevel nonperiodic case can be handled in a very similar way, while the proof in the

periodic case is completely different (see [71]). •
These interesting results deserve some additional comments.

A)
In order to obtain a proof of the first Weierstrass Theorem 5.2 (in B) we propose a sequence {Φn}
of LPOs satisfying the Korovkin test such that Φn(f) is polynomial for every f ∈ C(K). However
we cannot forget that the Korovkin Theorem 5.4 is completely general and does not impose any re-
striction on the functions Φn(f). In actuality, by following carefully the proof of the Theorem 5.4,
we observe that the proof is unchanged even if Φn(f) is not continuous for some f ∈ C(K) i.e. if
we violate the assumption Φn : C(K)→ C(K). The only constraint is that it should makes sense to
compute ‖Φn(f)‖∞,K that is Φn(f) ∈ L∞(K).
B)
The Korovkin Theorem 5.4 can be used for proving the first Weierstrass Theorem 5.2 on the ap-
proximation of functions in C(K) by polynomials: the tools are the Bernstein polynomials. In one
dimension i.e. d = 1 and for K = [0, 1], they are defined as

(Bn(f))(x) =
n∑
ν=0

(
n
ν

)
xν(1− x)n−νf

(
ν

n

)
.

It is evident that Bn(·) is a LPO since it is a linear combination of nonnegative polynomials of degree
n xν(1− x)n−ν , via coefficients (

n
ν

)
f

(
ν

n

)
which are all nonnegative if f ≥ 0. Moreover it is easy to prove that Bn(g) converges uniformly
to g for g(y) = yj , j = 0, 1, 2 (the one-dimensional Korovkin set). Therefore, by the Korovkin
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Theorem 5.4, Bn(f) uniformly converges to f for every f ∈ C(K). A d-dimensional generalization
of the Bernstein polynomials allows to give a d-dimensional version of Weierstrass approximation
Theorem.
C)
The Korovkin Theorem can be used for proving the second Weierstrass Theorem on the approximation
of functions in Cp(K) by trigonometric polynomials where K is a d-dimensional rectangle and f ∈
Cp(K) means that it is continuous and periodic in every direction: a possible tool is represented by
the Cesaro sums. In one dimension i.e. d = 1 and for K = [−π, π], they are defined as

(Cn(f))(x) =
1

n

n−1∑
ν=0

(Fν(f))(x), (Fν(f))(x) =
ν∑
j=ν

aje
ijx

with aj being the Fourier coefficients of f . By an integral representation of Cn(·), it is possible to
prove that Cn(·) is a LPO. Furthermore it is easy to prove that Cn(g) converges uniformly to g for
g(y) = eijx, j = 0,±1 (the one-dimensional periodic Korovkin set). Therefore, by the (periodic)
Korovkin Theorem 5.4, it follows that Cn(f) uniformly converges to f for every f ∈ Cp(K).

A d-dimensional generalization of the Cesaro polynomials allows to give a d-dimensional version
of the second Weierstrass approximation Theorem.
D)
In the Korovkin Theorems 5.3, 5.4 and 5.5, we considered the uniform convergence. The same kind
of result holds if the we consider the point wise convergence or different convergence in norm (Lp

convergence in Lp spaces). Also of interest is the following notion of convergence. Let {Wn},
Wn ⊂ K, be a sequence of subsets of K then we define

‖f‖∞,Wn = sup
x∈Wn

|f(x)|. (37)

If in Theorem 5.4 and Theorem 5.5 we replace ‖ · ‖∞,K by ‖ · ‖∞,Wn , then the theorems stand
unchanged (the same is true of course also for Theorem 5.3). In our matrix generalization, in the
following subsection (see Theorems 5.8 and 5.9), we use this type of convergence where {Wn} is the
sequence of grid points associated to the approximating matrix algebra sequence (asymptotic discrete
convergence).

5.2 The Korovkin theorem for Toeplitz matrix sequences

Here we give a matrix version of the Korovkin theory and more specifically of Theorem 5.4. We
consider the unilevel case of d = 1 while the general case is discussed in Subsections 6.1 and 6.2:

• The space Cp(K) is replaced by the sequence space {{Tn(f)} : f ∈ Cp(K)} with K =
[−π, π];

• the approximation space of the polynomials is replaced by {An}whereAn = {X = UnDU
H
n :

D diagonal matrix} is a unitary algebra of matrices i.e. for any n the n× n transform Un is a
unitary matrix (see (31));

• the norm in the space of matrices is the Frobenius norm that is ‖X‖F =
√∑n

i,j=1 |Xi,j |2;

• the approximation operators Φn(·) are defined as follows: for every n×nmatrixA we consider
φn(·) : Mn(C)→ An ⊂Mn(C) described by the relation

φn(A) = arg min
X∈An

‖A−X‖F ; (38)
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therefore for every f ∈ Cp(K), Φn(f) : Cp(K)→ An is defined as

Φn(f) = φn(Tn(f)). (39)

We first observe that the Frobenius norm coincides with ‖ · ‖2 where ‖ · ‖p, p ∈ [1,∞] is the p-th
Schatten norm (see (2)); moreover ‖ · ‖F is induced by the positive scalar product (·, ·)F on Mn(C)
defined as (A,B)F =trace(A∗ ·B). Therefore the existence and the uniqueness of the minimum

φn(A) = arg min
X∈An

‖A−X‖F

follows from the fact that the space (Mn(C), (·, ·)F ) is a Hilbert space and An is a closed convex
subset since it is a finite dimensional vector space. In the case ofA = Tn(f) and in the case whereAn
is the space of circulants, by expanding a generic circulant in its canonical basis, a simple calculation
shows that

Φn(f) =



a0 a′1 a′2 . . . a′n−3 a′n−2 a′n−1

a′n−1 a0 a′1 a′2 . . . a′n−3 a′n−2
. . . . . . . . .

...
. . . . . . . . .

...
. . . . . . . . .

a′2 . . . a′n−3 a′n−2 a′n−1 a0 a′1
a′1 a′2 . . . a′n−3 a′n−2 a′n−1 a0


(40)

where aj are the Fourier coefficients of f (i.e. the entries of Tn(f)) and

a′j = [(n− j)a−j + jan−j ]/n, ∀j = 0, . . . , n− 1. (41)

By means of simple algebraic arguments, it is possible to prove the following Lemma (see e.g.
[32]).

Lemma 5.1 With A,B ∈Mn(C) and the previous definition of φn(·), we have

a. φn(A) = Unσ(UHn AUn)UHn , with σ(X) being the diagonal matrix having (X)i,i as diagonal
elements,

b. φn(αA+ βB) = αφn(A) + βφn(B) and α, β ∈ C,

c. φn(AH) = (φn(A))H ,

d. ‖A− φn(A)‖2F = ‖A‖2F − ‖φn(A)‖2F ,

e. ‖φn(A)‖ ≤ ‖A‖.

Proof. Since Un is unitary it follows that the Euclidean norm of a generic vector v is equal the
Euclidean norm of Unv. Therefore

φn(A) = arg min
X∈An

‖A−X‖F

= arg min
X∈An

‖UHn (A−X)‖F

= arg min
X∈An

‖UHn (A−X)Un‖F

= arg min
X=UnDUHn : D is diagonal

‖UHn AUn −D‖F
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and consequently the optimal diagonal matrix is σ(U∗nAUn) i.e.

φn(A) = Unσ(UHn AUn)UHn .

This proves the first item. The second is a direct consequence of the first, while for the third it is
sufficient to observe that σ(UHn A

HUn) = (σ(UHn AUn))H and therefore φn(AH) = (φn(A))H . Part
d is simply the Pithagora law for general Hilbert spaces and the last item follows again from the first
one since ‖φn(A)‖ ≤ ‖Un‖‖σ(UHn AUn)‖‖UHn ‖ = ‖σ(UHn AUn)‖: finally,

‖σ(UHn AUn)‖ = max
i
|uHi Aui|

≤ max
‖u‖=‖v‖=1

|uHAv| = σn(A) = ‖A‖

with ui i-th column ofUn and σn(A) largest singular value ofA (for the relation max‖u‖=‖v‖=1 |uHAv| =
σn(A) = ‖A‖ see e.g. [7]) . •

Also of interest is the following result (see e.g [32]).

Lemma 5.2 If A is Hermitian (A = A∗), then the eigenvalues of φn(A) are contained in the closed
real interval [λ1(A), λn(A)] where λj(A) are the eigenvalues of A ordered in a nondecreasing way.
Moreover, when A is positive definite, φn(A) is positive definite as well.

Proof. From item c of Lemma 5.1, it follows that φn(A) is Hermitian if A is and its eigenvalues
(σ(UHn AUn)i,i are of the form

uHi Aui (42)

with ui i-th column of Un. Moreover by the Schur normal form Theorem (see e.g. [7]) we have
λ1(A) = min‖v‖2=1 v

HAv and λn(A) = max‖v‖2=1 v
HAv and therefore

λ1(A) = min
‖v‖2=1

vHAv ≤ uHi Aui, λn(A) = max
‖v‖2=1

vHAv ≥ uHi Aui.

The second part is a consequence of the first. •

5.2.1 A Weierstrass matrix theory for Toeplitz matrices

In order to properly state the “matrix approximation results”, we require a concept of “matrix con-
vergence”. We say that “{Φn(f)} (strongly) converges to {Tn(f)}” if {Φn(f) − Tn(f)} is properly
clustered at zero in the sense of the singular values; the convergence is “weak” if the same difference
sequence is weakly clustered at zero (see the notions of proper and weak clustering in Definition 8.1).

Theorem 5.6 Let f be a continuous (2π)-periodic function on I = [−π, π). Then, {Φn(f)} con-
verges to {Tn(f)} if {Φn(p)} converges to {Tn(p)} for all the trigonometric polynomials p.

Proof. Let pk be the polynomial having degree k of best approximation of f in supremum norm [45].
For any ε > 0, fix the integer M such that ‖f − pM‖∞ < ε/3. Then, by using (2) and items b
and d of Lemma 5.1 we have ‖Tn(f) − Tn(pM )‖ = ‖Tn(f − pM )‖ < ε/3, ‖Φn(f) − Φn(pM )‖ =
‖Φn(f − pM )‖ < ε/3. Therefore, from the identity

Tn(f)− Φn(f) = Tn(f)− Tn(pM )−
−(Φn(f)− Φn(pM ))+
+Tn(pM )− Φn(pM )
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we have that, except for a term of norm bounded by 2ε/3, the difference Tn(f)−Φn(f) coincides with
Tn(pM )−Φn(pM ). From the hypothesis of convergence, we can split the matrix Tn(pM )−Φn(pM )
into two parts. The first part has a norm bounded by ε/3 and the second part has constant rank.
Therefore the claimed result is obtained, by invoking the Cauchy interlace Theorem [7, 55] for singular
values (or eigenvalues if f is real valued). •

Theorem 5.7 Let f be a continuous periodic function. Then, {Φn(f)} weakly converges to {Tn(f)}
if {Φn(p)} weakly converges to {Tn(p)} for all the trigonometric polynomials p.

Proof. The proof is the same as the one of Theorem 5.6 with the exception of the last part where we
split {Tn(pM ) − Φn(pM )} into two sequences: the first has a norm bounded by ε/3 and the second
one has o(n) rank. The use of the Cauchy Theorem completes the proof. •

The following corollaries are particularly useful for deriving and analyzing good preconditioners
for the conjugate gradient method.

Corollary 5.1 Under the assumption of the Theorem 5.6, if f has range whose convex hull does not
contain the complex zero (if f is positive), then, according to Definition 8.1, the matrix sequence
{Φ−1

n (f)Tn(f)} is spectrally clustered to one in the sense of the singular values (in the sense of the
eigenvalues if f > 0); moreover {Φ−1

n (f)Tn(f)} and {T−1
n (f)Φn(f)} are spectrally bounded.

Proof. The assumptions on the range of f implies that {T−1
n (f)} is uniformly bounded (see [16]); the

continuity of f implies that f ∈ L∞(I) and therefore by (2) we have that also {T−1
n (f)} is uniformly

bounded. From the representation formula of Φn(f) in Lemma 5.1, it follows that also {Φn(f)} and
{Φ−1

n (f)} are spectrally bounded: as a consequence both {Φ−1
n (f)Tn(f)} and {T−1

n (f)Φn(f)} are
spectrally bounded. For the part concerning the spectral clustering at the unity see the proof of the
second item of Theorems 8.4 and 8.5. •

Finally, we observe that if the assumption of Corollary 5.1 is fulfilled, then we have a superlinear
PCG method (see [3] and Appendix A).

5.2.2 The LPO sequences related to {Φn(·)}

The behavior of the eigenvalues of Φn(f) is studied in this section. If Un is completely generic
not very much can be said, but under the assumption that Un is the unitary matrix related to one
of the special trigonometric algebras previously introduced (circulants, ω-circulants, Hartley class,
sine/cosine matrix algebras), a richer analysis can be carried out.

Let x(n)
j be the j-th grid point of one of the considered trigonometric algebras (see the beginning

of Section 5), then we define the operators ψn (from the continuous (2π)-periodic functions on I on
itself) in a implicit way as follows: calling uj the j-th column of the unitary matrix Un, we have

(ψn(f))(x
(n)
j ) = uHj Tn(f)uj , f ∈ Cp(I).

From the definition, it is obvious that (ψn(f))(x
(n)
j ) is the j-th eigenvalue of the Frobenius optimal

approximation Φn(f) of Tn(f) according to the first item of Lemma 5.1.
The following lemma holds.

Lemma 5.3 ψn(·) is a linear positive operator and Φn(·) is also a LPO in the matrix sense (see
Definition 5.2).
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Proof The linearity of both the operators follows from the second item of Lemma 5.1. Fix f ≥ 0, then
Tn(f) is nonnegative definite by the first item of Theorem 2.2 and therefore every Rayleigh quotient
is nonnegative and particularly the one giving rise to (ψn(f))(x

(n)
j ). Moreover, the latter implies that

also Φn(f) is nonnegative definite (see Lemma 5.2). •

Now we resort to the Korovkin Theorem to establish whether the eigenvalues of {Φn(f)} tend to
{{f(x

(n)
j )}} for n going to infinity.

On the other hand, this fact is implied by the asymptotic discrete convergence of {ψn(g)} to g
(see (37)) for the three test functions reported in the Korovkin Theorem 5.4.

Theorem 5.8 Let f be a continuous (2π)-periodic function and let {Φn(f)} the sequence of Frobe-
nius optimal approximations of Tn(f) in the sequence of algebras {An} with quasi-uniform grid
sequence {Wn} in I = [−π, π). If ψn(g) = g + εn(g) with εn going uniformly to zero on the grid
sequence {Wn} in the sense of equation (37), then {Φn(f)} converges to {Tn(f)} in the weak sense.

Proof From identity d in Lemma 5.1, for any polynomial p we have

0 ≤ ‖Tn(p)− Φn(p)‖2F = ‖Tn(p)‖2F − ‖Φn(p)‖2F .

By Theorem 5.5, from the asymptotic discrete convergence of {ψn(g)} to g on the test functions we
obtain the same convergence property for any polynomial p of fixed degree, i.e., ψn(p) = p + εn(p)
on the grids Wn and

lim
n→∞

‖εn(p)‖∞,Wn = lim
n→∞

sup
x∈Wn

|(εn(p))(x)| = 0. (43)

Therefore

‖Tn(p)− Φn(p)‖2F = ‖Tn(p)‖2F −
n−1∑
j=0

|p(x(n)
j ) + εn(p)(x

(n)
j )|2.

Now, from the definition of the Frobenius norm, we find that

‖Tn(p)‖2F =
n∑
j=1

σ2
j (Tn(p)).

The preceding relation is very interesting because, after division by n, it coincides with the sum
appearing in the left-hand side of the famous Szegö relation (see (73) and Definition 9.1 with F (z) =
z2 if z ∈ ER(p)). Then, by applying the quoted result, we find

‖Tn(p)‖2F = n · 1

2π

∫ π

−π
|p|2 + o(n). (44)

In addition, by exploiting the convergence of {ψn(p)} to p i.e. relation (43), we conclude that

n−1∑
j=0

|p(x(n)
j ) + εn(p)(x

(n)
j )|2 =

n−1∑
j=0

|p|2(x
(n)
j ) + o(n). (45)

Thus, by virtue of the quasi-uniform distribution of grid points Wn = {x(n)
k }, we infer

n−1∑
j=0

|p(x(n)
j ) + εn(p)(x

(n)
j )|2 = n · 1

2π

∫ π

−π
|p|2 + o(n). (46)
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The combination of equations (44) and (46), in the light of the powerful Theorem 8.5, allows one to
state the weak convergence of {Φn(p)} to {Tn(p)}. But, by noticing that this is the assumption of the
second Weierstrass type Theorem 5.7, the theorem is proved. •

Theorem 5.9 Under the same assumption of the previous Theorem 5.8, if ‖εn(g)‖∞,Wn = O(n−1)
for the three test functions g and if the grid points {Wn} of the algebra are uniformly distributed in
I = [−π, π) in the sense of Definition 5.1, then {Φn(f)} converges to {Tn(f)} in the strong sense.

Proof We follow the same proof given in Theorem 5.8. In particular, in all the equations (44), (45)
and (46) the terms o(n) are replaced by terms of constant order. In equation (44), we notice that for
all the polynomials p we have ‖Tn(f‖2F − n

2π

∫ π
−π |p|2 = O(1) (see also [100]). For the relation (45),

the hypothesis on εn(g) with g test function and Theorem 5.5 are used while, for equation (46), we
need the uniform distribution instead of the quasi-uniform one. Finally, Theorem 8.5 and the first
Weierstrass type Theorem 5.6 are invoked. •

Finally we just recall these Korovkin style results are very general and indeed the weak conver-
gence of {Tn(f)− Φn(f)} can be proven for f ∈ L1(I) just by verifying the Korovkin test.

5.2.3 Verification of the Korovkin test

We provide a verification of the Korovkin test in the case of the circulant algebra whose grid sequence
{Wn} is uniform since it is perfectly equispaced (Wn =

{
x

(n)
k = 2kπ

n : k = 0, . . . , n− 1
}

).
Consider the assumptions of Theorems 5.8 and 5.9: we have only to prove that

lim
n→∞

sup
x∈Wn

|(ψn(g))(x)− g(x)| = 0, ∀g ∈ T = {1, e±ix}

by estimating the convergence rate to zero. For g = 1, we have Tn(g) = In and therefore Φn(g) = In
so that ψn(1) ≡ 1 and there is nothing to prove; for g(x) = e−ix we deduce that Tn(g) is a Jordan
block ((Tn(g))j,k = aj−k = 1 if j− k = −1 and zero otherwise): therefore by formula (40), we have

Φn(g) = (1− 1/n)Z1 = (1− 1/n)



0 1 0 . . . 0
...

. . . . . . . . .
...

...
. . . . . . 0

0
. . . 1

1 0 . . . . . . 0


,

where Z1 is the generator of the circulant algebra. The eigenvalues of Z1 have been explicitly com-
puted in Subsection 4.1.1 and consequently

(ψn(g))(x
(n)
j ) = (1− 1/n)e−ix

(n)
j

so that
sup
x∈Wn

|(ψn(g))(x)− g(x)| = n−1.

Now Tn(eix}) = THn (e−ix} and therefore by the third item of Lemma 5.1, we have Φn(eix) =
ΦH
n (e−ix) so that the eigenvalues of Φn(eix) are the conjugated of those of ΦH

n (e−ix}. Consequently
for for g(x) = eix we have

(ψn(g))(x
(n)
j ) = (1− 1/n)eix

(n)
j
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n τn,nat Cn,nat Φn,τ Φn,C
32 3 (3) 4 (5) 3 (3) 4 (5)
64 3 (3) 4 (5) 3 (3) 4 (5)
128 3 (3) 4 (5) 3 (3) 4 (5)
256 3 (3) 4 (4) 3 (3) 4 (4)
512 3 (3) 4 (4) 3 (3) 4 (4)

Table 14: Number of PCG steps in the case of fα with α = 5 + π2/6.

so that
sup
x∈Wn

|(ψn(g))(x)− g(x)| = n−1.

Therefore by Theorem 5.9, {Φn(f)} converges to {Tn(f)} in the strong sense i.e. {Tn(f)− Φn(f)}
is properly clustered at zero: now if Tn(f) is uniformly bounded with its inverse (=the convex hull
of its range does not contain zero), then by Corollary 5.1, {Φ−1

n (f)Tn(f)} is clustered at one and is
bounded with its inverse: by Theorem 8.3, the combination of the latter three properties means that
the considered PCG is optimal and the quality of the convergence is superlinear.

The same very elementary computations have been worked out (see [71, 32]) for all the circulant-
like algebras (Hartley and ω-circulants) and for all the 8 cosine/sine matrix algebras at the beginning
of Section 5: the conclusions are identical. All the related Frobenius optimal approximations are
superlinear preconditioners for well-conditioned Toeplitz matrices Tn(f) (for ill-conditioned Toeplitz
sequences we lose this good approximation property as established in [94, 31] and as observed in
Subsection 6.3.1).

Moreover, if a new sequence of algebras will appear in the literature, it is enough to identify its
grid sequence {Wn} and to perform the same elementary Korovkin test.

5.2.4 Numerical experiments

Here we discuss few numerical experiments where we consider two kind of test functions: fα =
x2/2 + α and hα = ((x/π)2 − 1)2 + α. Moreover we consider two different types of data vectors
b. The first is made up by all ones. The second is a randomly generated one. In all the subsequent
tables the numbers between parentheses are related to the number of PCG iterations when a random
data vector b is considered. The stopping criterion is given by the relative two-norm of the residual
less than 10−7. All the experiments are done by using MATLAB.

For the choice of the preconditioners we considered two algebras, namely the τ class (trigonomet-
ric algebra related to the transform DST I [10]) and the circulants. In the PCG algorithm we use the
natural preconditioners or Strang type Cn,nat and τn,nat whose related approximation process is given
by the Fourier polynomial of degree n/2 and n respectively, and the Frobenius optimal precondition-
ers Φn,C and Φn,τ whose approximation processes have the same asymptotical behavior as the Cesaro
sum.

Concerning the results displayed in Tables 14, 15 and 16 two remarks are needed. First we notice
that the number of iterations for the τ preconditioners is generally slightly less than in the circulant
case. This agrees with the results of [68] where it is proved that the border conditions are slightly
heavier in the circulant case: more precisely, if p is an even real valued polynomial of fixed degree
and if we consider the quantities rank(Tn(p) − An(p)) (see (33)) when An is either the circulant or
the τ algebra, then we observe a smaller number in τ case. Moreover, for an even polynomial of fixed
degree,An(p) coincides with τn,nat in the case whereAn is τ algebra andAn(p) coincides with Cn,nat
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n τn,nat Cn,nat Φn,τ Φn,C
32 3 (3) 3 (4) 3 (3) 4 (5)
64 3 (3) 3 (4) 3 (3) 4 (5)
128 3 (3) 3 (4) 3 (3) 3 (4)
256 3 (3) 3 (4) 3 (3) 3 (4)
512 2 (3) 3 (4) 3 (3) 3 (4)

Table 15: Number of PCG steps in the case of hα with α = 1.

n τn,nat Cn,nat Φn,τ Φn,C
32 3 (3) 4 (5) 3 (4) 7 (10)
64 3 (3) 4 (5) 3 (4) 7 (10)
128 3 (3) 4 (5) 3 (4) 6 (9)
256 3 (3) 4 (5) 3 (4) 5 (8)
512 2 (3) 3 (4) 3 (3) 5 (6)

Table 16: Number of PCG steps in the case of hα with α = 0.01.

in the case where An is circulant algebra. Secondly if we observe the behavior of the precondition-
ers τn,nat and Φn,τ we conclude that their behavior is substantially identical in particular for bigger
dimensions. Nevertheless they are characterized by two very different approximation processes, one
substantially faster than the other. This insensitivity to the convergence rate of the approximation
process fully agrees with the analysis provided in [68]. The same remark holds true if we analyze the
behavior of the preconditioners Cn,nat and Φn,C .

On the other hand, the convergence speed of the associated approximation process plays a crucial
role when the generating function of the Toeplitz matrix has zeros (see [31]).

6 The multilevel case

We consider the solution of large linear systems where the coefficient matrices have a multilevel
Toeplitz structure. We recall that this kind of matrices arise in different applications in several fields
(see e.g. [17, 21, 37]) for which efficient strategies for the solution of very large systems are often
required: among them, we recall Markov chains, some integral equations in imaging and the numerical
solution by means of finite differences of certain PDEs.

In this section we study the generalization of the preconditioning techniques introduced in the
preceding section in the multilevel case. We stress that what is generalizable in the two-level context
is generalizable to the d-level context with d > 2: therefore for the sake of notational simplicity we
provide an informal discussion in the two level case (often called BTTB=block Toeplitz with Toeplitz
blocks) and then we state the results in full generality.

Let us consider the solution of a linear system

Tn1,n2x = b

in the case where Tn1,n2 has a block Toeplitz structure, i.e.,

Tn,m =


A0 A−1 · · · A−(n1−1)

A1
. . . . . .

...
...

. . . . . . A−1
An1−1 · · · A1 A0

 (47)
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with

Aj =


aj,0 aj,−1 · · · aj,−(n2−1)

aj,1
. . . . . .

...
...

. . . . . . aj,−1
aj,n2−1 · · · aj,1 aj,0

 . (48)

If (j, k) indicates the block in the matrix Tn1,n2 and (p, q) the position of the entry in the block, then
(Tn1,n2)(j,k)(p,q) = ak−j,q−p for j, k = 0, 1, . . . , n1 − 1, p, q = 0, 1, . . . , n2 − 1.

As in the one dimensional setting, we consider the case where {Tn1,n2}, n1, n2 ∈ N, is related
to the Fourier coefficients ak,q of an assigned (2π)-periodic function f : I2 → C, I = [−π, π),
periodically extended on R2, that is,

ak,q =
1

4π2

∫ π

−π

∫ π

−π
f(x1, x2)e−i(kx1+qx2)dx1dx2, i2 = −1.

It is a simple matter to verify that Tn1,n2(f) is Hermitian if the function f is real valued and it real
block symmetric with symmetric blocks (also called quadrantally symmetric) if the function f is real
valued with f(x1, x2) = f(|x1|, |x2|) for every (x1, x2) ∈ I2.

Now we present an example of a two-level Toeplitz problem and we explain the extensions of
PCG techniques in Section 4 to the case of a given two-level structure.

We consider the matrix Tn1,n2(f) with f(x1, x2) = x2
1 + x2

2 which appears in the Sinc Galerkin
discretization of the Poisson equation on a rectangle [52]; this matrix is dense and can be written as
Tn1(h) ⊗ In2 + In1 ⊗ Tn2(h) with h(x) = x2 and where the Fourier coefficients of h are such that
a0 = π3

2 and ak = 2(−1)k

k2
, k ∈ Z.

The function f is nonnegative with infI2 f = 0 and supI2 f = 2π2: therefore the eigenvalues
of Tn1,n2(f) belong to the interval (0, 2π2) (see item a in Theorem 6.1). Moreover, as n1 and n2

tend to infinity, the minimal eigenvalue tends to 0 and the maximal one tends to 2π2 by item b of
Theorem 6.1: from this we know that the sequence {Tn1,n2(f)} is asymptotically ill-conditioned. It
is possible (in analogy to the scalar case) to have a precise estimate of the asymptotic growth of the
spectral condition number: since f has a zero of order 2, by item c of Theorem 6.1, we deduce that
the minimal eigenvalue goes to zero as ν−2 with n1 ∼ n2 ∼ ν so that the asymptotic ill-conditioning
is of order ν2.

The main idea of band Toeplitz preconditioning is to find a simpler function g (e.g. a trigonometric
polynomial which generates a band Toeplitz sequence) which erases the zeros of f and such that f/g

is bounded: as observed in Subsection 4.3, the smaller is the ratio
(

inf
I2
f/g

)−1

sup
I2

f/g the faster is

the associated PCG converges.
In this case a good choice is g(x1, x2) = 4 sin2(x1/2) + 4 sin2(x2/2) whose Toeplitz matrix is

the 2D discrete Laplace operator

Tn1,n2 (g) = [−1, 2,−1]n1 ⊗ In2 + In1 ⊗ [−1, 2,−1]n2

=


B −In2

−In2

. . . . . .

. . . . . . −In2
−In2 B

 ,
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with

B = Tn2(4− 2 cos(x)) =


4 −1

−1
. . . . . .
. . . . . . −1

−1 4

 .
The function f/g has minimum equal to 1 and maximum given by π2/2: therefore, by Theorem
6.2, we infer that all the eigenvalues lie in (1, π2/2), are equally distributed in this interval, and the
extreme eigenvalues converge to 1 and to π2/2 respectively.

Therefore, by Theorem 8.3, we deduce that the associated PCG is optimal and, by the equal
distribution, the convergence estimates given in that theorem are tight.

We observe that matrix algebra preconditioners (see e.g. [21]) do not ensure a condition number
bounded by a constant independent of n1 and n2 due to the negative results (see [84, 77, 53]) briefly
discussed in Subsection 6.3.

In conclusion, the proposed preconditioner has the following features:

1) Tn1,n2(g) is a band block Toeplitz matrix having band Toeplitz blocks.

2) The bandwidth of each block, as well as the block bandwidth of Tn1,n2(g) is independent of n1

and n2.

3) Tn1,n2(g) is positive definite.

4) T−1/2
n1,n2(g)Tn1,n2(f)T

−1/2
n1,n2(g) has a condition number independent of n1 and n2.

Every step of the PCG method requires the solution of a system of the type Tn1,n2(g)y = b,
which can be obtained by a band solver (see e.g. [36]) adapted to block matrices: more in detail,
we can use block Gaussian elimination performing O(n1n

3
2) arithmetic ops or equivalently a scalar

band Gaussian elimination with cost ofO(n1n
3
2) arithmetic ops. This technique does not use the band

structure of the blocks; actually, during the Gaussian algorithm, we lose the band Toeplitz structure of
the inner blocks. An alternative strategy to solve the former linear system uses special decompositions
in suitable block matrix algebras [61]. However the more promising idea is the use of an algebraic
multigrid method; in [35] (by generalizing some results in [39, 40]), it is shown that, in practice,
the arithmetic cost of the solution of our double banded system is of order of n1n2, that is, linear
with respect to the dimension of the involved matrix. Moreover the parallel cost is of O(log(n1n2))
parallel steps. To conclude, since the product of Tn1,n2(f) by a vector can be calculated by means
of bivariate FFTs performing O(n1n2 log(n1n2)) arithmetic ops and O(log(n1n2)) parallel steps
(a generalization of the embedding technique shown in Subsection 4.1.1), we have that the global
sequential and parallel costs of the considered PCG method is of O(n1n2 log(n1n2)) arithmetic ops
and O(log(n1n2)) parallel steps, respectively.

More generally, Algorithm 4.1 can be extended to the block case with f(x1, x2) ≥ 0 a.e. on I2:

Algorithm 6(f ≥ 0, zeros=“algebraic curves”)

Input. The zeros of f , Tn1,n2(f), b.

Step 1. Find the bivariate trigonometric polynomial g(x1, x2) such that 0 < r < f
g < R <∞ a.e..

Step 2. Apply the PCG method to the system Tn1,n2(f)x = b with Tn1,n2(g) as preconditioner.
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At step 2. there is a difficulty. In order to find g such that 0 < r < f
g < R < ∞ a.e., it is

necessary that L = {(x, y) : f(x, y) = 0} can be expressed as a finite collection of algebraic curves
(with respect to trigonometric polynomials). Otherwise the problem has no solution. In the special
case where L is a collection of isolated points and f is smooth enough, by using Taylor’s series, it is
possible to construct explicitly the polynomial g (see [61]). In other situations also an approximate
solution is feasible: according to the boundary layer effect (see [79]), if the distance between L and its
approximation is O(n−1

1 +n−1
2 ) and the order of the zeros is correct, then we have no deterioration of

the performances of the approximate preconditioner with respect to the theoretical one (see [79, 54]).
In the next subsections, we give more connections between the spectral properties of Tn(f) and

the function f and we discuss preconditioning strategies along the same lines followed for scalar
Toeplitz matrices.

6.1 Generalizable results

Let f be a d variate (2π)-periodic real valued (Lebesgue) integrable function, defined over the hyper-
cube Id, with I = [−π, π) and d ≥ 1. From the Fourier coefficients of f

aj =
1

(2π)d

∫
Id
f(x)e−i(j,x) dx, i2 = −1, j = (j1, . . . , jd) ∈ Zd (49)

with x = (x1, . . . , xd), (j, x) =
∑d
k=1 jkxk, n = (n1, . . . , nd) and N(n) = n1 · · ·nd, we can

build the sequence of Toeplitz matrices {Tn(f)}, where Tn(f) ={aj−i}ni,j=eT ∈ MN(n)(C), eT =

(1, . . . , 1) ∈ Nd is said to be the Toeplitz matrix of order n generated by f (see [95]). Furthermore,
throughout these notes when we write n → ∞ with n = (n1, . . . , nd) being a multi-index, we mean
that min1≤j≤d nj →∞.

Very shortly, we can say that every spectral property of Toeplitz sequences {Tn(f)}, n = (n1, . . . , nd)
and of preconditioned Toeplitz sequences {T−1

n (g)Tn(f)}with g nonnegative and not identically zero,
stated in Sections 2 and 3 for the one level case can be generalized to the d-level setting with d ≥ 2.

Concerning Toeplitz sequences the following result is true.

Theorem 6.1 Let f be integrable and real valued over Id, I = [−π, π). Let n = (n1, . . . , nd),
N(n) = n1 · · ·nd, and let us order the eigenvalues λ(n)

j of Tn(f) in nondecreasing way. Let mf and
Mf be the essential infimum and the essential supremum of f ; the following relations hold.

a. Tn(f) has eigenvalues in the open set (mf ,Mf ) if mf < Mf and it coincides with mfIN(n) if
mf = Mf .

b. The extreme eigenvalues of Tn(f) are such that lim
n→∞

λ
(n)
1 = mf , lim

n→∞
λ(n)
n

= Mf , where n→∞ means that every nj , j = 1, . . . , d, diverges to infinity.

c. If f −mf has essential zeros that can be expressed as a finite collection of smooth k-dimensional
manifold with k ≤ d− 1 with maximal order α and if nj ∼ ν, j = 1, . . . , d, then λ(n)

1 −mf ∼
ν−α.

d. Let Cblimits = {F : R → R, F continuos and with finite limits at ± ∞}; then for every
F ∈ Cblimits we have

lim
n→∞

1

N(n)

N(n)∑
j=1

F
(
λ

(n)
j

)
=

1

(2π)d

∫
Id
F (f(x)) dx. (50)
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Proof. All the statements can be proven as in the unilevel case (with minor changes). We explicitly
give a proof of parts a and b by using a different technique: more precisely, for part b in place of
using the Szegö distributional result we provide a direct proof (from [61]) in the case where f is
continuous. We restrict the attention to the two-level case for notational simplicity, the d-level case
being analogous.
Since f is real valued Tn1,n2(f) is Hermitian and consequently its eigenvalues are real. To prove item
a we consider the quadratic form uHTn1,n2(f)u, where u ∈ Cn1n2 is normalized with respect to the
Euclidean norm, i.e., uHu = 1. By direct computation (see the beginning of Theorem 2.2), we arrive
at the following relation:

uHTn1,n2(f)u =
1

4π2

∫
I2
f(x1, x2)

∣∣∣∣∣∣
n1−1∑
j=0

n2−1∑
p=0

(uj)pe
i(jx1+px2)

∣∣∣∣∣∣
2

dx1dx2,

where u = (u0, . . . ,un1−1), uj ∈ Cn2 . Therefore by the mean integral theorem we find that

uHTn1,n2(f)u = f(η, ν)
1

4π2

∫
I2

∣∣∣∣∣∣
n1−1∑
j=0

n2−1∑
p=0

(uj)pe
i(jx1+qx2)

∣∣∣∣∣∣
2

dx1dx2

= f(η, ν)uHu = f(η, ν).

Consequently uHTn1,n2(f)u ∈ [mf ,Mf ]. Now if mf = Mf , then Tn1,n2(f) = mfIn1n2 ; otherwise
the proof that λ(n1,n2)

j ∈ (mf ,Mf ) can be done in the same way as in Theorem 2.2 since a nonzero
polynomial ∣∣∣∣∣∣

n1−1∑
j=0

n2−1∑
p=0

(uj)pe
i(jx1+qx2)

∣∣∣∣∣∣
2

can vanish only on a zero measure set in the two variate case too.

Now we have to prove that the smallest eigenvalue tends to mf and the greatest one tends to
Mf . Since Tn1,n2(f) is a leading submatrix of TN1,N2(f), n1 ≤ N1, n2 ≤ N2 then λ

(n1,n2)
1 is

a nondecreasing sequence and consequently lim
n1,n2→∞

λ
(n1,n2)
1 = m ≥ mf . By contradiction we

suppose that m > mf and therefore, for any θ > 0 such that mf + θ < m, the matrix Tn1,n2(f) −
(mf +θ)I is positive definite. In other words, for any n1n2–dimensional and unitary vector u, setting
z1 = eix1 , z2 = eix2 , we have

0 < uH(Tn1,n2(f)− (mf + θ)u =
1

4π2

∫
I2
|p(z1, z2)|2(f(x1, x2)− (mf + θ)dx1dx2

where p(z1, z2) is the bivariate polynomial associated with u.
Let Aθ = {(x1, x2) ∈ I2 : f(x1, x2) − (mf + θ) < 0}; we observe that m(Aθ) > 0, otherwise, if
m(Aθ) = 0 then it follows that mf + θ ≤essinf f = mf which is a contradiction. Now we consider
w0 = (x0

1, x
0
2) in the interior part of I2 such that m(Aθ ∩J(w0, δ)) > 0, J(w0, δ) being the open ball

of center w0 and radius δ, and we define the continuous function h(x1, x2) = hδ(x1−x0
1)hδ(x2−x0

2)
where

hδ(s) =

{
1− |s|δ if |s| ≤ δ,
0 otherwise

By the approximation Theorem 1.9 (c) of [37], for any positive ε > 0 there exist two nonnegative
trigonometric polynomials s(x1), t(x2) such that ‖hδ(x1 − x0

1) − s(x1)‖∞ < ε, ‖hδ(x2 − x0
2) −
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t(x2)‖∞ < ε, where ‖h‖∞ is defined as supx |h(x)|. Moreover, by the representation Theorem 1.1.2
of [37], any nonnegative trigonometric polynomial can be seen as the square of the absolute value of
a complex ordinary polynomial. Thus, s(x1) = |α1(eix1)|2, t(x2) = |α2(eix2)|2‖ and if u∗ is the
vector of Cn∗1n∗2 related to α∗ = α1(eix1)α2(eix2), setting θ(x1, x2) = f(x1, x2)− (mf + θ), then we
have

0 < 4π2u∗H(Tn1,n2(f)− (mf + θ))u∗ =

≤ εC +

∫
Aθ∩J(w0,δ)

h(x1, x2)θ(x1, x2)dx1dx2 = εC + k(θ),

where C is a positive constant; whence it follows

lim
ε→0

εC + k(θ) =

∫
Q
h(x1, x2)θ(x1, x2)dx1dx2 < 0

which is a contradiction. •

Theorem 6.2 Let f and g be integrable functions over Id and let us suppose that g is nonnegative
and not identically zero. Let n = (n1, . . . , n2), N(n) = n1 · · ·nd, and let us order the eigenvalues
λ

(n)
j of Gn = T−1

n (g)Tn(f) in nondecreasing way and let r and R be the essential infimum and the
essential supremum of f/g ; the following relations hold.

a. Gn has eigenvalues in the open set (r,R) if r < R and it coincides with rIN(n) if r = R.

b. If m{x ∈ Id : g(x) = 0} = 0 then
∞⋃
n=e

⋃
j≤N(n)

λ
(n)
j is dense in ER(f/g) where ER(f/g) is the

essential range of f/g (we recall that y ∈ ER(h) if and only if for any ε > 0 the Lebesgue
measure of the set {x ∈ Id : h(x) ∈ (y − ε, y + ε)} is positive).

c. The extreme eigenvalues of Gn are such that lim
n→∞

λ
(n)
1 = r, lim

n→∞
λ(n)
n = R.

d. Let Cblimits = {F : R → R, F continuos and with finite limits at ± ∞}; then for every
F ∈ Cblimits we have

lim
n→∞

1

N(n)

N(n)∑
j=1

F
(
λ

(n)
j

)
=

1

(2π)d

∫
Id
F (f(x)/g(x)) dx. (51)

The latter result gives a complete picture for the multilevel band Toeplitz preconditioning. Now
we briefly consider the multilevel generalization of the Frobenius optimal approximation in matrix
algebras. We consider again (unitary) matrix algebras AN as in (31) with the right dimension N =
N(n), n = (n1, . . . , nd). A special case of interest is the case of multilevel matrix algebras where
the unitary matrix Un is of the form U

(1)
n1 ⊗ · · · ⊗ U

(d)
n1 where typically U (j)

ν is one of the unitary
transforms related to ν log(ν) algorithms considered at the beginning of in Section 5. As an example,
for d = 2, U (1)

n1 = Fn1 , and U (2)
n2 = Hn2 , we have a two-level matrix algebra whose external structure

is circulant and whose internal structure is Hartley.
The grids WN = {x(N)

1 , . . . , x
(N)
N } now have size N = N(n) and, in the case of multilevel

algebras, are of the form
Wn = W (1)

n1
× · · · ×W (d)

nd
.
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We say a grid sequence {WN} is quasi-uniformly distributed on I = [−π, π)d if for every trigono-
metric polynomial p

lim
n→∞

1

N

N∑
j=1

p
(
x

(N)
j

)
=

1

(2π)d

∫
Id
p(x)dx.

The uniformity amounts to ask that the error∣∣∣∣∣∣ 1

N

N∑
j=1

p
(
x

(N)
j

)
− 1

(2π)d

∫
Id
p(x)dx

∣∣∣∣∣∣ = O(N−1).

We notice that for d = 1 the new concepts coincide with those in Definition 5.1.
The good news is that the quasi-uniformity of every {W (j)

ν } implies the quasi-uniformity of
{Wn}, n = (n1, . . . , nd), and the uniformity of every {W (j)

ν } implies the uniformity of {Wn},
n = (n1, . . . , nd).

With these changes, all the definitions and results stated in Subsection 5.2 have a natural general-
ization. More precisely, the definition of the Frobenius optimal approximation is the same as in (38)
and (39) and the statements and proof of Lemmas 5.1, 5.2, 5.3, Corollary 5.1, Theorems 5.6, 5.7, 5.8,
and 5.9 are practically unchanged. Moreover, the first item of Lemmas 5.1 can be completed as fol-
lows: ifAn is a multilevel algebra and if the symbol is separable, i.e., f(x) = f1(x1)f2(x2) · · · fd(xd)
then

Φn(f) = Φn1(f1)⊗ Φn2(f2)⊗ · · · ⊗ Φnd(fd); (52)

we observe that the latter property can be proved by using the representation formula contained in the
part a of Lemma 5.1 and moreover that it is very useful when dealing with the multilevel Korovkin
test since the functions in the Korovkin set T are all separable. The problem with the Korovkin theory
is the verifications of the assumptions of the d-level version of Theorem 5.9 as discussed in the next
subsection.

6.2 Not generalizable results

We report explicitly the multilevel version of Theorems 5.8 and 5.9, since we have to make some
reasoning regarding its assumptions.

Theorem 6.3 Let f be a continuous (2π)-periodic function, n = (n1, . . . , nd), N = N(n) =
n1 · · ·nd, and let {Φn(f)} the sequence of Frobenius optimal approximations of Tn(f) in the se-
quence of algebras {An} with quasi-uniform grid sequence {WN} in Id = [−π, π)d. If ψn(g) =
g + εn(g) with εn going uniformly to zero on the grid sequence {Wn} in the sense of equation (37),
then {Φn(f)} converges to {Tn(f)} in the weak sense.

Theorem 6.4 Under the same assumption of the previous Theorem 6.3, if ‖εn(g)‖∞,WN
= O(N−1),

N = N(n), for the three test functions g and if the grid points {WN} of the algebra are uniformly
distributed in Id = [−π, π)d in the sense of Definition 5.1, then {Φn(f)} converges to {Tn(f)} in the
strong sense.

Essentially, we observe that the uniformity of the grid sequence {WN} is guaranteed when we
consider multilevel trigonometric algebras. Therefore the only thing which is not generalizable to the
d-level version is the convergence result on the Korovkin test.
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More precisely we cannot expect ‖εn(g)‖∞,WN
= O(N−1), N = N(n), and indeed for all the

known matrix algebras of trigonometric and circulant-like type we find

‖εn(g)‖∞,Wn = O

 d∑
j=1

n−1
j

 ,
which is enough for the weak convergence of {Φn(f)} to {Tn(f)} but is is not enough for the strong
convergence.

For having an evidence of this fact consider the case of d = 2 and the test function g(x) = eix1

whose Toeplitz matrix is given by
Tn(g) = Z1 ⊗ In2

with Z1 the generator of size n1 of the circulant algebra. By (52) we deduce Φn(g) = Φn1(eix1) ⊗
Φn2(1) and therefore, by exploiting the computation in Subsection 5.2.3, we have

Φn(g) = (1− 1/n1)Z1 ⊗ In2

whose eigenvalues are (see again Subsection 5.2.3)

(ψn(g))(x
(n)
j ) = (1− 1/n1)e−ix

(n)
j , multiplicity n2

so that
sup
x∈Wn

|(ψn(g))(x)− g(x)| = n−1
1

which is notO(N−1) sinceN = n1n2. In conclusion, all the assumptions of Theorem 6.3 are fulfilled
while concerning Theorem 6.4 the hypothesis regarding the Korovkin test is not satisfied.

6.3 Advanced questions

We start by commenting the negative result contained in the last subsection: by using the Korovkin
theory it is not possible to prove the proper clustering at the unity of the preconditioned matrices
when using the Frobenius optimal approximation. Moreover, by making a more accurate analysis we
observe that the number of outliers of {Tn(f)− Φn(f)} can be bounded by cN(n)(

∑d
j=1 n

−1
j ) with

c pure positive constant depending on the function f and on the sequence of algebras. This fact is
confirmed in the numerical experiments where a number of outliers growing as N(n)

(∑d
j=1 n

−1
j

)
can be observed.

The bad news is that this result, which is not satisfactory for d ≥ 2, is the best we can obtain by
using unitary algebras as stated in the following proposition (for these results see [84, 77, 85]).

Proposition 6.1 If d > 1, n = (n1, · · · , nd) and N = n1 · · ·nd, then for every sequence of alge-
bras A = {AN} with unitary transforms there exist infinitely many linearly independent d-variate
trigonometric polynomials (and nonpolynomial functions) f such that for every {PN} with PN ∈ AN
we observe that {Tn(f) − PN} is not properly clustered at zero in the sense of the singular values.
Moreover the number of outliers grows at least as cN(n)(

∑d
j=1 n

−1
j ) with c > 0 depending on f and

on A.

As a consequence, we cannot have a proper clustering at the unity of {P−1
N Tn(f)} and therefore

{PN} cannot be a superlinear preconditioning sequence for {Tn(f)}. Moreover, the results provided
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by the Frobenius optimal approach are the best we can obtain for well conditioned Toeplitz sequence
when using matrix algebras preconditioners.

This fact is enforced by recent results (see [53]) where it is proven that the search for essentially
spectrally equivalent (up to a constant number of diverging eigenvalues) preconditioners cannot be
successful in general (at least in the multilevel circulant and multilevel τ cases) when considering
simple nonnegative polynomial symbols f with zeros. Here Tn(f) is positive definite and therefore
we restrict our attention to positive definite preconditioners.

More precisely the following statement is true: if {P−1
N Tn(f)} is spectrally bounded from below

by a positive constant independent of n, then infinitely many eigenvalues of {P−1
N Tn(f)} tends to

infinity as n→∞; conversely, if {P−1
N Tn(f)} is spectrally bounded from above by a positive constant

independent of n, then infinitely many eigenvalues of {P−1
N Tn(f)} tends to zero as n→∞.

By taking into account the analysis in Subsection 6.1, we deduce that the aforementioned negative
results represent an invitation for the research community to spend more attention on multilevel band
Toeplitz preconditioning and on multigrid/multilevel methods which have been proven to be optimal
even in the ill-conditioned multilevel case.

6.3.1 A two-level numerical evidence

We consider Example 5 in [50] where the two-level Toeplitz matrix Tn1,n2(f) is characterized by
n1 = n2 = ν and by the two-dimensional mask of the nonzero Fourier coefficients

[aj,k]−2≤j,k≤2 = (−1)

 0.01 0.02 0.04 0.02 0.01
0.02 0.04 0.12 0.04 0.02
0.04 0.12 −1 0.12 0.04
0.02 0.04 0.12 0.04 0.02
0.01 0.02 0.04 0.02 0.01

 . (53)

We recall that masks of this nature arise in the discretization of constant-coefficients elliptic PDEs.
When using the two-level circulant algebra, we observe that the Strang two-level preconditioner Cν,ν
is singular for this problem (see e.g. [20]): therefore in [50], in order to perform the preconditioning
properly, Cν,ν is slightly modified by replacing the unique zero eigenvalue with the smallest nonzero
eigenvalue of Cν,ν .
In [50, 19], both the the modified Strang preconditioner and the Frobenius optimal approximation
have been used and in both the cases a weak clustering at the unity for the preconditioned matrices is
observed (according to Theorem 6.3). However, the number of outliers diverges to infinity as ν when
ν tends to infinity (according to Proposition 6.1). Moreover, for the Frobenius optimal preconditioner,
the condition numbers of Tν,ν(f) and Φ−1

ν,ν(f)Tν,ν(f) increase at the rate of O(ν2) and O(ν), respec-
tively, with the resulting cost of O(ν5/2 log(ν)) arithmetic ops for the PCG with Frobenius optimal
preconditioning. Similar results can be observed when the incomplete Cholesky factorization (see
[26, 38, 48]) is used.

We recall that, because of the doubly band structure of Tν,ν(f), we require O(ν4) arithmetic ops
if we use of band solver.

Now we describe how to construct the generating function g of the preconditioner of Toeplitz band
type according to the results in Section 6.1.

By using the information in (53) we find that

Tν,ν(f) = Iν ⊗B +H ⊗ C +K ⊗D,

where

B = pentadiagν [−0.04,−0.12, 1,−0.12,−0.04],
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C = pentadiagν [−0.02,−0.04,−0.12,−0.04,−0.02],

D = pentadiagν [−0.01,−0.02,−0.04,−0.02,−0.01],

H = tridiagν [1, 0, 1],

K = pentadiagν [1, 0, 0, 0, 1].

The related bivariate generating function is

f(x1, x2) = 1− 0.24 cos(x1)− 0.08 cos(2x1)− 2 cos(x2)[0.12
+0.08 cos(x1) + 0.04 cos(2x1)]− 2 cos(2x2)[0.04
+0.04 cos(x1) + 0.02 cos(2x1)]

which is nonnegative, vanishes in (x1, x2) = (0, 0) and is strictly positive elsewhere. The Hessian of
f calculated in (0, 0) is a diagonal positive definite matrix and, therefore, in view of Theorem 6.2 we
propose two preconditioners generated by two nonnegative functions:

g(1)(x1, x2) = 4− cos(x1)− cos(x2),

g(2)(x1, x2) = 1.28(2− 2 cos(x1)) + 0.72(2− 2 cos(x2));

so the proposed preconditioners are:

P(1) = Tν,ν(g(1)) = 4Iν2 − Iν ⊗H −H ⊗ Iν ,

P(2) = Tν,ν(g(2)) = 4Iν2 − 0.72(Iν ⊗H)− 1.28(H ⊗ Iν).

We have
α1 = inf f/p(1) = 0.16, β1 = sup f/p(1) = 0.64,

α2 = inf f/p(2) = 0.16, β2 = sup f/p(2) = 0.88

and consequently from Theorem 6.2 we expect that the Euclidean condition numbers ofP−1/2
(1) Tν,ν(f)P

−1/2
(1)

and P−1/2
(2) Tν,ν(f)P

−1/2
(2) are bounded by β1/α1 = 4 and β2/α2 = 5.6, respectively.

The following Tables 17 and 18 show the perfect agreement with the theoretical results:

Table 17: Asymptotic eigenvalue behavior with preconditioner P(1)

ν (N(n) = ν2) λmin(P−1
(1) Tν,ν(f)) λmax(P−1

(1) Tν,ν(f))

5 (25) 0.170 0.525
10 (100) 0.163 0.598
15 (225) 0.161 0.618
20 (400) 0.160 0.627

In view of the results of [3] the theoretical convergence rates of the two preconditioned algorithms
are independent of the dimension. Actually, for n = 20 (dimension= 400) we solve the system
Tν,ν(f)x = b, where b is a random vector, by using the preconditioners P(1) and P(2) in the conjugate
gradient algorithm; the reduction of the 2–norm of the error shown by Table 19 confirms perfectly the
theoretical convergence rates:

Therefore, with the two-level Toeplitz preconditioning, we obtain a uniformly bounded condition
number with respect to ν. Moreover, the two preconditioners are not only two-level Toeplitz but they
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Table 18: Asymptotic eigenvalue behavior with preconditioner P(2)

n (N(n) = ν2) λmin(P−1
(2) Tν,ν(f)) λmax(P−1

(2) Tν,ν(f))

5 (25) 0.170 0.547
10 (100) 0.163 0.691
15 (225) 0.161 0.755
20 (400) 0.160 0.786

Table 19: PCG, convergence history with preconditioners P(1) and P(2)

step P(1) P(2)
2 5.304435E − 01 4.233243E − 01
4 5.162726E − 02 1.068652E − 01
6 7.175051E − 03 9.982540E − 03
8 8.065245E − 04 1.661406E − 03
10 9.608787E − 05 2.653328E − 04
12 9.731413E − 06 3.157243E − 05
14 9.384791E − 07 4.131877E − 06
16 9.152440E − 08 3.490431E − 07
18 1.191590E − 08 7.568337E − 08
20 1.337295E − 09 9.549909E − 09

also belong to the two-level τ algebra: as a consequence, the cost of solving a generic linear system
with the preconditioners P(1) and P(2) is of order O(ν2 log(ν)) and therefore the total cost of solving
a system with coefficient matrix Tν,ν(f) is also of order O(ν2 log(ν)). We mention that for this two-
level doubly banded systems with nonnegative generating function an alternative strategy is the use of
multigrid methods (see [39, 35]) that require O(ν2) ops.

7 Conclusions

Essentially, there is one basic message: the matrix theoretic problem of preconditioning has been
translated in the case of structured matrices of shift-invariant type into a function theory problem (here
we have mainly considered Toeplitz matrices but the same holds for several classes of structured and
“locally” structured matrices). Therefore some approximation theory results have been successfully
adapted and used in our context.

Furthermore, the contents of the previous sections can be viewed as a link between two classical
topics (structured linear algebra and approximation theory) in which, by interchanging and interlacing
the point of view, we can simply find new results in both the directions.
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[15] A. Böttcher, S. Grudsky. “Condition numbers of Toeplitz-like matrices”. Talk at AMS-IMS-SIAM
Summer Research Conference, Boulder, Colorado, july 1999.
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8 Appendix A: convergence results for (P)CG methods

We start by recalling that for a sequence of positive definite matrices {An}, typically arising as finite
dimensional approximations of a given operator in infinite dimensions, the notion of sequence of
difficult problems can be written as follows: we assume that the maximal eigenvalue tends to a positive
constant and the minimal eigenvalue λ(n)

1 of An tends to zero as n tends to infinity.
As observed in Section 2, in the Toeplitz case this situation occurs if the symbol is real valued,

nonnegative with one or more essential zeros and with strictly positive essential supremum. A further
class of difficult problems is represented by the Finite Differences (or Finite Elements) approximations
of elliptic differential operators with homogeneous boundary conditions. For the sake of simplicity
let us consider the class of variable coefficient operators

dk

dxk

(
a(x)

dk

dxk
u

)
(54)

with strictly positive a. The conditioning of An = An(a) obtained by equispaced centered Finite
Difference formulae grows asymptotically as n2k (see [70]). The conditioning can be even worse if
a vanishes in some isolated points (semielliptic operators). A proof of these statements is very easy
because the operators An(·) are linear and positive and An(1) coincides with Tn(fk) where fk is a
polynomial having a unique zero at x = 0 of order 2k (the maximal order of the derivatives): therefore
by linearity and positivity we have

(inf a)Tn(fk) = (inf a)An(1) ≤ An(a) ≤ (sup a)An(1) = (sup a)Tn(fk)
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and the conditioning of Tn(fk) is known to grow as n2k thanks to Corollary 2.1. We recall that for
k ≥ 1 and FD formulae of precision order 2 and minimal bandwidth, the polynomial fk(s) coincides
with (2− 2 cos(s))k: for k = 1 the matrix An(1) = Tn(f1) is the one displayed in equation (5) while
for k = 2 the matrix An(1) = Tn(f2) is the one displayed in equation (77).

To have an idea of the difficulties due to the ill-conditioning, we consider a class of matrices
An with condition numbers asymptotic to g(n) and g(n) diverging as n: we observe that classical
not specialized iterative methods (Jacobi, Gauss-Seidel, Conjugate Gradient [41]) require a number
of steps (to reach a given accuracy) which is a diverging function as n somehow related to g(n).
As a simple but significant example, we consider equispaced centered Finite Difference formulae of
precision 2 with minimal bandwidth applied to the operators in (54) with a(x) = 1 and k ∈ {1, 2}:
the number of steps to reach the desired precision ε is displayed for some classical iterative solvers:

d2

dx2
d4

dx4

Jacobi O(n2) O(n4)
Optimal damped Jacobi O(n2) O(n4)

Gauss-Seidel O(n2) O(n4)
Gauss-Seidel with optimal parameter O(n) O(n2)

Conjugate Gradient O(n) O(n)

It is evident that these results are computationally not satisfactory: therefore for large dimensions
we need “adaptive” methods that can exploit the structure of the special problem at hand. This is the
case of the PCG methods and of the multigrid methods: in the first case the preconditioner Pn rep-
resents the crucial parameter for accelerating the convergence; in the second case the pair (smoother,
projector) plays the same role.

8.1 A.1. Optimality of iterative solvers

We are interested in optimal methods. A definition has been proposed in [4]: a PCG method with
preconditioner Pn is called optimal (in the sense of the convergence rate) if

o1 the spectrum ofP−1
n An lies between two constants independent of n or equivalently {P−1/2AnP

−1/2}
is asymptotically well conditioned.

Analogously we say that a PCG method with preconditioner Pn is optimal (in the sense of the cost
per iteration) if

o2 the cost of the solution of a generic linear system with coefficient matrix Pn is of the same order
as the number of parameters characterizing the class {An}.

These definitions make sense only in a sequential model of computation and can be generalized to a
generic iterative method. Moreover the second definition is not satisfactory because in some cases the
number of parameters does not decide the complexity of the matrix vector product with matrix An
and therefore requirement o2 becomes too restrictive.

We modify and generalize the previous definitions as follows: we write that a generic iterative
solver is optimal (in the sense of the convergence rate) if

opt1 the number of steps N(ε) for reaching the solution of a system within a preassigned accuracy ε
and with coefficient matrix An can be bounded from above by a constant not depending on n.

The given iterative solver is optimal (in the sense of the cost per iteration) if
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opt2 the cost per iteration is at most proportional to the cost of the product of An by a generic vector.

We observe that opt1 and opt2 coincides with Definition 4.1 and that o1 is a special case of opt1
in the case of the PCG method. On the other hand, as previously observed, requirement o2 is too
restrictive: it is a reasonable request in the case of the banded systems appearing in the discretization
of partial differential equations but is not realistic for Toeplitz structures and especially for banded
Toeplitz structures which are characterized by a constant number of parameters. Indeed, since a
generic iterative solver uses at each step matrix vector products, it follows that a cost per iteration
cannot be less than this and therefore requirement opt2 is the right one. Finally we remark that in the
case of generic banded system the new definition opt2 reduces to the one of Axelsson and Neytcheva.

8.2 A.2. (Preconditioned) Conjugate Gradient method

Given a positive definite matrix An we consider the conjugate gradient (CG) method: from a theoret-
ical viewpoint this is a direct method that constructs a finite sequence of m vectors with m ≤ n such
that the last one coincides with the solution of Anx = b. In practice due to unavoidable rounding
errors, it behaves and it is used as an iterative solver. This apparently conflicting duality is unified in
refined results due to Axelsson and Lindskög.

The idea behind the gradient algorithm is to transform the unique solution of the linear system
Anx = b into the unique minimum point of the quadratic functional

Φn(x) =
1

2
xTAnx− bTx. (55)

One step of a gradient method works as follows: at the first step we choose a initial guess (otherwise
we start from the present iterate), we compute a direction vector along which the functional locally
decreases and we compute a real positive constant which represents the length of the optimal correc-
tion. The new vector is computed by summing the previous one with the direction vector times the
computed constant. If the direction vector is the residual r(x) = b − Anx i.e. the direction of the
steepest descent then the method is exactly the steepest descent method. In spite of the local optimal-
ity of this method, if the matrix An is very ill-conditioned the obtained sequence is very oscillating
and the convergence is slow: here for slow we mean that the reduction of the error at every step in a
suitable norm is equal to 1 − εn where εn is asymptotic to the inverse of the spectral conditioning of
An: for proving this, use the Kantorovich inequality i.e.

xHx

(xHAnx)(xHA−1
n x)

≥ 4λmax(An)λmin(An)

(λmax(An) + λmin(An))2
, ∀ x ∈ Cn.

In the case of a Toeplitz matrix with nonnegative symbol f having a zero of order 4 (e.g. the Finite
Differences discretization of the fourth derivative), we have to expect O(n4) iterations in order to
decrease the error by a given factor.

To improve things (in particular to avoid oscillations) the direction vector is chosen to be An-
orthogonal to the previous one (x and y are An-orthogonal if xHAny = 0): the resulting method is
the conjugate gradient (CG) method. For completeness the structure of the CG algorithm is reported
below.
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CG(x0) :

Step 1. k := 0, r0 := b−Anu0,
Step 2. if ‖rk‖2 < ε‖b‖2 stop,
Step 3. βk :=

rTk rk
rT
k−1

rk−1
(β0 = 0 if k = 0),

pk := rk + βkpk−1,

αk :=
rTk rk

pT
k
Anpk

,

xk+1 := xk + αkpk,
rk+1 := rk − αkAnpk,
k = k + 1, go to step 2.

The following two theorems (see e.g. [36]) give convergence results looking at the method first as a
direct one and then as an iterative one.

Theorem 8.1 If An has s distinct eigenvalues then the number of steps necessary to compute the
solution in exact arithmetic is finite and it is bounded by s: more in detail, there exists m ≤ s such
that rm = 0.

Dim. It directly follows from the orthogonality of the residuals rk whose proof can be given by
induction. •

Theorem 8.2 The k-th error in An norm is reduced with respect to (k − 1)-th error in An norm by
a factor bounded by 1 − εn where εn ∼ (µ(An))−1/2 with µ(An) denoting the spectral condition
number of An.

The improvement with respect to the steepest descent method is substantial: for the steepest de-
scent the quantity (µ(An))−1/2 in Theorem 8.2 has to be replaced by (µ(An))−1. However, the de-
pendency on the condition number is still heavy: this drawback can be substantially overcome since
the CG method can be enriched by using preconditioners. The original problem is transformed in a
new one but better conditioned. We look for a nonsingular matrix Cn and we apply the CG algorithm
to a functional as in (55) where the matrix An is replaced by C−Tn AnC

−1
n . Since the conditioning

of the new symmetric positive definite matrix is decided by its eigenvalues and the latter is similar to
P−1
n An with Pn = CTnCn, it is of interest to study the spectral properties of the sequence {P−1

n An}
as done in Section 3 in the Toeplitz context. It is not necessary to form the matrix Cn explicitly
as stressed in the subsequent algorithm unless it is useful for solving a generic system with matrix
Pn. This situation occurs when Pn is an incomplete Cholesky factorization of An: in that case the
triangular factors Cn and CTn are of computational interest.

PCG(x0, Pn) :

Step 1. k := 0, r0 := b−Anu0,
Step 2. if ‖rk‖2 < ε‖b‖2 stop,
Step 3. compute zk such that Pnzk = rk,

βk :=
zTk rk

zT
k−1

rk−1
(β0 := 0 if k = 0),

pk = zk + βkpk−1,

αk :=
zTk rk

pT
k
Anpk

,

xk+1 := xk + αkpk,
rk+1 := rk − αkAnpk,
k = k + 1, go to step 2.
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Since the PCG is exactly the same CG applied to an equivalent functional with An replaced by
C−Tn AnC

−1
n it follows that the previous Theorems 8.1 and 8.2 hold unchanged except for the replace-

ment of An by C−Tn AnC
−1
n . Finally we observe that in both the results the important information

concerns the spectrum and therefore the convergence analysis of the PCG method can be carried out
by studying the spectral properties of P−1

n An which is similar to C−Tn AnC
−1
n .

Therefore a good preconditioner should be spectrally “close” to the matrixAn and “easily” invert-
ible. Here, according to definition opt2, easily invertible means that the solution of a generic linear
system with matrix Pn must have a cost at most proportional to the matrix vector product with matrix
An.

Looking carefully to the two requirements it is not difficult to see that they are somehow conflict-
ing and therefore the search for a good preconditioning strategy is a refined balancing analysis. For
many classes of matrices (including those arising in a Partial Differential Equation context), a popular
technique is based on the incomplete Cholesky factorization [2, 26, 38, 48]. These preconditioning
techniques fulfill requirement opt2 but in general do not fulfill requirement opt1 (and therefore o1).
For structured matrices of Toeplitz type, matrix algebra preconditioners satisfy requirement opt2 and
requirement opt1 only in the unilevel context while the band Toeplitz matrices have a uniform behav-
ior (see Section 6): the problem in the multilevel setting is the requirement opt2 for which we have to
use multigrid techniques.

We now report an important result [3] that combines both the direct and the iterative nature of the
PCG algorithm.

Theorem 8.3 Let An and Pn be positive definite matrices and let

k∗(a, b, ε) =
⌈
log

[
2ε−1

]
/ log

[
σ−1

]⌉

be a function where a, b, ε are positive and with σ =

√
b−
√
a√

b+
√
a

. Let us suppose that the spectrum Σn

of P−1
n An behaves according to one of the following possibilities:

1. Σn ⊂ [a, b] except q eigenvalues all bigger than b;

2. Σn ⊂ [a, b] except q eigenvalues all smaller than a;

3. Σn ⊂ [a, b] except 2q eigenvalues: q of them bigger than b and the remaining smaller than a.

Then, in order to reach the solution of a system with matrix An and within a preassigned accuracy ε,
the PCG method with preconditioner Pn requires N(ε) iterations where we have:

• N(ε) = q + k∗(a, b, ε);

• N(ε) = q + k∗(a, b, ε∗) with ε∗ = ε ·
∏q
j=1 λ

−
j /b;

• N(ε) = 2q + k∗(a, b, ε∗∗) with ε∗∗ = ε ·
∏q
j=1 4λ−j /λ

+
j

(
1− λ−j /λ

+
j

)−2
.

If µ(An) denotes the spectral condition number and if q is constant with respect to n, then in the
second and third case the quantities N(ε) are asymptotic to log(µ(An)) with constant depending on
q and ε and, in the first case, N(ε) is uniformly bounded from above by a constant depending on q
and ε.
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We observe that the number of iterations is bounded by a constant independent of n in the first
case (opt1 and o1 satisfied), while in the cases 2 and 3 there exists a possible dependency on n as the
logarithm of the conditioning. Furthermore if a = b (strong clustering at a) then not only opt2 and o2
are satisfied and the quality of the convergence is superlinear (see e.g. [11]).

From the latter statement we deduce that the strong clustering is a very interesting property: for
the sake of completeness we recall the definitions of proper and weak clustering (for singular values
and eigenvalues).

Definition 8.1 A sequence of matrices {An} with An of size dn, dn < dn+1 for all n, is properly
clustered at a ≥ 0 in the singular value sense if for every ε > 0 there exists cε (independent of n) such
that #{j : σ

(n)
j /∈ (a − ε, a + ε)} ≤ cε uniformly with respect to n and with σ(n)

j singular values of
An.
{An} is weakly clustered at a ≥ 0 in the singular value sense if for every ε > 0 it follows #{j :

σ
(n)
j /∈ (a− ε, a+ ε)} = o(dn).

Analogously a sequence of matrices {An} is properly clustered at a in the eigenvalue sense if for every
ε > 0 there exists cε (independent of n) such that #{j : |λ(n)

j − a| > ε} ≤ cε uniformly with respect

to n and with λ(n)
i eigenvalues of An.

{An} is weakly clustered at a ≥ 0 in the eigenvalue sense if for every ε > 0 we have #{j : |λ(n)
j −a| >

ε} = o(dn).

In the following we prove a sufficient condition for clustering.

Theorem 8.4 Let {An} and {Pn} be two sequences of Hermitian matrices satisfying the condition
‖An − Pn‖p ≤ cp for a certain p ∈ [1,∞) with cp independent of n. Then the following is true:

• The sequence {An − Pn} is properly clustered at zero in the sense of the eigenvalues;

• if Pn are positive definite for every n with uniformly bounded inverse (in spectral norm), then
the sequence {P−1

n An} is properly clustered at one in the sense of the eigenvalues.

Moreover, if ‖An − Pn‖pp = o(dn) with dn size of An, then the following is true:

• The sequence {An − Pn} is weakly clustered at zero in the sense of the eigenvalues;

• if Pn are positive definite for every n and are sparsely vanishing (i.e. their inverses are sparsely
unbounded in the sense of (71)), then the sequence {P−1

n An} is weakly clustered at one in the
sense of the eigenvalues.

Proof. We prove the first two items concerning the proper clustering. Fix ε > 0 and consider

kε,n = #{j :
∣∣∣λ(n)
j

∣∣∣ > ε}

with λ(n)
j eigenvalues of An−Pn. From the assumption we have cpp ≥ ‖An−Pn‖pp =

∑
i

∣∣∣λ(n)
i

∣∣∣p and
therefore

cpp ≥ ‖An − Pn‖pp
=

∑
j

∣∣∣λ(n)
j

∣∣∣p
>

∑
{j:
∣∣∣λ(n)j

∣∣∣>ε}
εp

= kε,nε
p.
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In conclusion kε,n < cppε
−p which is independent of n. This proves the first item; for the second item

it is enough to observe that

P−1
n An = P−1

n (Pn + (An − Pn))

= In + P−1
n (An − Pn)

and since {P−1
n } is uniformly bounded and {An − Pn} is properly clustered at zero by the first

item, it follows that {P−1
n (An − Pn)} is also properly clustered at zero and finally {P−1

n An =
In + P−1

n (An − Pn)} is properly clustered at 1.
The rest of the proof concerning the weak clustering is totally similar. •

By putting the singular values in place of the eigenvalues, along the very same lines it is possible
to prove a generalization to generic matrices of the former result.

Theorem 8.5 Let {An} and {Pn} be two sequences of matrices satisfying the condition ‖An −
Pn‖p ≤ cp for a certain p ∈ [1,∞) with cp independent of n. Then the following is true:

• The sequence {An − Pn} is properly clustered at zero in the sense of the singular values;

• if Pn are invertible for every n with uniformly bounded inverse (in spectral norm), then the
sequence {P−1

n An} is properly clustered at one in the sense of the singular values.

Moreover, if ‖An − Pn‖pp = o(dn) with dn size of An, then the following is true:

• The sequence {An − Pn} is weakly clustered at zero in the sense of the singular values;

• if Pn are invertible for every n and are sparsely vanishing (i.e. their inverses are sparsely
unbounded in the sense of (71)), then the sequence {P−1

n An} is weakly clustered at one in the
sense of the singular values.

9 Appendix B: global distribution results for matrix sequences

In this appendix we present algebraic tools for establishing distribution results concerning matrix se-
quences: as an example of applications we identify the distribution of sequences obtained a linear
combination of product of Toeplitz sequences [74]. A special case of the mentioned result coincides
with the the Szegö Theorem concerning Toeplitz sequences in the full generality provided by Tyrtysh-
nikov and Zamarashkin [96].

First, let us introduce some notations and definitions. For any real valued function F defined on
R and for any matrix A ∈MN (C), by the symbol Σ(F,A) we denote the mean

1

N

N∑
j=1

F [σj(A)]

and by the symbol ‖ · ‖ the spectral norm (Schatten p norms with p =∞ [7]) where

‖A‖ = σN (A), ‖A‖p =

 N∑
j=1

σpj

1/p

= [N · Σ(| · |p, A)]1/p

and σ1(A) ≤ σ2(A) ≤ · · · ≤ σN (A) singular values of A: of course if the matrix is normal (a class
containing all the Hermitian matrices) then the singular values σj(A), j = 1, . . . , N , coincide with
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the modulus of the eigenvalues λj(A), j = 1, . . . , N . Moreover, in the case of Hermitian matrices,
we use the symbol Σλ(F,A) for denoting the eigenvalue mean

1

N

N∑
j=1

F [λj(A)].

Definition 9.1 Given a sequence {An} of matrices of size dn with dn < dn+1 and given a function f
defined over a setK equipped with a σ finite measure µ we say that {An} is distributed as (f,K, µ) in
the sense of the singular values (in the sense of the eigenvalues) if for any continuous F with bounded
support the following limit relation holds

lim
n→∞

Σ(F,An) =
1

µ(K)

∫
K
F (|f |)dµ,

(
lim
n→∞

Σλ(F,An) =
1

µ(K)

∫
K
F (f)dµ

)
.

In this case we write in short {An} ∼σ (f,K, µ) ({An} ∼λ (f,K, µ)).

In the following the symbol µ is suppressed for many cases of interest (Toeplitz sequences, Gen-
eralized Locally Toeplitz sequences [78] etc.) since the measure always coincides with the standard
Lebesgue measure µ{·} on Rd for some positive integer d.

9.1 B.1. General tools for matrix sequences

We start with a perturbation result which is of paramount interest for estimating the spectral distri-
bution from a quantitative point of view. This result is a generalization of the Wielandt-Hoffman
inequality (see e.g. [7]) and represents a particular case of the Lidskii-Mirsky-Wielandt Theorem
whose proof can be found in [7, Bhatia: Th. IV.3.4 and Ex. IV.3.5]:

Lemma 9.1 Let p ∈ [1,∞). For any pair of matrices A,B ∈MN (C), we have N∑
j=1

|σj(A)− σj(B)|p
1/p

≤ ‖A−B‖p. (56)

For p =∞ we have maxj |σj(A)−σj(B)| ≤ ‖A−B‖. IfA andB are Hermitian, then we also have N∑
j=1

|λj(A)− λj(B)|p
1/p

≤ ‖A−B‖p (57)

and, for p =∞, maxj |λj(A)− λj(B)| ≤ ‖A−B‖.

We now introduce some tools for dealing with matrix sequences: in the following we consider
matrices An of size dn which belong to a sequence of matrices {An} with dn < dn+1. The idea is to
give an elementary approximation theory for matrix sequences: we express complicate sequences in
terms of simple splittings and/or simple elementary operations (linear combinations, products etc.) of
simpler matrix sequences. We recover the spectral distribution of a complicate matrix sequence from
the distributions of simpler ones.

Definition 9.2 Suppose a sequence of matrices {An} of size dn is given. We say that {{Bn,m}}m,
m ∈ N is an approximating class of sequences (a.c.s.) for {An} if, for all sufficiently large m ∈ N,
the following splittings hold:

An = Bn,m +Rn,m +Nn,m, ∀n > nm, (58)
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with
rank(Rn,m) ≤ dn c(m), ‖Nn,m‖ ≤ ω(m), (59)

where nm, c(m) and ω(m) depend only on m and, moreover,

lim
m→∞

ω(m) = 0, lim
m→∞

c(m) = 0. (60)

Alternative (but equivalent) characterizations of the notion of a.c.s. can be provided in terms of other
Schatten norms (see e.g. [78]). In the subsequent Lemma 9.2 and Lemma 9.3 we relate the notion in
Definition 9.2 with the quantity Σ(·, ·).

Lemma 9.2 [74] Suppose a sequence of matrices {An} of size dn is given and suppose that {{Bn,m}}m,
m ∈ N is an a.c.s. for {An} with Rn,m ≡ 0. Then for any F ∈ C0 there exists θ(·) with θ(m)→ 0 as
m→∞ such that

|Σ(F,An)− Σ(F,Bn,m)| ≤ θ(m).

Proof. From the assumption and from relation (60) in Definition 9.2, we know that

‖An −Bn,m‖ ≤ ω(m), θ(m)→ 0 as m→∞.

We set ωF : R+
0 → R+

0 the modulus of continuity (see e.g. [29]) of F defined as ωF (δ) =
supx,y: |x−y|≤δ |F (x)− F (y)|: it is quite obvious to prove that

1. ωF is a a nondecreasing function;

2. limδ→0+ ωF (δ) = ωF (0) = 0 if and only if F is uniformly continuous in its domain.

Therefore

|Σ(F,An)− Σ(F,Bn,m)| ≤ 1

dn

dn∑
j=1

|F [σj(An)]− F [σj(Bn,m)]|

≤ 1

dn

dn∑
j=1

ωF (max
j
|σj(An)− σj(Bn,m)|)

= ωF (max
j
|σj(An)− σj(Bn,m)|)

≤ ωF (‖An −Bn,m)‖) ≤ ωF (ω(m)).

where in the latter 3 steps we have used the definition of modulus of continuity, Lemma 9.1 with
p = ∞, and the monotonicity of ωF . It is clear that the desired θ(m) is ωF (ω(m)) which tends
to zero as m tends to infinity since F is continuous with bounded support and therefore uniformly
continuous over R. •

Lemma 9.3 [74] Suppose a sequence of matrices {An} of size dn is given and suppose that {{Bn,m}}m,
m ∈ N is an a.c.s. for {An} with Nn,m ≡ 0. Then, denoting by BV the set of functions with bounded
variation on R, for any F ∈ C0 ∪BV there exists θ(·) with θ(m)→ 0 as m→∞ such that

|Σ(F,An)− Σ(F,Bn,m)| ≤ θ(m).
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Proof. The statement for F ∈ C0 can be found in [28]. Here we give an alternative proof which
is based on the BV case which is in turn based on the case where the test function is monotone and
bounded.

For any F ∈ C0 and any ε > 0 consider Fε ∈ C1
0 such that ‖F − Fε‖∞ ≤ ε. Since Fε is Lipschitz

continuous and its support K is compact we can write that Fε is in BV (i.e. is of bounded variation)
and therefore the thesis is reduced to the BV case.

Hence let F ∈ BV and let us observe that F = F+ − F− where F+ and F− are nondecreasing
with

Var(Fε) = Var(F+
ε ) + Var(F−ε ).

Therefore both F+
ε and F−ε are in L∞ and indeed have finite limits at −∞ and∞. Then we have

|Σ(F,An)− Σ(F,Bn,m)| ≤
∣∣Σ(F+, An)− Σ(F+, Bn,m)

∣∣+ (61)∣∣Σ(F−, An)− Σ(F−, Bn,m)
∣∣

so that it enough to manipulate separately the quantities involving F+ and F− and the BV case is
reduced to the bounded monotone case.

Consider a nondecreasing function G ∈ L∞ and consider the quantity

|Σ(G,An)− Σ(G,Bn,m)| .

For any matrix A, let S(A) be the vector of its singular values ordered non increasingly. Let
S(Bn,m, q), q integer number, be so that (S(Bn,m, q))i = (S(Bn,m))i+q, i = 1, . . . , dn where
(S(Bn,m))j = 0 if j ≥ dn + 1 and (S(Bn,m))j = max{(S(A))1, (S(Bn,m))1} if j ≤ 0. Now,
by the Cauchy interlace Theorem (see e.g. [7]), it is clear that

S(Bn,m,−2c(m)dn) ≥ S(Bn,m), S(An) ≥ S(Bn,m, 2c(m)dn)

where “≥” is intended componentwise and c(m) is the function considered in (59) and (60). Finally
by monotonicity we deduce that

|Σ(G,An)− Σ(G,Bn,m)| ≤∣∣∣∣∣∣ 1

dn

∑
i=1−2k,...,2k,j=dn−2k+1,...,dn+2k

G(σi(Bn,m))−G(σj(Bn,m))

∣∣∣∣∣∣ ≤ 16k

dn
‖G‖∞

where k = 2c(m)dn. Therefore we conclude that

|Σ(G,An)− Σ(G,Bn,m)| ≤ 32c(m)‖G‖∞. (62)

Now we choose εm → 0 such that

max{‖F−εm‖∞, ‖F
+
εm‖∞} ≤ (c(m))−1/2

and finally by considering (61) and (62) we get

|Σ(F,An)− Σ(F,Bn,m)| ≤ θ(m)

with θ(m) = 2εm + 64(c(m))1/2 and the proof is over. •

Now we are ready for proving a result which is very useful for dealing with asymptotic distribution
problems. Its proof can be found in [74] and it is essentially based on arguments introduced by Tilli
in Proposition 2.7 of [90].
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Proposition 9.1 Let dn be an increasing sequence of natural numbers. Suppose a sequence of matri-
ces {An} of size dn is given such that {{Bn,m}}m, m ∈ N̂ ⊂ N, #N̂ = ∞, is an a.c.s. for {An} in
the sense of Definition 9.2. Suppose that, for all sufficiently large m ∈ N and for all F ∈ C0, there
exist the limits

lim
n→∞

Σ(F,Bn,m) = Φm(F ), and lim
m→∞

Φm(F ) = Φ(F ). (63)

Then it necessarily holds
lim
n→∞

Σ(F,An) = Φ(F ), ∀F ∈ C0. (64)

Proof. Observe that, from (63), it easily follows that Φ and Φm are bounded linear functionals over
C0, and |Φ(F )| , |Φm(F )| ≤ ‖F‖∞. For any large m and for all n > nm it holds

|Σ(F,An)− Φ(F )| ≤ αn,m + βn,m + γn,m + |Φm(F )− Φ(F )| , (65)

where
αn,m = |Σ(F,An)− Σ(F,Bn,m +Nn,m)| ,
βn,m = |Σ(F,Bn,m +Nn,m)− Σ(F,Bn,m)| ,

γn,m = |Σ(F,Bn,m)− Φm(F )| .
From Lemma 9.2 it follows lim supn→∞ αn,m ≤ θ1(m), for all m. From Lemma 9.3 we have
lim supn→∞ βn,m ≤ θ2(m), ∀m. From assumption (63) it follows lim supn→∞ γn,m = 0, for all
m. Since lim sup is subadditive, from (65) we obtain

lim sup
n→∞

|Σ(F,An)− Φ(F )| ≤ θ1(m) + θ2(m) + (66)

|Φm(F )− Φ(F )| , ∀m.

Taking the limit for m→∞, we obtain that the above lim sup is zero, and (64) follows. •

It is evident that all the previous results can be adapted to the eigenvalues in the case of Hermitian
matrices by using Σλ(F, ·) in place of Σ(F, ·). Moreover we stress that Proposition 9.1 is crucial for
handling spectral distributions in the sense of Definition 9.1: in fact, with the choice of the functionals
Φ and Φm of the form

Φ[g](F ) =
1

(2π)d

∫
Id
F (|g(x)|) dx, F ∈ C0,

g measurable function over a set K of finite measure we obtain that the result claimed in Proposition
9.1 reduces to the claim {An} ∼σ (f,K) where Φ = Φ[f ], Φm = Φ[fm] and fm converging in
measure to f . The latter reasoning is resumed in the following corollary.

Corollary 9.1 Let dn be an increasing sequence of natural numbers. Suppose a sequence of matrices
{An} of size dn is given such that {{Bn,m}}m, m ∈ N̂ ⊂ N, #N̂ = ∞, is an a.c.s. for {An} in the
sense of Definition 9.2. Suppose that, for all sufficiently large m ∈ N

{Bn,m} ∼σ (fm,K), m{K} <∞ and lim
m→∞

fm = f in measure. (67)

Then it necessarily holds
{An} ∼σ (f,K). (68)

Analogously, if An and Bn,m are definitely Hermitian, suppose that, for all sufficiently large m ∈ N,

{Bn,m} ∼λ (fm,K), m{K} <∞ and lim
m→∞

fm = f in measure. (69)

Then it necessarily holds
{An} ∼λ (f,K). (70)
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9.1.1 Algebraization of matrix sequences

The aim of this section is to show that the notion of approximating class of sequences (a.c.s.) is stable
under algebraization i.e. under linear combinations and products: the desired result is employed for
reducing the spectral analysis of complicate matrix sequences to the spectral analysis of simple matrix
sequences via Proposition 9.1.

First we recall that a sequence of matrices {An} is sparsely unbounded (s.u.) if and only if, by
definition, ∀M > 0, ∃n̄M such that for n ≥ n̄M we have

#{j : σj(An) > M}
dn

≤ r(M), lim
M→∞

r(M) = 0. (71)

Therefore by invoking the singular value decomposition, we have

An = A
(1)
n,M +A

(2)
n,M , ‖A

(1)
n,M‖ ≤M, rank(A

(2)
n,M ) ≤ r(M)dn. (72)

It is almost trivial to see that if {An} ∼σ θ with measurable θ taking values on C ∪ {∞}, then {An}
s.u if and only if θ is sparsely unbounded that is lim

M→∞
m{x : |θ(x)| > M} = 0. Furthermore, we

observe that any function a belonging to L1(Id) is sparsely unbounded and that the product ν(x) of
a finite number of s.u. functions is s.u. since the Lebesgue measure of the set where |ν(x)| = ∞ is
zero.

Proposition 9.2 Let {An} and {Bn}, An, Bn ∈ Mdn(C), be two given sparsely unbounded (s.u.)
matrix sequences. Suppose that

{{YA,n,m}}m and {{YB,n,m}}m,

m ∈ N̂ ⊂ N, #N̂ =∞, are two a.c.s., in the sense of Definition 9.2, for {An} and {Bn}, respectively.
Then {{YA,n,mYB,n,m}}m is an a.c.s. for the sequence {AnBn}.

Proof. Consider the product AnBn. Then by exploiting the splittings of An and Bn given in (58) and
(59), we have

AnBn = YA,n,mYB,n,m +RA,n,mBn +

NA,n,mBn + YA,n,mNB,n,m + YA,n,mRB,n,m

with
max{‖NA,n,m‖, ‖NB,n,m‖} ≤ ω(m),

max{rank(RA,n,m), rank(RB,n,m)} ≤ c(m)dn

and
lim
m→∞

max{ω(m), c(m)} = 0.

Therefore rank(RA,n,mBn + YA,n,mRB,n,m) ≤ 2c(m)dn. In order to prove that {{YA,n,mYB,n,m}}
is an a.c.s. for {AnBn}, we still need to prove that the matrix NA,n,mBn + YA,n,mNB,n,m can be
decomposed as a sum of a term bounded in spectral norm by a quantity depending only on m and
going to zero as m tends to infinity and of a term whose rank divided by dn is bounded from above
by another quantity depending only on m and going to zero as m tends to infinity. This is proved by
using the assumption that {An} and {Bn} are s.u. Indeed, by this hypothesis, by (72), and choosing
M ≡Mm = [ω(m)]−1/2, it follows that

An = A
(1)
n,Mm

+A
(2)
n,Mm

, Bn = B
(1)
n,Mm

+B
(2)
n,Mm

,
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with
‖A(1)

n,Mm
‖, ‖B(1)

n,Mm
‖ ≤Mm, rank(A

(2)
n,Mm

), rank(B
(2)
n,Mm

) ≤ θ(Mm)dn.

Consequently we have

NA,n,mBn + YA,n,mNB,n,m = NA,n,mB
(1)
n,Mm

+NA,n,mB
(2)
n,Mm

+

AnNB,n,m −NA,n,mNB,n,m −RA,n,mNB,n,m

= NA,n,mB
(1)
n,Mm

+NA,n,mB
(2)
n,Mm

+

A
(1)
n,Mm

NB,n,m +A
(2)
n,Mm

NB,n,m −
−NA,n,mNB,n,m −RA,n,mNB,n,m

where
‖NA,n,mB

(1)
n,Mm

‖, ‖A(1)
n,Mm

NB,n,m‖ ≤ [ω(m)]1/2,

rank(NA,n,mB
(2)
n,Mm

), rank(A
(2)
n,Mm

NB,n,m) ≤ θ(Mm)dn,

‖NA,n,mNB,n,m‖ ≤ [ω(m)]2 and rank(RA,n,mNB,n,m) ≤ c(m)dn.

By using the subadditivity of the rank and of the norm the claimed thesis follows. •

9.2 B.2. Applications to structured matrix sequences

Let f be a d variate (2π)-periodic complex valued (Lebesgue) integrable function, defined over the
hypercube Id, with I = [−π, π) and d ≥ 1. From the Fourier coefficients of f

aj =
1

(2π)d

∫
Id
f(x)e−i(j,x) dx, i2 = −1, j = (j1, . . . , jd) ∈ Zd

with x = (x1, . . . , xd), (j, x) =
∑d
k=1 jkxk, n = (n1, . . . , nd) and N(n) = n1 · · ·nd, we con-

sider the sequence of Toeplitz matrices {Tn(f)}, where Tn(f) ={aj−i}ni,j=eT ∈ MN(n)(C), eT =

(1, . . . , 1) ∈ Nd is said to be the Toeplitz matrix of order n generated by f . We recall that n → ∞
with n = (n1, . . . , nd) being a multi-index, is equivalent to write min1≤j≤d nj →∞.

The asymptotic distribution of eigenvalues and singular values of a sequence of Toeplitz matrices
has been thoroughly studied in the last century (for example see [96, 91, 16] and the references re-
ported therein). The starting point of this theory, which contains many extensions and other results, is
a famous theorem of Szegő [37], which we report in the Tyrtyshnikov and Zamarashkin generalized
version:

Theorem 9.1 (Tyrtyshnikov-Zamarashkin, [96]) If f is integrable over Id, and if {Tn(f)} is the
sequence of Toeplitz matrices generated by f , then it holds

{Tn(f)} ∼σ (f, Id). (73)

Moreover, if f is also real valued, then each matrix Tn(f) is Hermitian and

{Tn(f)} ∼λ (f, Id). (74)

The following two preparatory lemmas are the basic building blocks for the proof of Theorem 9.1.
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Lemma 9.4 Let p be a complex d variate polynomial. Then {{An(p)}}m is an a.c.s. for {Tn(p)}
where An denotes the space of the circulant matrices and the symbol An(p) has been defined in (33).

Proof. By Theorem 5.1, for d = 1, we have

Tn(p) = An(p) +Rn,m

with rank(Rn,m) ≤ c with c constant depending only on the degree of p. Therefore by virtue of
Definition 9.2 we deduce that {{An(p)}}m is an a.c.s. for {Tn(p)}. For d ≥ 2 we reduce the analysis
to the univariate case. The complex polynomial p can be written as a finite linear combination of
monomials of the form m(x) =

∏d
j=1 e

iαjxj : as a consequence Tn(p) and An(p) can be written
according to the same linear combination of

Tn1(eiα1x1)⊗− · · · ⊗ Tnd(e
iαdxd), An1(eiα1x1)⊗− · · · ⊗ And(e

iαdxd)

respectively. But every Tnj (e
iαjxj ) differs from the corresponding circulant approximationAnj (eiαjxj ),

j = 1, . . . , d, by a term of constant rank and therefore (by linearity)

Tn(p) = An(p) +Rn,m

with rank(Rn,m) ≤ cN(n)(
∑d
j=1 n

−1
j ) with c universal constant. SinceN(n)(

∑d
j=1 n

−1
j ) = o(N(n))

by Definition 9.2 the desired result directly follows. •

Lemma 9.5 Let f ∈ L1(Id) and {pm} be a sequence of polynomials converging to f in the L1 norm.
Then {{Tn(pm)}}m is an a.c.s. for {Tn(f)}.

Proof. We point out that, for any m, the sequence {Tn(f)− Tn(pm)} coincides with {Tn(f − pm)}
and therefore it is enough to exploit the singular value decomposition of Tn(f − pm) for large m
and n and the assumption that pm converges in L1 norm (and therefore in measure) to f . Indeed, by
the assumption, there exists a function k(m) going to zero such that ‖f − pm‖L1 ≤ (2π)d k(m);
moreover for any f ∈ Lp with p ∈ [1,∞), we have (see [83])

‖Tn(f)‖pp ≤ (2π)−d N(n)‖f‖pLp . (75)

Therefore, by considering the case of p = 1 the relation

‖Tn(f − pm)‖p =

N(n)∑
j=1

σj(Tn(f − pm)) ≤ N(n)k(m) (76)

holds ∀n and ∀m. Therefore we have #{j : σj(Tn(f − pm)) >
√
k(m)} ≤ N(n)

√
k(m) and, by

the singular value decomposition, we deduce that

Tn(f − pm)) = Rn,m +Nn,m

with rank(Rn,m) ≤ N(n) c(m) and ‖Nn,m‖ ≤ ω(m), where c(m) = ω(m) =
√
k(m). •

Proof of Theorem 9.1
Step 1. For every trigonometric polynomial p, the circulant matrix An(p) has eigenvalues given by
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a equispaced sampling of p on the definition domain Id. Moreover if p is real valued then An(p) is
Hermitian. Therefore by a direct check we obtain that

{An(p)} ∼σ (p, Id);

moreover if p is real valued then we also have

{An(p)} ∼λ (p, Id).

Step 2. {{An(p)}}m is an a.c.s. for {Tn(p)} by Lemma 9.4 and {An(p)} ∼σ (p, Id) by Step 1.
Therefore by Corollary 9.1 we have {Tn(p)} ∼σ (p, Id). Moreover, if p is real valued then both
An(p) and Tn(p) are Hermitian with {An(p)} ∼λ (p, Id) by Step 1 and hence again by Corollary 9.1
it follows {Tn(p)} ∼λ (p, Id).
Step 3. By Lemma 9.5, given any Lebesgue integrable function f there exists a sequence of trigono-
metric polynomials pm converging inL1 norm (and a fortiori in measure) to f such that {{Tn(pm)}}m
is an a.c.s. for {Tn(f)}. Furthermore we have {Tn(pm)} ∼σ (pm, I

d) by Step 2. Consequently by
Corollary 9.1, we infer {Tn(f)} ∼σ (f, Id). Finally, if f is real valued, then we can choose pm real
valued and therefore the matrices Tn(f) and Tn(pm) are all Hermitian. Since {Tn(pm)} ∼λ (pm, I

d)
by Step 2, the use of Corollary 9.1 allows one to conclude {Tn(f)} ∼λ (f, Id). •

9.2.1 The algebra of Toeplitz sequences

In this subsection Theorem 9.1 is used as basic block for proving distributional results for more in-
volved sequences.

Lemma 9.6 Let f and g be two functions belonging to L1(Id). Then

{Tn(f)Tn(g)}
is distributed as the measurable function fg.

Proof. We remark that {Tn(f)} and {Tn(g)} are sparsely unbounded since they are distributed as
sparsely unbounded functions. Let {pf,m} and {pg,m} be two sequences of polynomials converging
to f and g in the L1 norm, respectively. By Lemma 9.5, {{Tn(pf,m)}}m is an a.c.s. for {Tn(f)}
and {{Tn(pg,m)}}m is an a.c.s. for {Tn(g)}. Then, by Proposition 9.2, we conclude that the col-
lection {{Tn(pf,m)Tn(pg,m)}}m is an a.c.s. for {Tn(f)Tn(g)}. But by direct inspection we see that
Tn(pf,m)Tn(pg,m) = Tn(pf,mpg,m)+Rn,m whereRn,m is of rank bounded by k(m)N(n)

∑d
j=1 n

−1
j

(recall that Tn(p) is a multilevel band matrix if p is polynomial of fixed degree) and therefore, by def-
inition, {{Tn(pf,mpg,m)}}m is an a.c.s. for {Tn(f)Tn(g)} as well. Finally, by Theorem 9.1, we
have

{Tn(pf,mpg,m)} ∼σ pf,mpg,m
and pf,mpg,m converges in measure to fg so that the application of Corollary 9.1 concludes the proof.
•

Lemma 9.7 Let k be a positive natural number and {fα : α = 1, . . . , k} be a finite set of functions
belonging to L1(Id). Then

{
k∏

α=1

Tn(fα)}

is distributed as the measurable function
∏k
α=1 fα.
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Proof. It is substantially the same argument as in Lemma 9.6. If {pfα,m} is a sequence of polyno-
mials converging in L1 norm to fα then

∏k
α=1 pfα,m converges in measure to

∏k
α=1 fα. A repeated

application of Proposition 9.2 tells us that {{
∏k
α=1 Tn(pfα,m)}}m is an a.c.s. for {

∏k
α=1 Tn(fα)} and

therefore, since any pfα,m is a polynomial, the collection {{Tn(
∏k
α=1 pfα,m)}}m is a new a.c.s. for

{
∏k
α=1 Tn(fα)}. Finally, the use of Theorem 9.1 and a final application of Corollary 9.1 conclude the

proof. •

Theorem 9.2 Let k and qα, α = 1, . . . , k be positive natural numbers and {fα,β : α = 1, . . . , k, β =

1, . . . , qα} be a finite set of functions belonging to L1(Id). Then

{
∑k
α=1

∏qα
β=1 Tn(fαβ)} ∼σ θ =

∑k
α=1

∏qα
β=1 fαβ.

Proof. It is enough to remark that the sum of a finite collection {{B(α)
n,m}}m of a.c.s. for the sequence

{A(α)
n } is an a.c.s. for {

∑
αA

(α)
n }. In our case, by Lemma 9.7, we deduce that

A(α)
n =

qα∏
β=1

Tn(fαβ)

and

B(α)
n,m = Tn(

qα∏
β=1

pfαβ ,m)

where pfαβ ,m converges in the L1 norm to aαβ . To conclude, use Theorem 9.1 and the key Corollary
9.1 as in the previous lemmas. •

We end this subsection with two remarks.
• If θ =

∑k
α=1

∏qα
β=1 fαβ belongs to the L1 class then it makes sense to consider the sequence

{Tn(θ)}. Indeed it is easy to see that

{
∑k
α=1

∏qα
β=1 Tn(fαβ)} and {Tn(θ)}

are equally distributed since {
∑k
α=1

∏qα
β=1 Tn(fαβ) − Tn(θ)} is clustered at zero (to see this it is

enough to think again to the proofs of Lemma 9.6, Lemma 9.7 and Theorem 9.2 by taking into ac-
count that θ ∈ L1).

• The most classical (and successful) approach to the asymptotics for finite Toeplitz structures con-
sists in using the corresponding infinite dimensional Toeplitz operators T (·) = T∞(·) (see e.g. [16]).
This clearly works if the symbols are univariate and continuous since T (f)T (g) = T (fg) +K where
K is a compact operator (see the beautiful formula due to Widom [102]). However if f and g belong
to L1 (or if the symbols f and g are multivariate), then the above formula is not well defined since, in
general, fg may fail to belong to L1 so that we cannot give sense to T (fg) (or K is not compact if we
consider the multivariate case). Hence, the “finite dimensional” approach described in this appendix
seems to be more versatile and flexible at least in this context.

9.3 B.3. Further generalizations

Further results concerning spectral distribution formulas and other asymptotics of structured matrix
sequences can be found in [16] and reference therein and in [67, 90, 78, 91, 73, 80]. We recall that
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this kind of asymptotics are useful for an efficient numerical solution of several problems in applied
mathematics arising in signal and image processing, time series, PDEs etc. (see e.g. [21]). Here we
just give some examples of application and some theoretical extensions to differential problems.

Let f(s) = (2− 2 cos(s))2 = 6− 8 cos(s) + 2 cos(2s) = 6− 4eis − 4e−is + e2is + e−2is: then
we have

Tn(f) =


6 −4 1

−4
. . . . . . . . .

1
. . . . . . 1
. . . . . . . . . −4

1 −4 6

 . (77)

This matrix is related to the fourth order derivative. Indeed if we consider the model problem

(b(x)u
′′
)
′′

= f(x), x ∈ Ω = (0, 1),

with b(x) ≤ b∗ > 0 and homogeneous boundary conditions, its centered equispaced Finite Differ-
ences discretization of precision order 2 with minimal bandwidth leads to a system forAn(b)u = h4f ,
h = (n + 1)−1 where An(1) = Tn(f). In the general case, by mirroring the function b outside the
domain Ω = (0, 1), we find

An(b) =
∑
j∈Z

b
(n)
j

 0
−1
2
−1
0


j

 0
−1
2
−1
0


T

j

, b
(n)
j = b(jh), (78)

where  0
−1
2
−1
0


j

= 2ej − ej−1 − ej+1 ∈ Rn, j ∈ Z

with ek denoting the k-th vector of the canonical basis and with the understanding that ek = 0 if
k ≤ 0 or k ≥ n+ 1. The following facts hold:

• An(1) = Tn(f), f(s) = (2− 2 cos(s))2 = 6− 8 cos(s) + 2 cos(2s),

• An(·) is a linear positive operator;

• (infΩ b)An(1) ≤ An(b) ≤ (supΩ b)An(1),

• Tn(p) is an optimal preconditioner for An(b),

• λmin(An(b)) ∼ λmin(Tn(f)) ∼ n−4,

• {Tn(p)} ∼λ (f, I).

The first three items are direct consequences of the diadic representation in (78) and of the mirror-
ing boundary conditions; the fourth relation and λmin(An(b)) ∼ λmin(Tn(f)) (first part of the fifth
relation) are a consequence of the third one and the positivity of b. Finally λmin(Tn(f)) ∼ n−4 is a
consequence of Corollary 2.1 since f ≥ 0 has a unique zero of order 4 and the sixth is a special case
of the Szegö Theorem.

Now we study the spectral distribution of the positive definite sequence distribution of {An(b)}.
For every m > 0, we use centered equispaced Finite Differences of precision order 2 with minimal
bandwidth for

(bm(x)u
′′
)
′′

= f(x), x ∈ Ωj = (xj , xj+1),
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with xj ≡ x
(m)
j = j/m, j = 0, . . . ,m − 1, bm(x) = b(xj) if x ∈ Ωj and homogeneous boundary

conditions on every Ωj .
Therefore we find a global systemAn,mu = h4fn,m, h = (n+1)−1 whereAn,m = ⊕m−1

j=0 b(xj)Tn/m(p)
i.e.

An,m =


b(x0)Tn/m(p)

. . .
. . .

b(xm−1)Tn/m(p)

 .
The following items are true:

• The eigenvalues of An,m are {b(j/m)λi(Tn/m(p)) : j = 0, . . . ,m− 1, i = 1, . . . , n/m};

• {An,m} ∼λ (bm(x)(2− 2 cos(s))2, [0, 1]× I));

• bm(x)(2− 2 cos(s))2 →µ b(x)(2− 2 cos(s))2 (convergence in measure);

• {{An,m}}m is an a.c.s. for {An(b)};

where the last is implied by

‖[An(b)−An,m](j−1)m:jm‖ = ‖[An(b)](j−1)m:jm − b(j/m)Tn/m(p)‖
≤ ‖p‖∞ωb(1/m),

inf
‖Y ‖≤ε

{rank [∆n,m + Y ]} ≤ 2m

∆n,m = An(b)−⊕m−1
j=0 [An(b)](j−1)m:jm.

here with the MATLAB like notation Xs:t, t ≥ s, we denote the submatrix of X of size t − s + 1
defined by rows and columns of X in the range {s, s+ 1, . . . , t}. From Corollary 9.1 we have

{An(b)} ∼λ (b(x)(2− 2 cos(s))2, [0, 1]× I)).

9.3.1 Multivariate generalizations

We consider second order elliptic PDEs in d-dimensional domains: in the first case we have a dis-
cretization by centered formulae on a equispaced grid; then we consider tensor grids which are not
equispaced and finally an example of discretization by linear Finite Elements (see [78, 81, 6]). In the
following, ◦ denotes the component wise “Hadamard product” and Hu is the Hessian i.e. the dyad of
operators:

Hu =


∂
∂x1

...
∂
∂xd




∂
∂x1

...
∂
∂xd


T

.

With the previous notations the following PDE

−
∑d
i,j=1

∂
∂xi

(
bi,j(x) ∂

∂xj
u(x)

)
= b(x),

if x ∈ Ω◦d ⊂ (0, 1)d,
+ boundary conditions,

is written as
−eT [B(x) ◦Hu(x)]e+ first order terms = b(x)

if x ∈ Ω◦d ⊂ (0, 1)d,
+ boundary conditions.
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Denoting eT = (1, . . . , 1) and by An(B,P,Wα) the discretization of the former problem, we have
[78]

{An(B,P,Wα)} ∼σ,λ
(eT [B (x) ◦ P (s) ◦Wα]e,Ωd × Id)

where P (s) ◦Wα is the Finite Differences representation of the operator matrix −Hu on the grid G
with nj + 1 = αjv. Here the grid sequence G = {Gn}, Gn = Gn1 × · · · × Gnd

Gni =

{
j

ni + 1
: j = 1, . . . , ni

}
.

Moreover, the dyad of functions

P (s) ◦Wα =

 p1(s1)α1
...

pd(sd)αd

 p1(s1)α1
...

pd(sd)αd

H ,
represent the FD formulae on the Fourier domain. In the case of non uniform grids we find (see e.g.
[81])

{An(B,P,Wα)} ∼σ,λ
(eTJ−1(x)[B (Φ(x)) ◦ P (s) ◦Wα]J−T (x)e,Ωd × Id)

where P (s) ◦Wα is the Finite Differences representation of the operator matrix −Hu on the grid G
with nj + 1 = αjv, Φ(G) is the non uniform grid and J(x) is the Jacobian of Φ.

Finally, when considering linear Finite Elements, we have [16]

{An(B, T )} ∼λ |det(J(x))|·
eTJ−1(x)[B (Φ(x)) ◦ P (s)]J−T (x)e,Ωd × Id)

where P (s) is the Finite Elements representation of the operator matrix −Hu over the uniform trian-
gulation U , Φ is the transform such that T = Φ(U) and J(x) is the Jacobian of Φ.

We recall that in all the three cases (i.e. uniform and non uniform FD and linear Finite Elements),
the hypotheses on the problem data are very weak i.e.
• The domain Ω should be at least measurable according to Peano-Jordan.
• The coefficients bi,j should be at least integrable in the Riemann sense.

9.3.2 Spectral distributions and preconditioning

Finally, we just mention that the same tools (a.c.s. + Corollary 9.1 + algebraization results) can be
used for finding preconditioning results: let Tn = An(1), Dn(b) “diagonal and scaled part of An(b)”,
then we set

Pn(b) = D1/2
n (b)TnD

1/2
n (b).

Corollary 9.1 + the algebraization of the a.c.s. imply

{P−1
n (b)An(b)} ∼λ (1, [0, 1]d × Id)

which is another way of writing that the preconditioned sequence {P−1
n (b)An(b)} is weakly clustered

at 1 in the sense of the eigenvalues.
Under the regularity assumptions C2([0, 1]d) of b, it has been proven [70, 80] the proper cluster-

ing at the unity of {P−1
n (b)An(b)} in the eigenvalue sense and the uniform spectral boundedness of

{P−1
n (b)An(b)} and {A−1

n (b)Pn(b)}. Therefore, by Theorem 8.3, we observe an optimal convergence
and superlinear behavior of the associated PCG method.
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9.3.3 Final remarks

The distribution results can be useful in many directions: among them we recall a finer analysis of the
convergence of (P)CG methods according to the results of Beckermann and Kuijlaars [5], heuristics
for the preconditioning, spectral information to be utilized for the design of fast iterative methods
(especially of multigrid type).

Some open questions remain and, in particular, future developments should include:

• a uniform approach for a larger class of Finite Elements in analogy with the Finite Differences
case;

• a stochastic approach to the convergence theory of iterative solvers: in that case, it is interesting
to point out that the global distribution of the spectra plays a role in place of the spectral radius.
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