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Abstract

We first review the classical Korovkin Theorem concerning the ap-
proximation in sup norm of continuous functions C(K) defined over a
compact domain K of RN , N ≥ 1, via a sequence of linear positive oper-
ators acting from C(K) into itself. Then we sketch its extension to the
periodic case and, by using these general tools, we prove the first and the
second Weierstrass theorem, regarding the approximation of continuous
functions via Bernstein polynomials and Cesaro sums, respectively. As a
second, more unexpected, application we show the use of the Korovkin
theory for the fast solution of a large Toeplitz linear system Anx = b, by
preconditioned conjugate gradients (PCG) or PCG-NE that is PCG for
normal equations. More in detail Frobenius-optimal preconditioners are
chosen in some suitable matrix algebras. The resulting approximation op-
erators are linear and positive and the use of a properly modified Korovkin
Theorem is the key for proving the spectral clustering of the Frobenius-
optimal preconditioned matrix-sequence. As a consequence, the resulting
PCG/PCG-NE shows superlinear convergence behavior under mild addi-
tional assumptions. Three appendices and few guided exercises end this
note.

1 Introduction
The first goal is the constructive approximation of continuous functions over a
compact domain K of RN , N ≥ 1, via functions which are simpler from the
computational viewpoint. The initial choice is the polynomial one because the
evaluation at a given point of a generic polynomial just implies a finite number
of arithmetic operations (sums and products). The notion of “approximation”
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is intuitive; nevertheless we spend few words for giving a formal definition. We
“replace” the given object, that is our continuous function f , with a polynomial
p which is close to it. Since C(K) endowed with the sup-norm forms a Banach
space (that is complete), it is natural to decide that the distance for measuring
the closeness of two generic functions f and g belonging to C(K) should be
d(f, g) = ‖f − g‖∞,K where ‖ · ‖∞,K indicates the sup-norm over K i.e.

‖h‖∞,K = sup
x∈K
|h(x)|, h ∈ C(K).

Owing to theWeierstrass theorem (concerning the existence of the minimum/ma-
ximum of a continuous function defined over a compact set) and since K is a
compact set of RN , N ≥ 1, it is evident that the sup can be plainly replaced by
max that is

‖h‖∞,K = max
x∈K
|h(x)|, h ∈ C(K). (1)

Here we just recall that the notion of compactness coincides with requiring that
K is closed and bounded, because K is a subset of RN with finite N .

At this point the problem is correctly posed. More specifically, the choice of
the space of polynomials is motivated by the “computational” requirements. Is
the choice also well motivated from the “approximation” point of view?

The latter question is answered by the Weierstrass theorem (concerning the
polynomial approximation [19]).

Theorem 1.1 (Weierstrass). Let f be a continuous function of C(K) with
K ⊂ RN , N ≥ 1, compact set. For every ε > 0, there exists pε polynomial such
that

‖f − pε‖∞,K ≤ ε.

Of course, if instead of C(K), we consider the set of periodic continuous
functions with period 2π in every direction

C2π = {f : RN → C, f continuous and periodic i.e. f(x) = f(x mod 2π)},

then the natural space of approximation again in the sup norm becomes that of
trigonometric polynomials. Also in this case we have a theorem due to Weier-
strass (see e.g. [19, 41]).

Theorem 1.2 (Weierstrass). Let f be a 2π periodic continuous function of C2π

in N dimensions, N ≥ 1. For every ε > 0, there exists pε polynomial such that

‖f − pε‖∞ ≤ ε.

As a tool from proving Theorems 1.1 and 1.2, we introduce the Korovkin
theory in the case of continuous functions over a compact set and in the case of
periodic continuous functions and we exploit the good features of the Bernstein
polynomials and of the Cesaro sums. As a second, more unexpected, appli-
cation of the Korovkin theory, we consider its for the fast solution of a large
Toeplitz linear system Anx = b, by preconditioned conjugate gradients (PCG)
or PCG-NE that is PCG for normal equations. More in detail Frobenius-optimal
preconditioners are chosen in some matrix algebras, associated with computa-
tionally attractive fast transforms. The resulting approximation operators are
linear and positive and the use of a properly modified Korovkin Theorem is
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the key for proving the spectral clustering of the Frobenius-optimal precondi-
tioned matrix-sequence. As a consequence, the resulting PCG shows superlinear
convergence behavior under mild additional assumptions.

The notes are organized as follows. In section 2 we report some basic def-
initions and tools. In Section 3 we report the Korovkin Theorem, its proof,
and some basic variants, whose analysis is completed in the last two appendices
(see also the exercises in Section 10). Then, with the help of the Korovkin
theory and of the Bernstein polynomials presented in Section 4.1, we produce
a constructive proof of Theorem 1.1 in Section 4. As a byproduct, we fur-
nish a tool for proving theorems of Weierstrass type in many different contexts
(different spaces endowed with various norms, topologies, different models of
approximation etc). As a second, more unexpected, application we show in Sec-
tion 5 the use of the Korovkin theory for the fast solution of a large Toeplitz
linear system Anx = b, by preconditioned conjugate gradients (PCG). More
in detail Frobenius-optimal preconditioners are chosen in some proper matrix
algebras. The resulting approximation operators are linear and positive and the
use of a properly modified Korovkin Theorem is the key for proving the spec-
tral clustering of the Frobenius-optimal preconditioned matrix-sequence. As a
consequence, the resulting PCG shows superlinear convergence behavior under
mild additional assumptions. A conclusion section ends the notes (Section 6),
together with three appendices (Sections 7, 8 , and 9) and a section devoted to
exercises (Section 10).

2 Preliminary definitions and notions
We present the Korovkin Theorem [17, 19]. We emphasize the simplicity of the
assumptions, the possibility of their plain checking, the strength of the thesis
which can be adapted in a variety of settings (different spaces endowed with
various norms, topologies, different models of approximation etc).

More specifically, given a sequence of operators from C(K) in itself, it is
sufficient to verify their linearity and positivity and their convergence to g,
when applied to g, for a finite number of test functions g (which can be chosen
as simple polynomials). The conclusion is the pointwise convergence to the
identity over C(K), that is the convergence for any continuous function. Last
but not the least the proof can be made very essential with tools of elementary
Calculus.

We now start with the basic definition of linear positive operator (LPO)
and with definition of sequence of approximating operators (for giving a precise
notion to the “pointwise convergence to the identity”).

Definition 2.1. Let S be a vector space of functions with values in the field K
(with K being either R or C) and let Φ be an operator from S to S. We define
the pair of properties of Φ:

1. for any choice of α and β in K and for any choice of f and g in S, we
have Φ(αf + βg) = αΦ(f) + βΦ(g) (linearity);

2. for any choice of f ≥ 0, f ∈ S, we have Φ(f) ≥ 0 (positivity).

An operator Φ satisfying both conditions is linear and positive. We write in
short LPO.
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Definition 2.2. Let (S, ‖ · ‖) be a Banach space of functions with values in the
field K (with K being either R or C) and let {Φn} be a sequence of operators each
of them from S in S. The sequence is a sequence of approximating operators or,
more briefly an approximation process, if for every f ∈ S we have

lim
n→∞

‖Φn(f)− f‖ = 0.

(In other words {Φn} converges pointwise to the identity operator from (S, ‖ · ‖)
into itself).

3 Korovkin Theorem
In its simplest one-dimensional version the Korovkin Theorem says that if a
sequence of LPOs (see Definition 2.1) applied to g approximates uniformly g,
with g being one of the test functions 1, x, and x2, then it approximates all
continuous functions, that is the sequence represents an approximation of the
identity operator, from the space of the continuous functions into itself, in the
sense of Definition 2.2.

Theorem 3.1. Let K be a compact subset ∈ R and let {Φn} be a sequence of
linear and positive operators Φn : C(K)→ C(K) on the Banach space (C(K), ‖·
‖∞,K). Assume that

||Φn(g)− g||∞,K → 0, for n→∞, ∀g ∈ {1, x, x2},

or Φn(g) approximates the function g as n goes to infinity (this is called the
Korovkin test). Then

||Φn(f)− f ||∞,K → 0, for n→∞, ∀f ∈ C(K),

or Φn(f) approximates all continuous functions defined over a compact set K,
as n tends to infinity.

Proof The given assumption on the test functions

||Φn(g)− g||∞,K → 0, for n→∞,

can be written as
Φn(g(y))(x) = g(x) + εn(g(y))(x)

where εn(g(y))(x) represents the error we make approximating g(x) with Φn(g(y))(x)
and hence it is such that ||εn(g(y))||∞,K → 0. We want to prove that

||Φn(f)− f ||∞,K → 0 for n→∞, ∀f ∈ C(K)

and therefore we fix f ∈ C(K) and ε > 0, and, equivalently to the thesis, we want
to prove that there exists n̄ (as a function of f and ε) such that for any n ≥ n̄
and for every x ∈ K we have |Φn(f(y))(x)−f(x)| < ε. Therefore we manipulate
the latter quantity and more precisely we write ∆n(f)(x) = |Φn(f(y))(x)−f(x)|
and

∆n(f)(x) = |Φn(f(y))(x)− 1 · f(x)|
= |Φn(f(y))(x)− (Φn(1)(x)− εn(1)(x))f(x)| (2)
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since 1 = Φn(1)(x)− ε(1)
n (x).

Using the triangle inequality, from (2) and by using linearity first and then
again the triangle inequality, we obtain that

∆n(f)(x) ≤ |Φn(f(y))(x)− Φn(1)f(x)|+ |f(x)||εn(1)(x)|
≤ |Φn(f(y))(x)− Φn(1)f(x)|+ ‖f‖∞,K‖εn(1)‖∞,K
= |Φn(f(y))(x)− Φn(f(x))(x)|+ ‖f‖∞,K‖εn(1)‖∞,K
≤ |Φn(f(y)− f(x))(x)|+ ‖f‖∞,K‖εn(1)‖∞,K .

We exploit again the positivity of Φn(·) and we find

∆n(f)(x) ≤ Φn(|f(y)− f(x)|)(x) +
ε

4
, ∀n ≥ n̄1

since ‖ε(1)n(x)‖∞,K → 0 for n tending to ∞.
The idea of the proof is to bound from above the quantity |f(y) − f(x)|,

uniformly with respect to x, y ∈ K and using only test functions.
We preliminarily observe that if K is a compact set then C(K) = UC(K),

with UC(K) denoting the set of all uniformly continuous functions. As a con-
sequence we have

∀ε̃ > 0 ∃δ > 0 : |x− y| < δ ⇒ |f(x)− f(y)| < ε̃ ∀x, y ∈ K

(the Cantor Theorem stating that continuity and uniform continuity are the
same notion, when the domain is compact).
Thus, in general, we obtain |f(x) − f(y)| ≤ ε̃ if the points x and y are close
enough. The latter condition can be rewritten as follows

|f(x)− f(y)| ≤ ε̃χ{z:|z−x|<δ}(y) + 2||f ||∞,Kχ{z:|z−x|≥δ}(y).

However the righthand-side is not continuous, and it cannot be in general an
argument for the operator Φn(·). We want to majorize it by using a contin-
uous function: we will succeed by find a bound from above made by linear
combinations of the test functions. First we observe that

|z − x| ≥ δ ⇔ |z − x|
δ

≥ 1,

which in turn is equivalent to

(z − x)2

δ2
≥ 1.

In conclusion in the set the inequality is satisfied we can write

χ{z:|z−x|≥δ}(y) = 1 ≤ (y − x)2

δ2
.

Otherwise we have

χ{z:|z−x|≥δ}(y) = 0 ≤ (y − x)2

δ2
.
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Therefore, uniformly with respect to x, y ∈ K, for any ε̃ > 0 we find δ = δε̃ 0
such that

|f(x)− f(y)| ≤ ε̃+ 2‖f‖∞,K
(y − x)2

δ2
.

Hence, by applying the operator Φn(·), for every n ≥ n̄1 we find that

∆n(f)(x) ≤ ε

4
+ Φn

(
ε̃+ 2

‖f‖∞,K
δ2

(y − x)2

)
(x)

=
ε

4
+ ε̃Φn(1)(x) + 2

‖f‖∞,K
δ2

Φn(y2 − 2xy + x2)(x). (3)

Moreover Φn(1)(x) = (1 + εn(1)(x)) since the constant 1 is a test function.
Therefore the righthand-side in (3) can be written as

ε

4
+ε̃(1+εn(1)(x))+2

‖f‖∞,K
δ2

{x2+εn(y2)(x)−2x[x+εn(y)(x)]+x2(1+εn(1)(x))}.

Now we choose ε̃ = ε
4 and we observe that, by definition of limit, there exist

n̄2, n̄3 such that for n ≥ n̄2 we have εn(1)(x) ≤ 1, uniformly with respect to
x ∈ K, and for n ≥ n̄3 we have

‖f‖∞,K‖εn(y2)(x)− 2xεn(y)(x) + x2εn(1)(x)‖∞,K ≤
δ2ε̃

2
.

Finally the proof is concluded by taking n ≥ n̄, with n̄ = max{n̄1, n̄2, n̄3}
(depending on both f and ε), and by observing that

∆n(f)(x) ≤ ε

4
+2ε̃+2

‖f‖∞,K
δ2

{εn(y2)(x)−2xεn(y)(x)+x2εn(1)(x)} ≤ ε

4
+3ε̃ = ε.

2

In the following section, in order to prove the Weierstrass Theorem, we will
propose some special polynomial sequence of linear positive operators {Φn}
satisfying the Korovkin test (with Φn(f) being a polynomial for every f ∈
C(K)). However we should not forget that the Korovkin Theorem is very general
(and flexible). Indeed no assumptions are required on the regularity of Φn(f).
In reality, by following step by step the proof given above, we discover that
proof is still valid even if Φn(f) is not necessarily continuous. In fact we only
need that it makes sense to write ‖Φn(f)‖∞,K or equivalently that Φn(f) is
essentially bounded (Φn(f) ∈ L∞(K)).

3.1 Few variations and a list of applications
As anticipated in the last section, the Korovkin Theorem is very flexible. Here
we list a few changes that can be made by obtaining a rich series of new state-
ments. Then we list a series a interesting applications

First Case: LetK be a compact subset of RN and T = {1, x1, x2, . . . , xN , ‖x‖22}
the set of test functions. The proof of theorem is formally the same, but x
must be regarded as a vector of size N . Regarding the uniform continuity
the right characterization to be chosen is as follows

∀ε̃ > 0 ∃δ > 0 : ‖x− y‖2 < δ ⇒ |f(x)− f(y)| < ε̃ ∀x, y ∈ K.
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As a consequence the key majorization is the one reported below.

|f(y)− f(x)| ≤ ε̃χ{z:||z−x||2≤δ̃}(y) + 2‖f‖∞,K χ{z:||z−x||2≥δ̃}(y)

≤ ε̃+ 2‖f‖∞,K
‖y − x‖22

δ̃2
, (4)

since ‖z − x‖2 ≥ δ̃ ⇒ ‖z−x‖22
δ̃2

≥ 1. Noting that

‖y − x‖22 = (yT − xT )(y − x) = ‖x‖22 + ||y||22 − 2

d∑
j=1

xjyj

we conclude that the function appearing in (4), with respect to the dummy
variable y, is just a linear combination of test functions and therefore the
rest of the proof is identical (see Appendix B).

Second Case: Let C2π be the set of 2π-periodic functions. The set of the
test functions is given by

T = {1, e
√
−1x}.

We also use the function e−
√
−1x but since it is the conjugate of the second

test function we do not need to put it in the Korovkin test. Indeed, if f
is real valued then f = f+ − f− with f+ = max{0, f}, f− = max{0,−f}
being both nonnegative so that Φ(f) is real valued if f is and Φ(·) is linear
and positive. As a consequence, for a general complex valued function f we
have Φ(f̄) = ¯Φ(f). Taking into account the latter, the proof only changes
when reasoning about the uniform continuity. A possible distance between
x and y is defined as

|e
√
−1x − e

√
−1y|.

As a consequence a clever characterization of the notion of uniform conti-
nuity is given as

∀ε̃ > 0 ∃δ > 0 : |e
√
−1x − e

√
−1y| ≤ δ ⇒ |f(x)− f(y)| < ε̃ ∀x, y ∈ R.

Hence the key upper-bound is

|f(y)− f(x)| ≤ ε̃χ{y:|e
√
−1x−e

√
−1y|≤δ}(y) + 2‖f‖∞ χ{y:|e

√
−1x−e

√
−1y|≥δ}(y)

≤ ε̃+ 2‖f‖∞
|e
√
−1x − e

√
−1y|2

δ2

≤ ε̃+ 2
‖f‖∞
δ2

(2− e−
√
−1xe

√
−1y − e

√
−1xe−

√
−1y),

since
|e
√
−1x − e

√
−1y|2

δ̃2
≥ 1,

where 2− e−
√
−1xe

√
−1y − e

√
−1xe−

√
−1y is the linear combination of test

functions, with regard to the dummy variable y (see Appendix C, also for
the multivariate setting).
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Third case: With reference to Theorem 3.1, the Korovkin set T = {1, x, x2}
can be replaced by any Chebyshev set C = {p0(x), p1(x), p2(x)} of continu-
ous functions over the compact setK such that the 3×3 Vandermonde-like
matrix

(pj(xk))j,k=0,1,2

is invertible for every choice of points {xk} such that x0 < x1 < x2,
x0, x1, x2 ∈ K. It is worth noticing that an analogous result does not hold
in more than one dimension, due to topological reasons (see Exercise 12).

As already stressed in the introduction, among classical applications of the
Korovkin theory, we can list the first and the second Weierstrass Theorems
(a huge variety of applications in approximation theory can be found in the
work by Altomare and coauthors [1]). As a more exotic application we finally
mention the use of the Korovkin tools in the approximation of Toeplitz matrix
sequences via (computationally simpler) matrix algebras [26], including the set
of circulant matrices associated to the celebrated fast Fourier transform (FFT).
The corresponding Korovkin test is successfully verified for all ω-circulants with
|ω| = 1, with all known sine, cosine, and Hartley transform spaces (see [10, 11,
2]) and is extended to the case of block structures [27] and to various operator
theory settings [28, 18]: to the matrix version setting we devoted the analysis
in Section 5.

4 Proof of the Weierstrass Theorem
In this section we first introduce the Bernsterin polynomials (and the related
sequence of operators) and we prove linearity, positivity and the proof of the
positive answer to the Korovkin test. The we give a (semi)-constructive proof
of the Weierstrass Theorem. The only non-constructive tool concerns the use
of the Tietze extension Theorem (see [22]).

4.1 The Bernstein polynomials
We furnish a concrete example of a sequence of linear positive operators. We
will perform the Korovkin test. For the sake of simplicity we first consider the
one-dimensional case with N = 1 and K = [0, 1]. The Bernstein polynomials of
f , indicated by Bn(f), are defined as

Φn(f)(x) ≡ Bn(f)(x) =

n∑
ν=0

(
n
ν

)
xν(1− x)n−νf

(ν
n

)
. (5)

It is straightforward to verify that it is a linear and positive operator, since
it is expressed as linear combination of nonnegative polynomials xν(1 − x)n−ν

of degree n, via the coefficients (
n
ν

)
f
(ν
n

)
,

which are all nonnegative if f ≥ 0. From these remarks we immediately get
both positivity and linearity of the operator Bn.
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4.1.1 Bernstein polynomials and Korovkin test

We now perform the Korovkin test. For g ∈ {1, x, x2} we prove that Bn(g)
converges uniformly to g on [0, 1].

For g = 1 we have

Bn(1)(x) =

n∑
ν=0

(
n
ν

)
xν(1− x)n−ν

= (x+ (1− x))n = 1

and thus the error εn(1) is identically zero.
For g(x) = x we have

Bn(g(y))(x) =

n∑
ν=0

(
n
ν

)
xν(1− x)n−ν

ν

n

=

n∑
ν=1

n!

ν!(n− ν)!

ν

n
xν(1− x)n−ν

=

n∑
ν=1

(
n− 1
ν − 1

)
xν(1− x)n−ν

=

n−1∑
q≡ν−1=0

(
n− 1
q

)
xq+1(1− x)n−1−q

= xBn−1(1)(x) = x

and hence, also in this case, the error εn(y) is identically zero.
Finally we consider g(x) = x2 so that

Bn(g(y))(x) =

n∑
ν=0

(
n
ν

)
xν(1− x)n−ν

ν2

n2

=

n∑
ν=0

(
n
ν

)
xν(1− x)n−ν

ν(ν − 1)

n2

+

n∑
ν=0

(
n
ν

)
xν(1− x)n−ν

ν

n2

=

n∑
ν=2

(
n
ν

)
xν(1− x)n−ν

ν(ν − 1)

n2
+

1

n
Bn(y)(x)

=
n− 1

n

n∑
ν=2

(
n
ν

)
xν(1− x)n−ν

ν(ν − 1)

n(n− 1)
+

1

n
x

=
n− 1

n

n∑
ν=2

(
n− 2
ν − 2

)
xν(1− x)n−ν +

1

n
x

=
n− 1

n

n−2∑
q≡ν−2=0

(
n− 2
q

)
xq+2(1− x)n−2−q +

1

n
x

=
n− 1

n
x2Bn−2(1)(x) +

1

n
x =

n− 1

n
x2 +

1

n
x

= x2 +
x(1− x)

n
.
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In conclusion the error εn(y2)(x) = x(1−x)
n converges uniformly to zero so that

the test of Korovkin has a positive answer. Then, by invoking the Korovkin
Theorem, we deduce that {Bn} is an approximation process on C([0, 1], ‖ · ‖∞).

Remark 4.1. We note that the error is identically zero for the first and second
test functions. If the error in the third test function would have been identically
zero, then we would have concluded

Bn(f(y))(x) = f(x), ∀f, x, n.

Hence C(K) would coincide with space of polynomials: the latter is clearly not
true, so we necessarily expected a non-zero error for j = 2 (refer to Exercise 2
and also Exercise 3 for a deeper understanding on the results).

4.1.2 The case of the multidimensional Bernstein polynomials

We generalize the notion of Bernstein polynomial in the multidimensional set-
ting. We considerK = [0, 1]N and on this set we define the Bernstein polynomial
of f denoted by Bn(f), with n = (n1, . . . , nN ) multi-index:

Bn(f(y))(x) =

n1∑
ν1=0

· · ·
nN∑
νN=0

(
n1

ν1

)
· · ·
(
nN
νN

)
(6)

xν1(1− x)n1−ν1 · · ·xνN (1− x)nN−νN f

(
ν1

n1
, . . . ,

νN
nN

)
.

It is trivial to verify that the given operator is linear and positive since it is
a linear combination of nonnegative polynomials of degree n

xν1(1− x)n1−ν1 · · ·xνN (1− x)nN−νN

via the coefficients (
n1

ν1

)
· · ·
(
nN
νN

)
f

(
ν1

n1
, . . . ,

νN
nN

)
,

which are all nonnegative if f ≥ 0. From these observations both linearity and
positivity directly follow.

4.2 A Korovkin based proof of the Weierstrass Theorem
We prove Theorem 1.1 of which we recall once again the statement and then we
proceed with its proof based on the Korovkin theory.

Let f be any function belonging to C(K) with K ⊂ RN , N ≥ 1, compact
set. For every ε > 0 there exists pε polynomial such that

‖f − pε‖∞,K ≤ ε.

Proof The proof is organized by steps and more precisely by treating the case
of a domain K of increasing “complexity”.
Step 1: K = [0, 1]
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For K = [0, 1] the Bernstein polynomials represent a sequence of linear and
positive operators satisfying the Korovkin test. Therefore the thesis follows
Theorem 3.1 that is

lim
n→∞

‖f(x)−Bn(f)(x)‖∞,K = 0.

Step 2: K = [a, b]
We consider g ∈ C([0, 1]) such that

g(t) = f(a+ (b− a)t).

Therefore, by the previous item, there exists Bn̄ε(g) satisfying the relation

‖∆n(g)‖∞,[0,1] = ‖g(t)−Bn̄ε(g)(t)‖∞,[0,1] ≤ ε.

Now we perform the change of variable x = a + (b − a)t so that t = x−a
b−a and

g
(
x−a
b−a

)
= f(x). Thus

‖∆n(g)‖∞,[0,1] =

∥∥∥∥g(x− ab− a

)
−Bn̄ε(g)

(
x− a
b− a

)∥∥∥∥
∞,[a,b]

=

∥∥∥∥f(x)−Bn̄ε(g)

(
x− a
b− a

)∥∥∥∥
∞,[a,b]

≤ ε.

Since
Bn̄ε(g)

(
x− a
b− a

)
is still a polynomial in the variable x ∈ [a, b], the desired thesis follows.
Step 3: K = [0, 1]N

As observed in Section 4.1.2, the N dimensional Bernstein polynomials are lin-
ear positive operators (it plainly follows from the definition). Moreover they
satisfy the Korovkin test in Theorem 8.1 (it is much easier than expected: fol-
low Exercises 6 and 7 at the end of the note). Therefore the claimed thesis
follows by Theorem 8.1 as in Step 1.
Step 4: K =

∏N
i=1[ai, bi]

The proof goes along the same lines as in Step 2: we use N decoupled affine
transformations sending [0, 1]N onto K and viceversa (i.e. xi = ai + (bi − ai)ti,
i = 1, . . . , N) and the thesis in Step 3.
Step 5: K compact of RN
Every compact K of RN is contained in a proper N dimensional rectangle of
the form K̃ =

∏N
i=1[ai, bi]. By the Tietze extension Theorem (see [22]), every

function f defined on K has a continuous extension f̃ defined on K̃ (that is f̃ is
globally continuous on K̃ and such that f̃(x) = f(x), for every x ∈ K). There-
fore, by reasoning as in Step 4 for the function f̃ , it is sufficient for concluding
the proof. •

As it happens e.g. in the polynomial interpolation, many issues regarding the
convergence with polynomial approximations strongly depend from the topology
of the domain and co-domain of the continuous functions to be approximated.
For instance if K is a compact set of C, the Weierstrass Theorem is simply false
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if the interior part of K is non empty: the reason relies on the fact that the
uniform limit over any compact set contained in a given open domain Ω of a
sequence of holomorphic functions over Ω (e.g. a sequence of polynomials with
Ω being the internal part of K) is still holomorphic over Ω.

4.3 An historical note: the original proof given by Weier-
strass

In this section we sketch the original proof provided by Weierstrass in his work.
Of course the proof is not explicitly based on the theory of linear positive oper-
ators (the Korovkin theory is more recent and is dated around 1958-1960), but
it uses a special sequence of linear positive operators that is those of Gauss-
Weierstrass.

The n-th Gauss-Weiertrass operator is defined as

(GWn(f))(x) =

√
n

2π

∫ ∞
−∞

e
−n(t−x)2

2 f(t)dt. (7)

Unlike the Bernstein case, we observe that (GWn(f))(x) is not a polynomial
in general but it is a smooth function belonging to C∞ on the whole real line
R (thanks to the role of a Gaussian weight).

The remaining part of the proof follows according to the ideas described
below:
Step 1. We take the Taylor polynomial pn,m(x) of degree m associated with
(GWn(f))(x) and it is possible to prove that

lim
m→∞

‖(GWn(f))(x)− pn,m(x)‖∞,K = 0

for every compact K of R.
Step 2. It is possible to prove that (GWn(f))(x) converges uniformly to f(x)
for every compact K of R, as n tends to infinity.

The two considered steps imply the Weierstass Theorem for every compact
K of R. It should be mentioned that the proof is only partially constructive
since pn,m is defined using information on f not available in general (except via
numerical evaluations).

5 Application of the Korovkin theory to precon-
ditioning

This section deals with some applications of Korovkin theory to the precondi-
tioning, since we are interested to design fast iterative solvers when the size n
of our linear system is large. More in detail we consider the case of Toeplitz
matrices and we show that the approximation of such matrices in specific ma-
trix algebras can be reduced, at least asymptotically, to a single test on the
shift matrix: the idea behind this surprising simplification is the use of the Ko-
rovkin machinery on the spectrum of the matrices approximating the Toeplitz
structures.

The section is organized into three parts: in the first we give preliminary
definitions and tools, in the second we present Toeplitz matrices, the space of
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approximation, and the approximation strategy and finally in the third part we
state and prove the Korokvin theorem in the setting of Toeplitz matrix sequences
with continuous symbol.

5.1 Definitions and tools
Definition 5.1. A matrix sequence {An}, An square matrix of size n, is clus-
tered at s ∈ C (in the eigenvalue sense), if for any ε > 0 the number of the
eigenvalues of An off the disk

D(s, ε) := {z : |z − s| < ε}

is o(n). In other words

qε(n, s) := #{λj(An) : λj /∈ D(s, ε)} = o(n), n→∞.

If every An has only real eigenvalues (at least for all n large enough), then s is
real and the disk D(s, ε) reduces to the interval (s−ε, s+ε). The cluster is strong
if the term o(n) is replace by O(1) so that the number of outlying eigenvalues is
bounded by a constant not depending on the size n of the matrix.

We say that a preconditioner Pn is optimal for An if the sequence {P−1
n An}

is clustered at one (or to any positive constant) in the strong sense. Since

P−1
n An = In + P−1

n (An − Pn),

it is evident that for the optimality we need to prove the strong cluster at zero of
{An−Pn}; for details on this issue refer to [12]; in addition several useful results
on preconditioning can be found in [3, 20], while in [15, 24] the reader can find
a rich account on general Krylov methods. The (weak or general) clustering is
also of interest, as a heuristic indication that the preconditioner is effective.

Remark 5.2. The previous Definition 5.1 can be stated also for the singular
values instead of the eigenvalues just replacing λ with σ and “eigenvalue” with
“singular value”.

Given a matrix A we define the Schatten p norm, p ∈ [1,∞), as the p norm

of the vector of its singular values i.e. ‖A‖S,p =
[∑n

j=1 σ
p
j (A)

]1/p
. By taking a

limit on p the Schatten ∞ norm is exactly the spectral norm i.e. the maximal
singular value. Among these norms the one which interesting both from a
computational viewpoint and from a theoretical viewpoint is the Schatten 2
norm which is called the Frobenius norm in the Numerical Analysis community.
We define now the Frobenius norm as it is usually defined in a computational
setting

‖A‖F =

 n∑
j,k=1

|Aj,k|2
1/2

. (8)

Of course if A is replaced by QA with Q unitary matrix, then every column
will maintain the same Euclidean length and therefore ‖QA‖F = ‖A‖F ; on the
other hand, if A is replaced by AP with P unitary matrix, then every row
will maintain the same Euclidean length and therefore ‖AP‖F = ‖A‖F . These
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two statements show that ‖ · ‖F is a unitarily invariant (u.i.) norm so that
‖QAP‖F = ‖A‖F for every matrix A and for every unitary matrices P and
Q; a rich and elegant account on the properties of such norms can be found in
[5]. Therefore, taking into account the singular value decomposition [14] of A
and choosing P and Q as the transpose conjugate of the left and right vectors
matrices, we conclude that ‖A‖F = ‖Σ‖F with Σ being the diagonal matrix
with the singular values σ1(A) ≥ σ2(A) ≥ · · · ≥ σn(A). Therefore

‖ · ‖F = ‖ · ‖S,2,

so that the Schatten 2 norm has a very nice computational expression that only
depends on the entries of the matrix. Furthermore the definition in (8) reveals
that ‖A‖2F = 〈A,A〉, with 〈A,B〉 = trace(B∗A) being the (positive) Frobenius
scalar product. Therefore the Frobenius norm comes from a positive scalar
product and consequently the space of the matrices of size n with the Schatten
2 norm is a Hilbert space: this further property represents a second important
ingredient for the strategy of approximation that we follow in order to obtain a
good preconditioner.

The following lemma links the notion of clustering with a quantitative esti-
mate of the Schatten p norms.

Lemma 5.3. Assume that a sequence of matrices {Xn} is given and that
‖Xn‖S,p = O(1) for some p ∈ [1,∞). Then {Xn} is clustered at zero in the
strong sense.

Proof The assumption implies that there exist a constant M such that
‖Xn‖S,p ≤M for n large enough. Consequently the proof reduces to a series of
inequalities as shown below

Mp ≥ ‖Xn‖pS,p (by the assumption ‖Xn‖S,p ≤M, n ≥ n̄)

=

n∑
j=1

σpj (Xn) (by definition of ‖ · ‖S,p)

≥
∑

j:σj(Xn)>ε

σpj (Xn) (for any fixed ε > 0)

≥
∑

j:σj(Xn)>ε

εp

= εp#{j : σj(Xn) > ε}.

Therefore, for every ε > 0, we have proved that the cardinality of the set of
singular values of Xn exceeding ε, for n large enough, is bounded by the con-
stant (M/ε)p which, by definition, is equivalent to write that {Xn} is clustered
at zero in the strong sense. •

The result above is nicely complemented by the following remark.

Remark 5.4. With reference to Lemma 5.3, if the assumption that ‖Xn‖S,p =
O(1) for some p ∈ [1,∞) is replaced by the weaker request that ‖Xn‖S,p = o(n)
for some p ∈ [1,∞), then the same proof of the lemma shows that {Xn} is
clustered at zero in the weak sense.
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5.2 Toeplitz sequences, approximating spaces, and approx-
imation strategy

Given a sequence {Un} of unitary matrices with Un of size n, we first define the
vector spaces {A(Un)} with

A(Un) = {X = UnDU
∗
n : D is a diagonal (complex) matrix}.

By definition each A(Un) is a complex vector space of dimension n with the
structure of algebra, that is closed under multiplication and a fortiori, by the
Cayley-Hamilton Theorem [14], under inversion. It is worth noticing that, in
practice, Numerical Analysts are interested in the case where Un represent some
discrete transform with linear complexity, as the Wavelet transform, or with
quasi-linear complexity (e.g. O(n log(n)) arithmetic operations), as in the case
of all Fourier-like, trigonometric, Hartley transforms. Now let us define the oper-
ator PUn(·) acting on Mn(C) and taking values in A(Un) where both the Hilbert
spaces are equipped with the Frobenius norm ‖X‖2F =

∑
i,j |xi,j |

2, associated
with the scalar product 〈A,B〉 = trace(B∗A). Then

PUn(A) = arg min
X∈A(Un)

‖A−X‖F ,

where the minimum exists and is unique since A(Un) is a linear finite dimen-
sional space and hence it is closed.

Lemma 5.5. With A,B ∈ Mn(C) and the previous definition of PUn(·), we
have

1. PUn(A) = Unσ(U∗nAUn)U∗n, with σ(X) the diagonal matrix having (X)i,i
as diagonal elements,

2. PUn(A∗) = (PUn(A))
∗,

3. trace(PUn(A)) = trace(A),

4. PUn(·) is linear that is PUn(αA+ βB) = αPUn(A) + βPUn(B) with α, β ∈
C, and positive that is PUn(A) is Hermitian positive semi-definite if A is
Hermitian positive semi-definite,

5. ‖A− PUn(A)‖2F = ‖A‖2F − ‖PUn(A)‖2F ,

6. ‖|PUn(·)‖| = 1 with ‖| · ‖| being any dual u.i. norm.

Proof The proof of Item 1 is a direct consequence of the minimization
process, taking into account that the Frobenius norm is u.i. In reality

PUn(A) = arg min
{X∈A(Un)}

||A−X||F

= arg min
{D diagonal matrix}

||A− UnDU∗n||F

= arg min
{D diagonal matrix}

||U∗nAUn −D||F .

Therefore, the optimal condition is obtained by choosing D = DOpt as the
diagonal part of U∗nAUn. Now Item 2 is a direct consequence of Item 1 as well
as Item 3, where we just observe that A and U∗nAUn share the same spectrum
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by similarity (U∗n is the inverse of Un). The first part of Item 4 is again a direct
consequence of the representation formula in Item 1, while for the second part
we just observe that the positive semi-definiteness of A is equivalent to that
of U∗nAUn so that its diagonal σ(U∗nAUn) is made up by nonnegative numbers
which are the eigenvalues of the Hermitian matrix PUn(A). Item 5 is nothing but
the Pythagora Law holding in any Hilbert space. The proof of Item 6 is reduced
to prove ‖|PUn(A)‖| ≤ ‖|A‖| for every complex matrix, since PUn(I) = I. The
general result is given in [30], thanks to a general variational principle. For the
subsequent purposes we need in fact only the statement for the spectral norm.
In that case, using the singular value decomposition [14], it is easy to see that

‖A‖ = max
‖u‖2=‖v‖2=1

|v∗Au|, (9)

so that

‖A‖ = max
‖u‖2=‖v‖2=1

|v∗Au|

≥ max
i=1,...,n

|u∗iAui|

= ‖PUn(A)‖

with u1, . . . , un being the orthonormal columns forming Un and where in the last
equality we used the key representation formula in Item 1. We finally observe
that ‖PUn‖F = 1 is a direct consequence of the Pythagora Law in Item 5. •

We will apply the former projection technique to Toeplitz matrix-sequences
{An} where the n-th matrix An is of the form

(An(f))j,k = aj−k(f) (10)

with aj , j ∈ Z, given coefficients. In the following we are interested to the case
where, given f ∈ L1(0, 2π), the entries of the matrix An are defined via the
Fourier coefficients of f that is

aj =
1

2π

∫ 2π

0

f(t)e−
√
−1jt dt.

The latter defines a sequence {Tn(·)} of operators, Tn : L1(0, 2π) → Mn(C),
which are clearly linear, due to the linearity of the Fourier coefficients, and
positive as proved in detail below. In fact, if f is real valued then it is immediate
to see that the conjugate of aj is exactly a−j so that by (10) we deduce that
T ∗n(f) = Tn(f). Now we observe that for any pair of vectors u and v (with
entries indexed from 0 to n− 1) we have the identity

v∗Tn(f)u =

n−1∑
j,k=0

v̄j(Tn(f))j,kuk

=

n−1∑
j,k=0

v̄jaj−k(f)uk

=
1

2π

∫ 2π

0

f(t)

n−1∑
j,k=0

v̄juke
−
√
−1jte

√
−1kt dt

=
1

2π

∫ 2π

0

f(t)p̄v(t)pu(t) dt, (11)
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where, for a given vector x of size with entries indexed from 0 to n − 1, the
symbol px(t) stands for the polynomial

px(t) =

n−1∑
k=0

xke
√
−1kt.

It is worth noticing that the map from Cn with Euclidean norm to the space
Pn−1 of polynomials of degree at most n − 1 on the unit circle with the Haar
L2(0, 2π) norm is an isometry, since

‖x‖22 =
1

2π

∫ 2π

0

|px(t)|2 dt. (12)

Now the positivity of the operator is a plain consequence of the integral repre-
sentation in (11), since for every u ∈ Cn and every nonnegative f ∈ L1(0, 2π),
we have

u∗Tn(f)u =
1

2π

∫ 2π

0

f(t)|pu(t)|2 dt ≥ 0.

In fact, a little more effort (see [25]) leads to conclude u∗Tn(f)u = 0 if and only
the nonnegative symbol f is zero a.e.

Therefore the composition of PUn(·) and Tn(·) is also a linear and positive
operator from L1(0, 2π) to A(Un) ⊂Mn(C).

Now starting from the eigenvalues of PUn(Tn(f)) we may construct a linear
positive operator from L1(0, 2π) to C2π; in fact we will be interested mainly to
the case where f ∈ C2π so that we will consider the restriction of PUn(Tn(·)) to
C2π.

The construction proceeds as follows. Let f be a function belonging to C2π.
We consider the j-th eigenvalue of PUn(Tn(f)) which is

λj(f, n) = (U∗nTn(f)Un)jj , j = 0, . . . , n− 1, (13)

which can be seen a linear positive functional with respect to the argument f
that is λj(·, n) : C2π → C is a linear positive functional. We now define a global
operator Φn(·) from C2π into itself as reported below

Φn(f(y))(x) =

{
λj(f(y), n), if x mod 2π = 2πj

n
linear interpolation at the endpoints, if x mod 2π ∈ Ij,n

for j = 0, 1, ..., n − 1, Ij,n =
[

2πj
n , 2π(j+1)

n

)
, and with λn(f, n) set equal to

λ0(f, n) = (U∗nTn(f)Un)00 for imposing periodicity. We observe that for every
f ∈ C2π the function Φn(f(t))(x) is also continuous and 2π periodic. Indeed,
the operator

Φn : C2π → C2π

is linear, since the sampling points in (13) are linear functionals and the inter-
polation retains the property of linearity. Furthermore if f is nonnegative, then
λj(f, n) are all nonnegative (due the positivity of all the functionals λj(·, n))
and the linear interpolation preserves the non-negativity. As a conclusion, {Φn}
is a sequence of linear positive operators from C2π into C2π and hence we can
apply the Korovkin Theorem in its periodic version.
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5.3 The Korovkin Theorem in a Toeplitz setting
As a final tool we need a quantitative version of the Korovkin Theorem for
trigonometric polynomials. We report it in the next lemma. Then we specialize
such a result for dealing with the operators {Φn} constructed from the eigenvalue
functionals in (13) and, finally, we prove the Korovkin Theorem in the Toeplitz
setting.

Lemma 5.6. Let us consider the standard Banach space C2π endowed the sup-
norm. Let us denote by T = {1, e

√
−1x} the standard Korovkin set of 2π periodic

test functions and let us take a sequence {Φn} of linear positive operators from
C2π in itself. If for any g ∈ T

max
g∈T
‖Φn(g)− g‖∞ = O(θn),

with θn tending to zero as n tends to infinity, then, for any trigonometric poly-
nomial p of fixed degree (independent of n), we find

‖Φn(p)− p‖∞ = O(θn).

Proof We first observe that, by the linearity and by the positivity of Φn
(see the discussion at the beginning of the first item in Section 3.1), we get

‖Φn(e±
√
−1y)(x)− e±

√
−1x‖∞ = O(θn).

Moreover, from the linearity of the space of the trigonometric polynomials,
the claimed thesis is proved if we prove the statement for the monomials e±k

√
−1x

for any positive fixed integer k. Therefore setting w = e
√
−1y and z = e

√
−1x we

have
Φn(wk)(x)− zk = Φn(wk)(x)− Φn(1)(x)zk +O(θn)

= Φn(wk)(x)− Φn(zk)(x) +O(θn)
= Φn(wk − zk)(x) +O(θn).

Now it is useful to manipulate the difference wk − zk. Actually the following
simple relations hold:

wk − zk = (w − z)kzk−1 + (w − z)·
(wk−1 − zk−1 + z(wk−2 − zk−2) + . . .+ zk−2(w − z))

= (w − z)kzk−1 + |w − z|2 1
(w̄−z̄) ·

(wk−1 − zk−1 + z(wk−2 − zk−2) + . . .+ zk−2(w − z)).

Furthermore, setting

R(w, z) =
1

(w̄ − z̄)
(wk−1 − zk−1 + z(wk−2 − zk−2) + . . .+ zk−2(w − z)),

we find that

‖R(w, z)‖∞ = ‖ 1
(w̄−z̄) · (w

k−1 − zk−1+

+z(wk−2 − zk−2) + . . .+ zk−2(w − z))‖∞
= ‖ 1

(w−z) · (w
k−1 − zk−1+

+z(wk−2 − zk−2) + . . .+ zk−2(w − z))‖∞
≤

∑k−1
j=1 j = (k − 1)k/2.
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Now we exploit the linearity and the positivity of the operators Φn(·) and
the fact that z and x are constants with regard to the operator Φn(·).

|Φn(wk − zk)(x)| = |Φn((w − z)kzk−1)(x) + Φn(|w − z|2R(w, z))(x)|
= |Φn(w − z)(x)kzk−1 + Φn(|w − z|2R(w, z))(x)|
= |O(θn)kzk−1 + Φn(|w − z|2R(w, z))(x)|.

By linearity we have Φn(|w − z|2R(w, z))(x) = Φn(|w − z|2Re(R(w, z)))(x) +√
−1Φn(|w−z|2Im(R(w, z)))(x) where Re(s) and Im(s) denote the real and the

imaginary part of s respectively. By the triangle inequality and by the positivity
of Φn we deduce

|Φn(|w − z|2R(w, z))(x)| ≤ |Φn(|w − z|2Re(R(w, z)))(x)|+
+|Φn(|w − z|2Im(R(w, z)))(x)|

≤ Φn(|w − z|2|Re(R(w, z))|)(x)+
+Φn(|w − z|2|Im(R(w, z))|)(x)

≤ 2Φn(|w − z|2‖R(w, z)‖∞)(x).

Therefore, by taking into account the preceding relationships we obtain

|Φn(wk − zk)(x)| ≤ |O(θn)k|+ Φn(|w − z|2)2‖R(w, z)‖∞
≤ O(θn) + Φn(|w − z|2)2‖R(w, z)‖∞
≤ O(θn) + Φn(|w − z|2)(k − 1)k
≤ O(θn) + Φn(2− wz̄ − zw̄)(k − 1)k
≤ O(θn) + (2 +O(θn))− (z +O(θn))z̄−
−z(z̄ +O(θn)))(k − 1)k = O(θn).

The latter, together with the initial equations, implies that

‖Φn(wk)(x)− zk‖∞ = O(θn)

and the lemma is proved. •

Here we report a specific version of the above lemma, adapted to the specific
sequence {Φn} constructed in the previous subsection, which is more suited for
the subsequent clustering analysis.

Lemma 5.7. Let us consider the standard Banach space C2π endowed the sup-
norm, let us define x(n)

j = 2πj
n , j = 0, . . . , n − 1, and let us take the sequence

{Φn} of linear positive operators from C2π in itself, defined via the linear eigen-
value functionals in (13). If

max
j=0,...,n−1

‖λj(e
√
−1x, n)− e

√
−1x

(n)
j ‖∞ = O(θn),

with θn = O(n−1), for n going to infinity, then, for any trigonometric polyno-
mial p of fixed degree (independent of n), we find

‖Φn(p)− p‖∞ = O(n−1).

Proof First of all we observe that the special nature of the operators {Φn}
implies that only the single test function g(x) = e

√
−1x must be considered.
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Indeed the identity matrix I belongs to the algebra A(Un) since Un is unitary.
Therefore we have no error: in fact we have

g = 1⇒ Tn(1) = I ⇒ PUn(Tn(1)) = P(I) = I,

so that λj(1, n) = 1 and therefore

Φn(1)(x) ≡ 1.

As in the previous lemma, since PUn(A∗) = P∗Un(A), we have Tn(e−
√
−1t) =

T ∗n(e
√
−1t), PUn(Tn(e−

√
−1t)) = P∗Un(Tn(e

√
−1t)), so that

λj(e
−
√
−1t, n) = λ̄j(e

√
−1t, n)

that is in general
Φn(f̄) = Φ̄n(f).

The proof now is reduced to the application of Lemma 5.6, if we prove that
the given assumption

max
j=0,...,n−1

‖λj(e
√
−1x, n)− e

√
−1x

(n)
j ‖∞ = O(θn)

implies
‖Φn(e

√
−1y)(x)− e

√
−1x‖∞ = O(n−1)

uniformly with respect to x ∈ R. The proof is plain. In fact let h(x) = e
√
−1x.

Then q(x) = Φn(e
√
−1y)(x) is continuous, 2π periodic, piecewise linear, and

such that |h(x) − q(x)| = O(θn) uniformly for x = x
(n)
j . We have to prove the

same estimate for x ∈ (x
(n)
j , x

(n)
j+1). We have

h(x)− q(x) = h(x)− h(x
(n)
j ) + h(x

(n)
j )− q(x(n)

j ) + q(x
(n)
j )− q(x)

= α1 + α2 + α3,

where

α1 = h(x)− h(x
(n)
j ),

α2 = h(x
(n)
j )− q(x(n)

j ),

α3 = q(x
(n)
j )− q(x).

Now |α2| = O(θn) by hypothesis, |α3| = O(n−1) because q is a piecewise lin-
ear function, almost interpolating with error O(θn) the Lipschitz continuous
function h, where the latter observation or a direct Taylor expansion implies
|α1| = O(n−1). •

Theorem 5.8. Let us consider the standard Banach space C2π endowed the
sup-norm, let us define x(n)

j = 2πj
n , j = 0, . . . , n − 1, and let us take the se-

quence {Φn} of linear positive operators from C2π in itself, defined via the linear
eigenvalue functionals in (13). If

max
j=0,...,n−1

‖λj(e
√
−1x, n)− e

√
−1x

(n)
j ‖∞ = O(θn),

with θn tending to zero, as n tends to infinity, then for every f ∈ C2π the
sequence {Tn(f)− PUn(Tn(f))} is weakly clustered at zero.

20



Proof By definition of clustering (see Definition 5.1) and taking into con-
sideration the singular value decomposition, see [14], given f ∈ C2π, the thesis
amounts in proving that, for every ε > 0, there exist sequences {Nn,ε} and
{Rn,ε} such that

Tn(f)− PUn(Tn(f)) = Nn,ε +Rn,ε, (14)

with ‖Nn,ε‖ < ε and rank(Rn,ε) ≤ r(ε)n with

lim
ε→0

r(ε) = 0.

We take a generic function f ∈ C2π. By virtue of the secondWeierstrass theorem
(i.e. Theorem 1.2 with N = 1), for every δ > 0 there exists pδ for which

‖f − pδ‖∞ < δ

where pδ is a trigonometric polynomial. Hence, taking into account the linearity
of PUn(·) and Tn(·) proved in Section 5.2, we obtain

Tn(f)− PUn(Tn(f)) = Tn(f)− Tn(pδ) + Tn(pδ)− PUn(Tn(pδ))

+PUn(Tn(pδ))− PUn(Tn(f))

= Tn(f − pδ) + Tn(pδ)− PUn(Tn(pδ)) + PUn(Tn(pδ − f))

= E1 + E2 + E3,

where E1 = Tn(f − pδ), E2 = Tn(pδ)− PUn(Tn(pδ)), E3 = PUn(Tn(pδ − f)) are
the error terms. At this point we observe that relations (9) and (11) implies

‖E1‖ ≤ ‖f − pδ‖∞ < δ,

while the previous inequality and Item 6 in Lemma 5.5, with the choice of the
spectral norm, lead to

‖E3‖ ≤ ‖E1‖ < δ.

Now we must prove handle the term E2 and for it we consider the Frobenius
norm, having in mind both Remark 5.4 and Item 5 in Lemma 5.5 (the Pythagora
equality). In fact

‖E2‖2F = ‖Tn(pδ)‖2F − ‖PUn(Tn(pδ))‖2F

with

p(t) = pδ(t) =

q∑
j=−q

aje
√
−1jt.

By looking at the entries of the Toeplitz matrix Tn(p) generated by the polyno-
mial p = pδ, we have (n− 2q)‖p‖2L2 ≤ ‖Tn(p)‖2F ≤ n‖p‖2L2 since

q∑
j=−q

|aj |2 = ‖p‖2L2 .

Therefore
‖Tn(p)‖2F = n||p||2L2 +O(1)

so that
‖E2‖2F = n‖p‖2L2 +O(1)− ‖PUn(Tn(p))‖2F . (15)
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For the latter term we invoke Lemma 5.7, since

‖PUn(Tn(p))‖2F =

n−1∑
j=0

σ2
j (PUn(Tn(p)))

=

n−1∑
j=0

|λj(p, n)|2.

Indeed, owing to the assumption

max
0≤j≤n−1

|λj(e
√
−1t, n)− e

√
−1 2πj

n | = O(θn),

Lemma 5.7 leads to write

‖PUn(Tn(p))‖2F =

n−1∑
j=0

∣∣∣∣p(2πj

n
+ fj,n

)∣∣∣∣2
with

|fj,n| ≤ Cθn
and C being a constant independent both of n and j. Therefore

‖PUn(Tn(p))‖2F =

n−1∑
j=0

[∣∣∣∣p(2πj

n

)∣∣∣∣2 + f̃j,n

]
which is equal to

=

n−1∑
j=0

∣∣∣∣p(2πj

n

)∣∣∣∣2 +O(nθn)

with
|f̃j,n| ≤ C̃θn,

C̃ being a constant independent both of n and j, and nθn = o(n). The latter
displayed equality is a Riemann sum of a smooth function so that

‖PUn(Tn(p))‖2F =
n

2π

2π

n

n−1∑
j=0

∣∣∣∣p(2πj

n

)∣∣∣∣2
+ o(n)

=
n

2π

[∫ 2π

0

|p|2dt+O(n−1)

]
+ o(n)

=
n

2π

∫ 2π

0

|p|2dt+O(1) + o(n)

= n‖p‖2L2 + o(n)

that is ‖E2‖2F = o(n), owing to (15). Now we apply the result stated in Remark
5.4 with reference to the Frobenius norm and again the singular values decom-
position. Therefore, for every ε > 0, we find sequences {Ñn,ε} and {R̃n,ε} such
that

E2 = Ñn,ε + R̃n,ε
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‖Ñn,ε‖ < ε/3 and rank(R̃n,ε) ≤ r̃(ε)n with

lim
ε→0

r̃(ε) = 0.

Finally we choose δ = ε/3 and the proof is concluded with reference to (14) and
with the equalities

Rn,ε = R̃n,ε, Nn,ε = Ñn,ε + E1 + E3.

•
We follow the same proof given in Theorem 5.8. In particular, in all the

relevant equations the terms o(n) are replaced by terms of constant order. In
the following we give all the proof for the sake of completeness. (Notice that in
[26], the proof is given under a more general assumption that the grid points
considered in Lemma 5.7 enjoy a property of quasi-uniform distribution, when
the weak clustering of {Tn(f)−PUn(Tn(f))} is derived, or a property of uniform
distribution, when the strong clustering of {Tn(f)− PUn(Tn(f))} is obtained.)

Theorem 5.9. Let us consider the standard Banach space C2π endowed the
sup-norm, let us define x(n)

j = 2πj
n , j = 0, . . . , n − 1, and let us take the se-

quence {Φn} of linear positive operators from C2π in itself, defined via the linear
eigenvalue functionals in (13). If

max
j=0,...,n−1

‖λj(e
√
−1x, n)− e

√
−1x

(n)
j ‖∞ = O(θn),

with θn = O(n−1), for n going to infinity, then for every f ∈ C2π the sequence
{Tn(f)− PUn(Tn(f))} is clustered at zero.

Proof In analogy with the previous theorem, by definition of strong clus-
tering and taking into consideration the singular value decomposition, given
f ∈ C2π, the thesis amounts in proving that, for every ε > 0, there exist se-
quences {Nn,ε} and {Rn,ε} such that

Tn(f)− PUn(Tn(f)) = Nn,ε +Rn,ε, (16)

with ‖Nn,ε‖ < ε and rank(Rn,ε) ≤ r(ε).
We take a generic function f ∈ C2π. By virtue of the second Weierstrass

theorem (i.e. Theorem 1.2 with N = 1), for every δ > 0 there exists pδ for
which

‖f − pδ‖∞ < δ

where pδ is a trigonometric polynomial. Hence, taking into account the linearity
of PUn(·) and Tn(·) proved in Section 5.2, we obtain

Tn(f)− PUn(Tn(f)) = Tn(f)− Tn(pδ) + Tn(pδ)− PUn(Tn(pδ))

+PUn(Tn(pδ))− PUn(Tn(f))

= Tn(f − pδ) + Tn(pδ)− PUn(Tn(pδ)) + PUn(Tn(pδ − f))

= E1 + E2 + E3,

where E1 = Tn(f − pδ), E2 = Tn(pδ)− PUn(Tn(pδ)), E3 = PUn(Tn(pδ − f)) are
the error terms. At this point, we observe that relations (9) and (11) implies

‖E1‖ ≤ ‖f − pδ‖∞ < δ,
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while the previous inequality and Item 6 in Lemma 5.5, with the choice of the
spectral norm, imply

‖E3‖ ≤ ‖E1‖ < δ.

Now we must prove handle the term E2 and for it we consider the Frobenius
norm, having in mind both Lemma 5.3 and Item 5 in Lemma 5.5 (the Pythagora
equality). In fact

‖E2‖2F = ‖Tn(pδ)‖2F − ‖PUn(Tn(pδ))‖2F

with

p(t) = pδ(t) =

q∑
j=−q

aje
√
−1jt.

Now looking at the entries of the Toeplitz matrix Tn(p) generated by the poly-
nomial p = pδ, we have (n− 2q)‖p‖2L2 ≤ ‖Tn(p)‖2F ≤ n‖p‖2L2 since

q∑
j=−q

|aj |2 = ‖p‖2L2 .

Therefore
‖Tn(p)‖2F = n||p||2L2 +O(1)

so that
‖E2‖2F = n‖p‖2L2 +O(1)− ‖PUn(Tn(p))‖2F . (17)

For the latter term we invoke Lemma 5.7, since

‖PUn(Tn(p))‖2F =

n−1∑
j=0

σ2
j (PUn(Tn(p)))

=

n−1∑
j=0

|λj(p, n)|2.

Indeed, owing to the assumption

max
0≤j≤n−1

|λj(e
√
−1t, n)− e

√
−1 2πj

n | = O(n−1),

Lemma 5.7 leads to deduce

‖PUn(Tn(p))‖2F =

n−1∑
j=0

∣∣∣∣p(2πj

n
+ fj,n

)∣∣∣∣2
with

|fj,n| ≤
C

n

and C being a constant independent both of n and j. Therefore

‖PUn(Tn(p))‖2F =

n−1∑
j=0

[∣∣∣∣p(2πj

n

)∣∣∣∣2 + f̃j,n

]
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which is equal to

=

n−1∑
j=0

∣∣∣∣p(2πj

n

)∣∣∣∣2 +O(1)

with

|f̃j,n| ≤
C̃

n

and C̃ being a constant independent both of n and j. The latter displayed
equality is a Riemann sum of a smooth function and hence

‖PUn(Tn(p))‖2F =
n

2π

2π

n

n−1∑
j=0

∣∣∣∣p(2πj

n

)∣∣∣∣2
+O(1)

=
n

2π

[∫ 2π

0

|p|2dt+O(n−1)

]
+O(1)

=
n

2π

∫ 2π

0

|p|2dt+O(1)

= n‖p‖2L2 +O(1)

that is ‖E2‖2F = O(1), thanks to relation (17). Furthermore the application of
Lemma 5.3 with the Frobenius norm, in connection with the use of the singular
value decomposition, implies that for every ε > 0, we find sequences {Ñn,ε} and
{R̃n,ε} such that

E2 = Ñn,ε + R̃n,ε

‖Ñn,ε‖ < ε/3 and rank(R̃n,ε) ≤ r̃(ε). Finally we choose δ = ε/3 and the proof
is concluded with reference to (16) and with the equalities

Rn,ε = R̃n,ε, Nn,ε = Ñn,ε + E1 + E3.

•

Theorem 5.10. Let us consider the standard Banach space C2π endowed the
sup-norm, let us define x(n)

j = 2πj
n , j = 0, . . . , n−1, and let us take the sequence

{Φn} of linear positive operators from C2π in itself, defined via the linear eigen-
value functionals in (13). If

max
j=0,...,n−1

‖λj(e
√
−1x, n)− e

√
−1x

(n)
j ‖∞ = O(θn),

with θn tending to zero, as n tends to infinity, then for every f ∈ L1(0, 2π) the
sequence {Tn(f)− PUn(Tn(f))} is weakly clustered at zero.

Proof By definition of clustering (see Definition 5.1) and taking into con-
sideration the singular value decomposition, see [14], given f ∈ C2π, the thesis
amounts in proving that, for every ε > 0, there exist sequences {Nn,ε} and
{Rn,ε} such that

Tn(f)− PUn(Tn(f)) = Nn,ε +Rn,ε, (18)

with ‖Nn,ε‖ < ε and rank(Rn,ε) ≤ r(ε)n with

lim
ε→0

r(ε) = 0.

25



We take a generic function f ∈ L1(0, 2π). By virtue of the density of trigono-
metric polynomials in the space L1(0, 2π), in the L1 topology, for every δ > 0
there exists pδ for which

‖f − pδ‖L1 < δ

where pδ is a trigonometric polynomial. Hence, taking into account the linearity
of PUn(·) and Tn(·) proved in Section 5.2, we obtain

Tn(f)− PUn(Tn(f)) = Tn(f)− Tn(pδ) + Tn(pδ)− PUn(Tn(pδ))

+PUn(Tn(pδ))− PUn(Tn(f))

= Tn(f − pδ) + Tn(pδ)− PUn(Tn(pδ)) + PUn(Tn(pδ − f))

= E1 + E2 + E3,

where E1 = Tn(f − pδ), E2 = Tn(pδ)− PUn(Tn(pδ)), E3 = PUn(Tn(pδ − f)) are
the error terms. At this point we invoke a variational characterization in [30]
which implies the inequality

‖E1‖S,1 ≤ ‖f − pδ‖∞ < δn,

while the previous inequality and Item 6 in Lemma 5.5, with the choice of the
Schatten 1-norm, lead to conclude

‖E3‖S,1 ≤ ‖E1‖S,1 < δn.

Therefore, by applying result stated in Remark 5.4 with the Schatten 1-norm
and by recalling the singular value decomposition, we find sequences {N̂n,δ} and
{R̂n,δ} such that

E1 + E3 = N̂n,δ + R̂n,δ

‖N̂n,δ‖ <
√
δ and rank(R̂n,ε) ≤

√
δn.

Now we must prove handle the term E2 and for it we consider the Frobenius
norm, having in mind both Remark 5.4 and Item 5 in Lemma 5.5 (the Pythagora
equality). In fact

‖E2‖2F = ‖Tn(pδ)‖2F − ‖PUn(Tn(pδ))‖2F

with

p(t) = pδ(t) =

q∑
j=−q

aje
√
−1jt.

By looking at the entries of the Toeplitz matrix Tn(p) generated by the polyno-
mial p = pδ, we have (n− 2q)‖p‖2L2 ≤ ‖Tn(p)‖2F ≤ n‖p‖2L2 since

q∑
j=−q

|aj |2 = ‖p‖2L2 .

Therefore
‖Tn(p)‖2F = n||p||2L2 +O(1)

and hence
‖E2‖2F = n‖p‖2L2 +O(1)− ‖PUn(Tn(p))‖2F . (19)
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For the latter term we invoke Lemma 5.7, since

‖PUn(Tn(p))‖2F =

n−1∑
j=0

σ2
j (PUn(Tn(p)))

=

n−1∑
j=0

|λj(p, n)|2.

Indeed, owing to the assumption

max
0≤j≤n−1

|λj(e
√
−1t, n)− e

√
−1 2πj

n | = O(θn),

Lemma 5.7 implies

‖PUn(Tn(p))‖2F =

n−1∑
j=0

∣∣∣∣p(2πj

n
+ fj,n

)∣∣∣∣2
with

|fj,n| ≤ Cθn
and C being a constant independent both of n and j. Therefore

‖PUn(Tn(p))‖2F =

n−1∑
j=0

[∣∣∣∣p(2πj

n

)∣∣∣∣2 + f̃j,n

]
which is equal to

=

n−1∑
j=0

∣∣∣∣p(2πj

n

)∣∣∣∣2 +O(nθn)

with
|f̃j,n| ≤ C̃θn,

C̃ being a constant independent both of n and j, and nθn = o(n). The latter
displayed equality is a Riemann sum of a smooth function so that

‖PUn(Tn(p))‖2F =
n

2π

2π

n

n−1∑
j=0

∣∣∣∣p(2πj

n

)∣∣∣∣2
+ o(n)

=
n

2π

[∫ 2π

0

|p|2dt+O(n−1)

]
+ o(n)

=
n

2π

∫ 2π

0

|p|2dt+O(1) + o(n)

= n‖p‖2L2 + o(n)

that is ‖E2‖2F = o(n), because of relation (19). Now we apply the result stated
in Remark 5.4, with reference to the Frobenius norm, and again the singular
values decomposition. Therefore, for every ε > 0, we find sequences {Ñn,ε} and
{R̃n,ε} such that

E2 = Ñn,ε + R̃n,ε
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‖Ñn,ε‖ < ε/2 and rank(R̃n,ε) ≤ r̃(ε)n with

lim
ε→0

r̃(ε) = 0.

Finally we choose δ = ε2/4 and the proof is concluded with reference to (18)
and with the equalities

Rn,ε = R̂n,ε2/4 + R̃n,ε, Nn,ε = N̂n,ε2/4 + Ñn,ε.

•

Remark 5.11. We may notice that it is not necessary to know the function
f to construct the continuous linear operator, but only its Fourier coefficients,
which in turn can be numerically evaluated in a stable a fast way by using the
(discrete) fast Fourier transform (see [13]).

Remark 5.12. It is interesting to notice that, when the symbol is not real-
valued, the matrices Tn(f) are rarely normal. However, a consequence of The-
orem 5.10 (given in great generality in [28]) is that every sequence {Tn(f)},
f Lebesgue integrable, is close to a sequence of normal matrices (circulants)
{PUn(Tn(f))}, Un = Fn Fourier matrix, meaning that the difference sequence
{Tn(f)− PFn(Tn(f))} is clustered to zero in the singular value sense.

5.3.1 The check of the Korovkin test in the matrix Toeplitz setting

Let us follow Theorem 5.9 and let us consider first the most popular choice of
the sequence {Un} that is the case where Un is the discrete Fourier matrix Fn
[37] with

Fn =
(
e−
√
−1 2πjk

n

)n−1

j,k=0
.

In that case the related algebra A(Fn) (in the sense of Section 5.2) is the algebra
of circulants [9, 13] in which X ∈ A(Fn) if and only if

X =
(
b(j−k) mod n

)n−1

j,k=0

for some complex coefficients b0, . . . , bn−1 where

X = FnD(X)F ∗n , [D(X)]j,j = pb

(
2πj

n

)
, pb(t) =

n−1∑
k=0

bke
√
−1kt.

In this case the minimization in the Frobenius norm is very easy because the
problem decouples into n distinct one-variable minimization problems. In par-
ticular if T =

(
a(j−k)

)n−1

j,k=0
is of Toeplitz type then

min
X∈A(Fn)

‖TX‖2F = min
b0,...,bn−1∈C

n−1∑
k=0

|ak − bk|2(n− k) + |ak−n − bk|2k

whose optimal solution is expressible explicitly as

bk =
kak−n + (n− k)ak

n
. (20)
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Now we are ready for the Korovkin test (see Theorem 5.9). We take g(x) =

e
√
−1x and the Toeplitz matrix of size n generated by g(x) that is Tn(g(x))

which is the transpose of the Jordan block of size n. In other words the (j, k)
entry of Tn(g(x)) is 1 if j − k = 1 and is zero otherwise. According to formula
(20) we have b1 = 1− 1/n and bk = 0 for k 6= 1. Therefore the j-th eigenvalue
of the optimal approximant is

λj(e
√
−1x, n) =

(
F ∗nTn(e

√
−1x)Fn

)
j,j

= (1− 1/n)e
√
−1 2πj

n .

As a consequence

max
j=0,...,n−1

‖λj(e
√
−1x, n)− e

√
−1x

(n)
j ‖∞ = n−1

with x(n)
j = 2πj

n and the crucial assumption of Theorem 5.9 is fulfilled. There-
fore, in the light of Theorem 5.9, we conclude that the sequence {Tn(f) −
PUn(Tn(f))} is clustered at zero, in the strong sense, for every f ∈ C2π and is
weakly clustered at zero for every f ∈ L1(0, 2π) by virtue of Theorem 5.10.

In the literature we find many sequences of matrix algebras associated to
fast transforms. The Korovkin test was performed originally for the circulants
and all ω-circulants with |ω| = 1 in [26]. The test in the case of all known sine
and cosine algebras was verified in [10], while the case all Hartley transform
spaces was treated in detail in [2]. It should be observed that the extension to
the case of multilevel block structures (see [27]) is not difficult, as mentioned
and briefly sketched in the next subsection.

5.3.2 The multilevel case

By following the notations of Tyrtyshnikov, a multilevel Toeplitz matrix of
level N and dimension n1 × n2 × · · · × nN is defined as the matrix generated
by the Fourier coefficients of a multivariate Lebesgue integrable function f =
f(x1, . . . , xN ) according to the law given in equations (6.1) at page 23 of [34]
(see also [33]). In the following, for the sake of readability, we shall often write
n for the N -tuple (n1, . . . , nN ), n̂ = n1 · · ·nN . Then, for f ∈ L1((0, 2π)N ) being
N -variate and taking values into the rectangular matrices Ms,t(C), we define
the sn̂× tn̂ multilevel Toeplitz matrix by

Tn(f) =

n1−1∑
j1=−n1+1

· · ·
nN−1∑

jN=−nN+1

J (j1)
n1
⊗ · · · ⊗ J (jN )

nN ⊗ a(j1,...,jN )(f), (21)

where⊗ denotes the tensor or Kronecker product of matrices and J (`)
m , (−m+1 ≤

` ≤ m−1, is them×mmatrix whose (i, j)th entry is 1 if i−j = ` and 0 otherwise;
thus {J−m+1, . . . , Jm−1} is the natural basis for the space of m × m Toeplitz
matrices. In the usual multilevel indexing language, we say that [Tn(f)]r,j =aj−r
where (1, . . . , 1) ≤ j, r ≤ n = (n1, . . . , nN ), i.e., 1 ≤ j` ≤ n` for 1 ≤ ` ≤ N and
the j-th Fourier coefficient of f that is

aj =
1

(2π)N

∫
[0,2π]N

f(t)e−
√
−1(j1t1+···+jN tN ) dt,

J = (j1, . . . , jN ), is a rectangular matrix of size s × t. The latter relation to-
gether with (21) defines a sequence {Tn(·)} of operators, Tn : L1((0, 2π)N ) →
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Msn̂,tn̂(C), which are clearly linear, due to the linearity of the Fourier coeffi-
cients, and positive in a sense specified in [27]. Similarly, given the unitary
matrix Un related to the transform of a one-level algebra, a corresponding N -
level algebra is defined as the set of n1× n2× · · · × nN matrices simultaneously
diagonalized by means of the following tensor product of matrices

Un = Un1 ⊗ Un2 ⊗ · · · ⊗ UnN , (22)

with A ⊗ B being the matrix formed in block form as (Ai,jB). Now, since
we are interested in extending the results proved in the preceding sections to
m dimensions, we analyze what is necessary to have and, especially, what is
kept when we switch from one dimension to m dimensions: for the first level
we used the Weierstrass and Korovkin Theorems, the last part of Lemma 5.5,
Lemma 5.3 and Remark 5.4. Surprisingly enough, we find that all these tools
hold or have a version in N dimensions: for the Korovkin and the Weierstrass
Theorems, the multidimensional extensions are classic results, while Lemma
5.3 and Remark 5.4 contain statements not depending on the structure of the
matrices and Lemma 5.5 is valid for any algebra and so for multilevel algebras
as well (recall that Un in (22) is unitary).

Therefore, we instantly deduce the validity in m dimensions of the main
statements of this paper that is Theorems 5.8, 5.9, 5.9. However, we remark
that we have no examples in which the strong convergence holds.

For instance, in the two-level circulant and τ cases, only the weak con-
vergence has been proved because the number of the outliers is, in both cases,
equal to O(n1 +n2) [6, 11] even if the function f is a bivariate polynomial: more
precisely, this means that the hypotheses of Theorem 5.9, regarding the strong
approximation in the polynomial case, are not fulfilled by the two-level circulant
and τ algebras and therefore strong convergence cannot be proved in the general
case (see also [27]). By using different tools, in [31] and [32] it has been proved
that any sequence of preconditioners belonging to “Partially Equimodular” al-
gebras [32] cannot be superlinear for sequence of multilevel Toeplitz matrices
generated by simple positive polynomials. Here, “Partially Equimodular” refers
to some very weak assumptions on Un that are instanly fulfilled by all the known
multilevel trigonometric algebras. In conclusion, the type of approximation de-
livered by the Frobenius optimal approximation and analyzed via the Korovkin
theory, does not deliver the strong clustering in the multilevel setting: however,
this drawback is intrinsic and hence such type of approximation is the best we
can obtain as clearly shown in [31, 32] (see also [21, 29]).

6 Concluding Remarks
In these notes, we have shown classical applications of the Korovkin theory to
the approximation of functions. A new view on the potential of the Korovkin
Theorems is provided in a context of Numerical Linear Algebra. Here the main
novelty is that the poor approximation from a quantitative viewpoint (see Ex-
ercise 3) is not a limitation. In reality, when employing preconditioned Krylov
methods for the solution of large linear system, only a modest quantitative ap-
proximation of the spectrum is required in order to design optimal iterative
solvers (see [12] and [4] for the specific commection between the spectrum of
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the preconditioned matrices and the iteration count of the associated iterative
method).

7 Appendix A: General Tools
Linear and positives operators properties are necessary to prove the Korovkin
Theorem. Therefore we consider following Lemma. It shows that the monotony
is obtained by properties linearity and positivity.

Lemma 7.1. Let A and B be vector spaces both endowed with a partial ordering
and let Φ : A → B be a linear and positive operator. Then Φ is monotone that
is, if f and g are elements of A with f ≥ g we necessarily have Φ(f) ≥ Φ(g).

Proof By the assumption f ≥ g we find

f − g ≥ 0A.

then, using the positivity of the operator Φ we have

Φ(f − g) ≥ Φ(0A) = 0B.

Finally by linearity we obtain Φ(f)− Φ(g) ≥ 0B which in turn leads to

Φ(f) ≥ Φ(g).

2

As a direct consequence of the above lemma we get the isotonic property, at
least if f = f∗. In fact if our spaces are equipped with the modulus we have

±f ≤ |f |

and therefore the monotonicity implies

±Φ(f) ≤ Φ(|f |)⇔ |Φ(f)| ≤ Φ(|f |).

The latter is known as isotonic property. However not all vectorial spaces have
a modulus, for example a modulus is not defined for linear space generated by
the test functions in Theorem 3.1.

Example: A well known example of isotonic functional is the integral defined
in the space of complex valued integrable functions (L1[a, b]). In fact for f ∈
L1[a, b] we know that ∣∣∣∫ b

a
f(x)dx

∣∣∣ ≤ ∫ b

a

|f(x)|dx.

Concerning generalized versions of the isotonic property the reader is referred to
[30], where, in the context of general matrix valued linear positive operators, it
is proved that |‖Φn(f)‖| ≤ |‖Φn(|f |)‖| for every f ∈ Lp(Ω), p ≥ 1, Ω equipped
with a σ-finite measure, for every matrix valued linear positive operator Φn(·),
n ≥ 1, from Lp(Ω) to Mn(C), for every unitarily invariant norm. The space Lp
can be replaced by C(K) for some compact set K in RN , N ≥ 1, thanks to the
Radon-Nykodim theorem (see [22]).
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8 Appendix B: the (algebraic) Korovkin Theo-
rem in N dimensions

We now give a full proof of the Korovkin Theorem in N dimensions. Concerning
notation we recall that the symbol ‖ · ‖2 indicates the Euclidean norm over CN

that is ‖x‖2 =
(∑N

i=1 |xi|2
)1/2

for x ∈ CN .

Theorem 8.1 (Korovkin). Let K be a compact set of RN and let us consider
the standard Banach space C(K) endowed the sup-norm. Let us denote by
T = {1, xi, ‖x‖22 : i = 1, . . . , N} the standard Korovkin set of test functions and
let us take a sequence {Φn} of linear positive operators from C(K) in itself. If
for any g ∈ T

Φn(g) uniformly converges to g

then {Φn} is an approximation process i.e.

Φn(f) uniformly converges to f, ∀f ∈ C(K).

Proof We set f ∈ C(K), we take an arbitrary ε > 0 and we show that there
exists n̄ large enough for which ‖f − Φn(f)‖∞,K ≤ ε, for every n ≥ n̄. Hence
we take any point x of K and we consider the difference

f(x)− Φn(f(y))(x)

where y is the dummy variable inside the operator Φn, where the function f
acts. We now observe that the constant function 1 belongs to the “Korovkin
test set ” T and therefore 1 = (Φn(1))(x) − εn(1)(x), where εn(1) uniformly
converges to zero over K. As a consequence, the use of the linearity of any Φn
leads to

f(x)− Φn(f(y))(x) = [Φn(1)(x)− εn(1)(x)]f(x)− Φn(f(y))(x)

= Φn(f(x)− f(y))(x)− εn(1)(x)f(x).

Thus there exists a value n1 such that for every n ≥ n1 we find

|εn(1)(x)f(x)| ≤ ‖εn(1)‖∞,K‖f‖∞,K ≤ ε/4.

By exploiting the linearity and positivity of Φn (see Appendix A), we obtain

|f(x)− Φn(f(y))(x)| ≤ |Φn(f(x)− f(y))(x)|+ ε/4 (23)
≤ Φn(|f(x)− f(y)|)(x) + ε/4.

As in the one-dimensional case the remaining part of the proof consists in a clever
manipulation of the term |f(x) − f(y)|, of which we look for a “sharp” upper-
bound, with the underlying idea of exploiting both the linearity and positivity of
the operators and the assumption of convergence on the Korovkin test functions.

For manipulating the quantity |f(x)− f(y)| we use the definition of uniform
continuity. We are allowed to assume f uniformly continuous, since the notions
of continuity and uniform continuity are the same when the function is defined
on a compact set. Therefore for every ε1 > 0, there exists δ > 0 such that
‖x− y‖2 ≤ δ implies |f(x)− f(y)| ≤ ε1. Now, depending on the new parameter
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δ (and then in correspondence to the behavior of our function f), we define the
pair of sets

Qδ = {y ∈ K : ‖x− y‖2 ≤ δ}, QCδ = K\Qδ.

We observe that |f(x)−f(y)| is bounded from above by ε1 onQδ and by 2‖f‖∞,K
su QCδ , thanks to the triangle inequality. We denote by χJ the characteristic
function of the set J. Therefore the observation that x, y ∈ QCδ implies ‖x−y‖2 >
δ leads to

1 ≤ ‖x− y‖22/δ2,

for x, y ∈ QCδ . As a consequence we deduce the following chain of relationships.

|f(x)− f(y)| ≤ ε1χQδ(y) + 2‖f‖∞,KχQCδ (y)

≤ ε1χQδ(y) + 2‖f‖∞,KχQCδ (y)‖x− y‖22/δ2

≤ ε1 + 2‖f‖∞,K‖x− y‖22/δ2.

The use of the positivity of Φn allows one to conclude

Φn(|f(x)− f(y)|) ≤ Φn
(
ε1 + 2‖f‖∞,K‖x− y‖22/δ2

)
.

Finally, using the linearity of Φn and setting ∆n(f)(x) = |f(x)−Φn(f(y))(x)|,
from (23) we infer the concluding relations, that is

∆n(f)(x) ≤ Φn(|f(x)− f(y)|)(x) + ε/4

≤ Φn
(
ε1 + 2‖f‖∞,K‖x− y‖22/δ2

)
(x) + ε/4

= ε1Φn(1)(x) + 2‖f‖∞,K/δ2Φn
(
‖x− y‖22

)
(x) + ε/4

= ε1Φn(1)(x) + 2‖f‖∞,K/δ2

Φn

(
N∑
i=1

x2
i − 2xiyi + y2

i

)
(x) + ε/4

= ε1Φn(1)(x) + 2‖f‖∞,K/δ2

N∑
i=1

Φn
(
x2
i − 2xiyi + y2

i

)
(x) + ε/4

= ε1Φn(1)(x) + 2‖f‖∞,K/δ2

N∑
i=1

[
x2
iΦn(1)(x)− 2xiΦn(yi)(x) + Φn(y2

i )(x)
]

+ ε/4

= ε1Φn(1)(x) + 2‖f‖∞,K/δ2[
N∑
i=1

[
x2
iΦn(1)(x)− 2xiΦn(yi)(x)

]
+ Φn(‖y‖22)(x)

]
+ε/4.

We have now reduced the argument of Φn to a linear combination of test
functions. Therefore we can proceed with explicit computations: setting Φn(g) =
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g + εn(g), with εn(g) uniformly converging to zero over K, we have

∆n(f)(x) ≤ ε1(1 + εn(1)(x)) + 2‖f‖∞,K/δ2[
N∑
i=1

[
x2
iΦn(1)(x)− 2xiΦn(yi)(x)

]
+ Φn(‖y‖22)(x)

]
+ ε/4

= ε1(1 + εn(1)(x)) + 2‖f‖∞,K/δ2[
N∑
i=1

[
x2
i εn(1)(x)− 2xiεn(yi)(x)

]
+ εn(‖y‖22)(x)

]
+ ε/4.

Finally, due to the uniform convergence to zero of the error functions εn(g),
we deduce that there exists a value n̄ ≥ n1 for which, for every n ≥ n̄ we find
εn(1))(x) ≤ 1 and

2‖f‖∞,K/δ2

[
N∑
i=1

[
x2
i εn(1)(x)− 2xiεn(yi)(x)

]
+ εn(‖y‖22)(x)

]
≤ ε/4.

In conclusion, by combining the partial results and by choosing properly ε1 as
a function of ε, we have proven the thesis namely

∆n(f)(x) = |f(x)− Φn(f(y))(x)| ≤ ε, ∀n ≥ n̄.

•

9 Appendix C: the (periodic) Korovkin Theorem
in N dimensions

We now give a full proof of the Korovkin Theorem in N dimensions in the 2π
periodic case. We consider the Banach space

C2π = {f : RN → C, f continuous and periodic i.e. f(x) = f(x mod 2π)}

endowed with the sup-norm. The only substantial change will be in the set of
test functions and in a clever variation of the notion of uniform continuity.

Theorem 9.1 (Korovkin). Let us consider the standard Banach space C2π en-
dowed the sup-norm. Let us denote by T = {1, e

√
−1xi : i = 1, . . . , N} the

standard Korovkin set of 2π periodic test functions and let us take a sequence
{Φn} of linear positive operators from C2π in itself. If for any g ∈ T

Φn(g) uniformly converges to g

then {Φn} is an approximation process i.e.

Φn(f) uniformly converges to f, ∀f ∈ C2π.

Proof. We fix f ∈ C2π, we take an arbitrary ε > 0 and we show that there
exists n̄ large enough for which ‖f − Φn(f)‖∞,K ≤ ε, for every n ≥ n̄. Hence
we take any point x of K and we consider the difference

f(x)− Φn(f(y))(x)
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where y is the dummy variable inside the operator Φn, where the function f
acts. We now observe that the constant function 1 belongs to the “Korovkin test
set ” T and therefore 1 = Φn(1)(x)− εn(1)(x), where εn(1) uniformly converges
to zero over K. As a consequence, the use of the linearity of any Φn leads to

f(x)− Φn(f(y))(x) = [Φn(1)(x)− εn(1)(x)]f(x)− Φn(f(y))(x)

= Φn(f(x)− f(y))(x)− εn(1)(x)f(x).

Thus there exists a value n1 such that for every n ≥ n1 we find

|εn(1)(x)f(x)| ≤ ‖εn(1)‖∞,K‖f‖∞,K ≤ ε/4.

By exploiting the linearity and positivity of Φn (see Appendix A), we obtain

|f(x)− Φn(f(y))(x)| ≤ |Φn(f(x)− f(y))(x)|+ ε/4 (24)
≤ Φn(|f(x)− f(y)|)(x) + ε/4.

As in Theorem 8.1, the remaining part of the proof consists in a clever manip-
ulation of the term |f(x) − f(y)|, of which we look for a “sharp” upper-bound,
with the underlying idea of exploiting both the linearity and positivity of the
operators and the assumption of convergence on the Korovkin test functions.

For manipulating the quantity |f(x)− f(y)| we use the definition of uniform
continuity. We are allowed to assume f uniformly continuous, since the notions
of continuity and uniform continuity are the same when the function is defined
on a compact set and the set RN can be reduced to the compact set [0, 2π]N

thanks to the 2π-periodicity considered in the assumptions. Therefore for every
ε1 > 0, there exists δ > 0 such that ‖z(x)−z(y)‖2 ≤ δ implies |f(x)−f(y)| ≤ ε1
with

[z(x)]i = e
√
−1xi , i = 1, . . . , N.

Now, depending on the new parameter δ (and then in correspondence to the
behavior of our function f), we define the pair of sets

Qδ = {y ∈ RN : ‖z(x)− z(y)‖2 ≤ δ}, QCδ = RN\Qδ.

We observe that |f(x) − f(y)| is bounded from above by ε1 on Qδ and by
2‖f‖∞,RN su QCδ , thanks to the triangle inequality. We denote by χJ the char-
acteristic function of the set J. Therefore the observation that x, y ∈ QCδ implies
‖z(x)− z(y)‖2 > δ leads to

1 ≤ ‖z(x)− z(y)‖22/δ2,

for x, y ∈ QCδ . As a consequence we deduce the following chain of relationships.

|f(x)− f(y)| ≤ ε1χQδ(y) + 2‖f‖∞,RNχQCδ (y)

≤ ε1χQδ(y) + 2‖f‖∞,RNχQCδ (y)‖z(x)− z(y)‖22/δ2

≤ ε1 + 2‖f‖∞,RN ‖z(x)− z(y)‖22/δ2.

The use of the positivity of Φn allows one to conclude

Φn(|f(x)− f(y)|) ≤ Φn
(
ε1 + 2‖f‖∞,RN ‖z(x)− z(y)‖22/δ2

)
.
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Finally, using the linearity of Φn and setting ∆n(f)(x) = |f(x)−Φn(f(y))(x)|,
from (24) we infer the concluding relations, that is

∆n(f)(x) ≤ Φn(|f(x)− f(y)|)(x) + ε/4

≤ Φn
(
ε1 + 2‖f‖∞,RN ‖z(x)− z(y)‖22/δ2

)
(x) + ε/4

= ε1Φn(1)(x) + 2‖f‖∞,RN /δ2Φn
(
‖z(x)− z(y)‖22

)
(x) + ε/4

= ε1Φn(1)(x) + 2‖f‖∞,RN /δ2

Φn

(
N∑
i=1

1− e−
√
−1xie

√
−1yi − e

√
−1xie−

√
−1yi + 1

)
(x) + ε/4

= ε1Φn(1)(x) + 2‖f‖∞,RN /δ2

N∑
i=1

Φn

(
2− e−

√
−1xie

√
−1yi − e

√
−1xie−

√
−1yi

)
(x) + ε/4

= ε1Φn(1)(x) + 2‖f‖∞,RN /δ2

N∑
i=1

[
Φn(2)(x)− [z(x)]iΦn([z(y)]i)(x)− [z(x)]iΦn([z(y)]i)(x)

]
+

+ε/4.

We have now reduced the argument of Φn to a linear combination of test
functions. Therefore we can proceed with explicit computations: setting Φn(g) =
g + εn(g), with εn(g) uniformly converging to zero over K, we obtain that
∆n(f)(x) is bounded from above by

ε1(1 + εn(1)(x)) + 2‖f‖∞,RN /δ2 ·

·

[
N∑
i=1

[
2εn(1)(x)− [z(x)]iεn([z(y)]i)(x)− [z(x)]iεn([z(y)]i)(x)

]]
+

+ε/4.

Finally, due to the uniform convergence to zero of the error functions εn(g),
we deduce that there exists a value n̄ ≥ n1 for which, for every n ≥ n̄ we find
εn(1)(x)) ≤ 1 and the quantity

2‖f‖∞,RN /δ2

[
N∑
i=1

2εn(1)(x)− [z(x)]iεn([z(y)]i)(x)− [z(x)]iεn([z(y)]i)(x)

]

globally bounded from above by ε/4. In conclusion, by combining the partial
results and by choosing properly ε1 as a function of ε, we have proven the thesis
namely

∆n(f)(x) = |f(x)− Φn(f(y))(x)| ≤ ε, ∀n ≥ n̄.

•

10 Exercises
1. With reference to the notations of Section 4.3 complete the proof of the

Weierstrass Theorem by using the Gauss-Weierstrass operators.
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2. Let {Φn} be a sequence of linear positive operators from C[0, 1] into it-
self such that Φn(g(t))(x) = g(x) for all x ∈ [0, 1], for all standard test
functions g(t) = tj , j = 0, 1, 2. Prove that the sequence is trivial i.e.
Φn(f) ≡ f for every f ∈ C[0, 1]. (Compare this result with the case of
interpolation operators: conclude that interpolation operators, which are
linear, cannot be positive).

3. Let {Φn} be a sequence of linear positive operators such that Φn acts on
C[0, 1], Φn(f) is a polynomial of degree at most n for every f ∈ C[0, 1]
and such that the infinity norm of n2(Φn(g(t))(x)− g(x)) goes to zero as
n tends to infinity, for all standard test functions g(t) = tj , j = 0, 1, 2.
Prove that such a sequence cannot exist. Hint: for that exercise a good
starting point is the following saturation result. Let f ∈ Ck[0, 1] for some
k ≥ 0 and let

En(f) = min
p∈Pn

‖f − p‖∞,[0,1].

Then for every k ≥ 0, for every non-increasing, nonnegative sequence εn
tending to zero as n tends to infinity, there exists f ∈ Ck[0, 1] such that

En(f)nk ≥ εn.

(Compare this result with the case of interpolation operators and espe-
cially with the Faber Theorem [35] and Jackson estimates [16, 19]: in-
terpolation operators do not guarantee convergence for every continuous
function f , but could be extremely fast convergent if f is smoother).

4. Give a (constructive) proof of the saturation theorems stated in the pre-
vious exercise: start with the case k = 0.

5. With reference to the notations of Section 4.3, consider the sentence “the
proof is only partially constructive since pn,m is defined using information
on f not available in general (except via numerical evaluations)” given in
the last part of the section: identify this information.

6. Prove the multiplicative separability property for the Bernstein operators
i.e.

Bn(f(t))(x) = Bñ(g(t̃))(x̃)Bn̂(h(t̂))(x̂)

whenever f(t) = g(t̃)h(t̂) with

n = (n1, . . . , nN ),

t = (t1, . . . , tN ),

x = (x1, . . . , xN ),

ṽ = (vi1 , . . . , iq), 1 ≤ i1 < · · · < iq ≤ N,
v̂ = (vj1 , . . . , jr), 1 ≤ j1 < · · · < jr ≤ N,

q + r = N,

{i1, . . . , iq} ∪ {j1, . . . , jr} = {1, . . . , N}.

7. Verify the multidimensional Korovkin test for multidimensional Bernstein
operators (use the multiplicative separability property of the previous ex-
ercise and reduce the multidimensional case to the unidimensional case
already treated in Section 4.1).
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8. Prove the Korovkin Theorem by varying some ingredients

a “Following” the proof of Theorem 9.1, prove:

Φn(g) converges in L1 norm to g, ∀g ∈ T

then the sequence {Φn} of LPOs is an approximation process namely

Φn(f) converges in L1 norm to f, ∀f ∈ C2π.

b Give the “Korovkin test” set in the case periodic and real.
c Give the “Korovkin test” set in the case periodic, real, and even i.e.

f(−x) = f(x), x ∈ [0, π].
d With reference to the previous items give the “Korovkin test” set in the

multidimensional setting.

9. For f ∈ L1(−π, π) let Cn(f)(x) = 1
n+1

∑n
k=0 Fk(f)(x) be its Cesaro sum

of degree n with Fk(f)(x) =
∑k
j=−k aje

√
−1jx, being its k-th Fourier sum

and aj = aj(f) being its j-th Fourier coefficient. Let Tn(f) be the (n +
1)× (n+ 1) Toeplitz matrix defined as

Tn(f) = (as−t)
n
s,t=0 .

and v(x) be the vector of length n+ 1 with k-th entry given by e−
√
−1kx.

[a] Prove the identity Cn(f)(x) = 1
n+1v

∗(x)Tn(f)v(x).
[b] We already proved that Tn(·) : L1(−π, π)→Mn(C) is a LPO. Using
the latter prove that Cn(·) : L1(−π, π)→ L1(−π, π) is a LPO.
[c] Assuming that f ∈ L∞(−π, π) and that f is real-valued, prove that
Cn(f)(x) ≥ ess inf f and Cn(f)(x) ≤ ess sup f , ∀x ∈ [−π, π] (if you prefer,
assume that f ∈ C2π).
[d] By using the right Korovkin Theorem prove that ∀f ∈ C2π

lim
n→∞

‖Cn(f)(x)− f(x)‖∞ = 0.

Notice that the latter furnishes a constructive proof of the second Weier-
strass Theorem (see Theorem 1.2).
[e] From the monumental book of Zygmund on Trigonometric Series [41]
we learn that the k-th Cesaro sum is such that

Ck(f)(x) = f(x) +
s(f)(x)

k + 1
+ rk(f)(x) (25)

where f is smooth enough, s(f)(x) is a bounded function independent of k,
and ‖rk(f)(x)‖∞ is of the order of the best trigonometric approximation
of degree k, for k →∞. Suppose that one has computed g1 = Cn−1(f)(x)
and g2 = C3n−1(f)(x) for some sufficiently large value of n. How to
exploit (25) in order to compute f(x) within an error of the order of
‖rn−1(f)(x)‖∞?
[f ] Show that Cn(2− 2 cos(t))(0) ∼ n−1 by direct computation.
We set h(t) = (et

2 − 1)(3 + sign(|t| − 1)| sin(t+ 1)|5/π), t ∈ (−π, π].
Is it true that Cn(h(t))(0) ∼ n−1?
Is it true that Cn(hα(t))(0) ∼ n−1 for α ∈ (1, 2]?
Is it true that Cn(hα(t))(0) ∼ n−1 for every fixed α?
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10. Prove all Korovkin results discussed so far, namely Theorems 8.1, 9.1, and
Lemma 5.6, by using the size depending norms

‖f‖∞,Jn = sup
x∈Jn

|f(x),

where Jn ⊂ K, K compact, in the algebraic case and Jn mod 2π · e ⊂
[0, 2π)N , N ≥ 1, in the periodic case with e being the N dimensional
vector of all ones and with x ∈ Jn mod 2π · e if xj , j = 1, . . . , N , is of
the form yj mod 2π and y ∈ Jn. The above generalization was used in
[26, 27]; refer to [1] for a monumental survey on the Korovkin theory.

11. With reference to Lemma 5.6 prove that the same statement holds true
if G is the linear space of the continuous even periodic functions, if p is
an even polynomial (with a finite cosine expansion) and if the Chebyshev
set {pi}i=0,1,2 is given by 1, cosx, cos 2x over I = [0, π] with Jn ⊂ I (use
a similar argument and combine it with a simple technique of inductive
type).

12. Let Ω a set of Rd with d ≥ 2. Let C = {g0(x), . . . , gk(x)}, k ≥ 1, be
a collection of real-valued continuous functions over Ω. Prove that there
exist a collection of pair-wise distinct points {x0, . . . , xk} (i.e. xi 6= xj if
i 6= j) such that the (k + 1)× (k + 1) Vandermonde-like matrix

(gj(xk))
k
j,k=0

is singular whenever Ω contains a “Y shaped” domain (the tram switching
proof).
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