## Numerical Linear Algebra

Maya Neytcheva, TDB, February-March 2021

## Projectors and properties

## Definitions:

Consider $C^{n}$ and a mapping $P: C^{n} \rightarrow C^{n}$.
$P$ is called a projector if $P^{2}=P$ (i.e. $P$ is idempotent). If $P$ is a projector, then $I-P$ is also such:

$$
(I-P)^{2}=I-2 P+P^{2}=I-P .
$$

## Properties: I

P1: $\mathcal{N}(P) \cap \mathcal{R}(P)=\{0\}$. Indeed,

$$
\text { if } \begin{aligned}
\mathbf{x} \in \mathcal{R}(P) & \Rightarrow \exists \mathbf{y}: \mathbf{x}=P \mathbf{y} \Rightarrow P \mathbf{x}=P^{2} \mathbf{y}=P \mathbf{y} \\
& \Rightarrow \mathbf{y}=\mathbf{x} \Rightarrow \mathbf{x}=P \mathbf{x}
\end{aligned}
$$

If $\mathbf{x} \in \mathcal{N}(P) \Rightarrow P \mathbf{x}=0 \Rightarrow \mathbf{x}=P \mathbf{x} \Rightarrow \mathbf{x}=0$.
$\mathcal{N}(P)=\left\{\mathbf{x} \in C^{n}: P \mathbf{x}=0\right\}$ (null space (kernel) of $P$ ) $\mathcal{R}(P)=\left\{P \mathbf{x}: \mathbf{x} \in C^{n}\right\}$ (range of $P$ ).

A subspace $S$ is called invariant under a square matrix $A$ whenever $A S \in S$.

## Properties: II

P2: $\mathcal{N}(P)=\mathcal{R}(I-P)$
$\mathbf{x} \in \mathcal{N}(P) \Rightarrow P \mathbf{x}=0$. Then $\mathbf{x}=/ \mathbf{x}-P \mathbf{x}=(I-P) \mathbf{x}$.
$\mathbf{x} \in \mathcal{R}(I-P) \Rightarrow \mathbf{x}=(I-P) \mathbf{z} \Rightarrow P \mathbf{x}=P \mathbf{z}-P^{2} \mathbf{z}=0 \Rightarrow P \mathbf{x}=0$.
P3: $C^{n}=\mathcal{R}(P) \oplus \mathcal{N}(P)$.

## Properties: III

P4: Given two subspaces $K$ and $L$ of same dimension $m$, the following two conditions are mathematically equivalent:
(i) No nonzero vector in $K$ is orthogonal to $L$
(ii) $\forall \mathbf{x} \in C^{n} \exists$ unique vector $\mathbf{y}: \mathbf{y} \in K, \mathbf{x}-\mathbf{y} \in L^{\perp}$.

## Proof.

(i) $\Rightarrow$ (ii): $K \bigcap L^{\perp}=\{\emptyset\} \Rightarrow C^{n}=K \bigoplus L^{\perp} \Rightarrow \forall \mathbf{x} \in C^{n}: \mathbf{x}=\mathbf{y}+\mathbf{z}$, where $\mathbf{y} \in K$ and $\mathbf{z} \in L^{\perp}$. Thus, $\mathbf{z}=\mathbf{x}-\mathbf{y} \Rightarrow$ (ii).

## Properties: IV

P5: Orthogonal and oblique projectors
$P$ is orthogonal if $\mathcal{N}(P)=\mathcal{R}(P)^{\perp}$. Otherwise $P$ is oblique.
Thus, if $P$ is orthogonal onto $K$, then $P \mathbf{x} \in K$ and $(I-P) \mathbf{x} \perp K$. Equivalently, $((I-P) \mathbf{x}, \mathbf{y})=0, \forall \mathbf{y} \in K$.


## Properties: V

P6: If $P$ is orthogonal, then $\|P\|=1$.

## Proof.

$$
\begin{aligned}
& \mathbf{x}=P \mathbf{x}+(I-P) \mathbf{x}=\mathbf{y}-\mathbf{z} . \\
& \text { Then }(\mathbf{y}, \mathbf{z})=0:(P \mathbf{x},(I-P) \mathbf{x})=(P \mathbf{x}, \mathbf{x})-(P \mathbf{x}, P \mathbf{x})= \\
& (P \mathbf{x}, \mathbf{x})-(P \mathbf{x}, \mathbf{x})=0 . \\
& \Rightarrow\|\mathbf{x}\|_{2}^{2}=\|P \mathbf{x}\|_{2}^{2}+\|(I-P) \mathbf{x}\|_{2}^{2} \\
& \Rightarrow\|\mathbf{x}\|_{2}^{2} \geq\|P \mathbf{x}\|_{2}^{2} \Rightarrow \frac{\|P \mathbf{x}\|_{2}^{2}}{\|\mathbf{x}\|_{2}^{2}} \leq 1, \forall \mathbf{x} \in C^{n} .
\end{aligned}
$$

However, for $\widetilde{\mathbf{x}} \in \mathcal{R}(P)$ there holds $\frac{\|P \widetilde{P}\|_{2}^{2}}{\|\widetilde{\mathbf{x}}\|_{2}^{2}}=1$. Thus, $\|P\|=1$.

## Properties: VI

P7: Any orthogonal projector has only two eigenvalues 0 and 1. Any vector from $\mathcal{R}(P)$ is an eigenvector to $\lambda=1$. Any vector from $\mathcal{N}(P)$ is an eigenvector to $\lambda=0$.

## Theorem

Let $P$ be orthogonal onto $K$. Then for any vector $\mathbf{x} \in C^{n}$ there holds

$$
\begin{equation*}
\min _{\mathbf{y} \in K}\|\mathbf{x}-\mathbf{y}\|_{2}=\|\mathbf{x}-P \mathbf{x}\|_{2} \tag{1}
\end{equation*}
$$

## Iterative solution methods

$\Rightarrow$ Steepest descent
$\Rightarrow$ Conjugate gradient method (CG)
$\Rightarrow$ Generalized conjugate gradient method (GCG)
$\Rightarrow$ ORTHOMIN
$\Rightarrow$ Minimal residual method (MINRES)
$\Rightarrow$ Generalized minimal residual method (GMRES)
$\Rightarrow$ Lanczos method
$\Rightarrow$ Arnoldi method
$\Rightarrow$ Orthogonal residual method (ORTHORES)

Properties: VII

```
Proof.
For any \(\mathbf{y} \in K, P \mathbf{x}-\mathbf{y} \in K, P \mathbf{x} \in K,(I-P) \mathbf{x} \perp K\)
\(\|\mathbf{x}-\mathbf{y}\|_{2}^{2}=\|(\mathbf{x}-P \mathbf{x})+(P \mathbf{x}-\mathbf{y})\|_{2}^{2}=\)
\(\|\mathbf{x}-P \mathbf{x}\|_{2}^{2}+\|P \mathbf{x}-\mathbf{y}\|_{2}^{2}+2(\mathbf{x}-P \mathbf{x}, P \mathbf{x}-\mathbf{y})=\|\mathbf{x}-P \mathbf{x}\|_{2}^{2}+\|P \mathbf{x}-\mathbf{y}\|_{2}^{2}\).
Therefore, \(\|\mathbf{x}-\mathbf{y}\|_{2}^{2} \geq\|\mathbf{x}-P \mathbf{x}\|_{2}^{2} \forall \mathbf{y} \in K\) and the minimum is
reached for \(\mathbf{y}=P \mathbf{x}\).
```


## Corollary

```
Let \(K \subset C^{n}\) and \(\mathbf{x} \in C^{n}\) be given. Then \(\min _{\mathbf{y}}\|\mathbf{x}-\mathbf{y}\|_{2}=\left\|\mathbf{x}-\mathbf{y}^{*}\right\|_{2}\) is equivalent to \(\mathbf{y}^{*} \in K\) and \(\mathbf{x}-\mathbf{y}^{*} \perp K\).
```


## Iterative solution methods

## General framework - projection methods

Projection-based iterative methods

Notations:
$\widetilde{\mathbf{x}}=\mathbf{x}^{0}+\delta-(\delta$ - correction $)$
$\mathbf{r}^{0}=\mathbf{b}-A \mathbf{x}^{0}\left(\mathbf{r}^{0}-\right.$ residual $)$
$*$ find $\delta \in K$, such that $\mathbf{r}^{0}-A \delta \perp L$

Want to solve $\mathbf{b}-A \mathbf{x} b=\mathbf{0}, \mathbf{b}, \mathbf{x} \in R^{n}, A \in R^{n \times n}$.
Instead, choose two subspaces $L \subset R^{n}$ and $K \subset R^{n}$ and

$$
* \text { find } \widetilde{\mathbf{x}} \in \mathbf{x}^{(0)}+\delta, \delta \in K, \text { such that } \mathbf{b}-A \widetilde{\mathbf{x}} \perp L
$$

$K$ - search space
$L$ - subspace of constraints

*     - basic projection step

The framework is known as Petrov-Galerkin conditions.
There are two major classes of projection methods:

- orthogonal - if $K \equiv L$,
- oblique - if $K \neq L$.


## Matrix formulation

Choose a basis in $K$ and $L: V=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{m}\right\}$ and $W=\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \cdots, \mathbf{w}_{m}\right\}$.
Then, $\widetilde{\mathbf{x}}=\mathbf{x}^{0}+\delta=\mathbf{x}^{0}+V \mathbf{y}$ for some $\mathbf{y} \in R^{m}$.
The orthogonality condition can be written as

$$
(* *) W^{\top}\left(\mathbf{r}^{0}-A V \mathbf{y}\right)
$$

which is exactly the Petrov-Galerkin condition. From (**) we get

$$
\begin{gathered}
W^{T} \mathbf{r}^{0}=W^{T} A V \mathbf{y} \\
\mathbf{y}=\left(W^{T} A V\right)^{-1} W^{T} \mathbf{r}^{0} \\
\widetilde{\mathbf{x}}=\mathbf{x}^{0}+V\left(W^{T} A V\right)^{-1} W^{T} \mathbf{r}^{0}
\end{gathered}
$$

In practice, $m<n$, even $m \ll n$, for instance, $m=1$.

Matrix formulation, cont.

$$
\widetilde{\mathbf{x}}=\mathbf{x}^{0}+V\left(W^{T} A V\right)^{-1} W^{T} \mathbf{r}^{0}
$$

The matrix $W^{\top} A V$ will be small and, hopefully, with a nice structure.
!!! $W^{T} A V$ should be invertible.

## Plan:

(1) Consider two important cases: $L=K$ and $L=A K$
(2) Make a special choice of $K$.

## A prototype projection-based iterative method:

Given $\quad \mathbf{x}^{(0)} ; \mathbf{x}=\mathbf{x}^{(0)}$
Until convergence do:
Choose $K$ and $L$
Choose basis $V$ in $K$ and $W$ in $L$ Compute $\mathbf{r}=\mathbf{b}-A \mathbf{x}$

$$
\begin{aligned}
& \mathbf{y}=\left(W^{T} A V\right)^{-1} W^{T} \mathbf{r} \\
& \mathbf{x}=\mathbf{x}+V \mathbf{y}
\end{aligned}
$$

Degrees of freedom: $m, K, L, V, W$.
Clearly, if $K \equiv L$, then $V=W$.

## Property 1:

## Theorem

Let $A$ be square, $L=A K$. Then a vector $\widetilde{\mathbf{x}}$ is an oblique projection on $K$ orthogonally to $A K$ with a starting vector $\mathbf{x}^{0}$ if and only if $\widetilde{\mathbf{x}}$ minimizes the 2-norm of the residual over $\mathbf{x}^{0}+K$, i.e.,

$$
\begin{equation*}
\|\mathbf{b}-A \widetilde{\mathbf{x}}\|_{2}=\min _{\mathbf{x} \in \mathbf{x}^{0}+K}\|\mathbf{b}-A \mathbf{x}\|_{2} \tag{2}
\end{equation*}
$$

Thus, the residual decreases monotonically.
Referred to as minimal residual methods CR, GCG, GMRES, ORTHOMIN

## Property 1:



## Property 2:

## Theorem

Let $A$ be symmetric positive definite, i.e., it defines a scalar $\operatorname{product}(A \cdot, \cdot)$ and a norm $\|\cdot\|_{A}$. Let $L=K$, i.e., $\mathbf{r}^{0}-A \widetilde{\mathbf{x}} \perp K$. Then a vector $\widetilde{\mathbf{x}}$ is an orthogonal projection onto $K$ with a starting vector $\mathbf{x}^{0}$ if and only if it minimizes the A-norm of the error $\mathbf{e}=\mathbf{x}^{*}-\mathbf{x}$ over $\mathbf{x}^{0}+$ K, i.e.,

$$
\begin{equation*}
\left\|\mathbf{x}^{*}-\widetilde{\mathbf{x}}\right\|_{A}=\min _{\mathbf{x} \in \mathbf{x}^{+}+K}\left\|\mathbf{x}^{*}-\mathbf{x}\right\|_{A} . \tag{3}
\end{equation*}
$$

The error decreases monotonically in the $A$-norm. Error-projection methods.

## Example: $m=1$

Consider two vectors: $\mathbf{d}$ and $\mathbf{e}$. Let $K=\operatorname{span}\{\mathbf{d}\}$ and $L=\operatorname{span}\{\mathbf{e}\}$.
Then $\widetilde{\mathbf{x}}=\mathbf{x}^{0}+\alpha \mathbf{d}(\delta=\alpha \mathbf{d})$ and the orthogonality condition reads as:
$\mathbf{r}^{0}-\boldsymbol{A} \delta \perp \mathbf{e} \Rightarrow\left(\mathbf{r}^{0}-\boldsymbol{A} \delta, \mathbf{e}\right)=0 \Rightarrow \alpha(\boldsymbol{A d}, \mathbf{e})=\left(\mathbf{r}^{0}, \mathbf{e}\right) \Rightarrow \alpha=\frac{\left(\mathbf{r}^{0}, \mathbf{e}\right)}{(\boldsymbol{A d}, \mathbf{e})}$.
If $\mathbf{d}=\mathbf{e}$ - the Steepest Descent method (minimization on a line). If we minimize over a plane - ORTHOMIN.

## Choice of $K$ :

$$
K=\mathcal{K}^{m}(A, \mathbf{v})=\left\{\mathbf{v}, A \mathbf{v}, A^{2} \mathbf{v}, \cdots, A^{m-1} \mathbf{v}\right\}
$$

Krylov subspace methods

- $L=K=\mathcal{K}^{m}\left(A, \mathbf{r}^{0}\right)$ and $A$ spd $\Rightarrow C G$
- $L=A K=A \mathcal{K}^{m}\left(A, r^{0}\right) \Rightarrow$ GMRES

A question to answer:
Why are Krylov subspaces of interest?

## Arnoldi's method for general matrices

How to construct a basis for $\mathcal{K}$ ?

## The result of Arnoldi's process

- $V^{m}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{m}\right\}$ is an orthonormal basis in $\mathcal{K}^{m}(A, \mathbf{v})$
- $A V^{m}=V^{m} H^{m}+\mathbf{w}_{m+1} \mathbf{e}_{m}^{T}$


Consider $\mathcal{K}^{m}(A, \mathbf{v})=\left\{\mathbf{v}, A \mathbf{v}, A^{2} \mathbf{v}, \cdots, A^{m-1} \mathbf{v}\right\}$, generated by some matrix $A$ and vector $\mathbf{v}$.

1. Choose a vector $\mathbf{v}_{1}$ such that $\left\|\mathbf{v}_{1}\right\|=1$
2. For $j=1,2, \cdots, m$
3. For $i=1,2, \cdots, j$
4. $\quad h_{i j}=\left(A \mathbf{v}_{j}, \mathbf{v}_{i}\right)$
5. End
6. $\mathbf{w}_{j}=A \mathbf{v}_{j}-\sum_{i=1}^{j} h_{i j} \mathbf{v}_{i}$
7. $\quad h_{j+1, j}=\left\|\mathbf{w}_{j}\right\|$
8. If $h_{j+1, j}=0$, stop
9. $\mathbf{v}_{j+1}=\mathbf{w}_{j} / h_{j+1, j}$
10. End

## Arnoldi's process - example

$$
H^{3}=\left[\begin{array}{ccc}
\left(A \mathbf{v}_{1}, \mathbf{v}_{1}\right) & \left(A \mathbf{v}_{2}, \mathbf{v}_{1}\right) & \left(A \mathbf{v}_{3}, \mathbf{v}_{1}\right) \\
\left\|\mathbf{w}_{1}\right\| & \left(A \mathbf{v}_{2}, \mathbf{v}_{2}\right) & \left(A \mathbf{v}_{3}, \mathbf{v}_{2}\right) \\
0 & \left\|\mathbf{w}_{2}\right\| & \left(A \mathbf{v}_{3}, \mathbf{v}_{3}\right)
\end{array}\right]
$$

Since $V^{m+1} \perp\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{m}\right\}$ then it follows that $\left(V^{m}\right)^{T} A V^{m}=H^{m}$.
$H^{m}$ is an upper-Hessenberg matrix.

## Arnoldi's method for symmetric matrices

Let now $A$ be real symmetric matrix. Then the Arnoldi method reduces to the Lanczos method.

Recall: $H^{m}=\left(V^{m}\right)^{T} A V^{m}$
If $A$ is symmetric, then $H^{m}$ must be symmetric too, i.e., $H^{m}$ is three-diagonal

$$
H^{m}=\left[\begin{array}{llll}
\gamma_{1} & \beta_{2} & & \\
\beta_{2} & \gamma_{2} & \beta_{3} & \\
& & \ddots & \\
& & \beta_{m} & \gamma_{m}
\end{array}\right]
$$

Arnoldi

$$
\begin{array}{ll}
\text { Arnoldi } & \text { Lanczos } \\
\mathbf{w}^{(0)}, \beta=\left\|\mathbf{w}^{(0)}\right\|, \mathbf{v}^{(1)}=\mathbf{w}^{(0)} / \beta & \mathbf{w}^{(0)}, \beta=\left\|\mathbf{w}^{(0)}\right\|, \mathbf{v}^{(1)}=\mathbf{w}^{(0)} / \beta \\
\text { For } k=1,2, \cdots, m & \text { Set } \beta_{1}=0, \mathbf{v}^{(0)}=\mathbf{0} \\
\quad \text { For } i=1,2, \cdots, k & \text { For } k=1,2, \cdots, m \\
\quad h_{i k}=\left(A \mathbf{v}^{(k)}, \mathbf{v}^{(i)}\right) & \mathbf{w}^{(k)}=A \mathbf{v}^{(k)}-\beta_{k} \mathbf{v}^{(k-1)} \\
\text { End } & \gamma_{k}=\left(\mathbf{w}^{(k)}, \mathbf{v}^{(k)}\right) \\
\quad \mathbf{w}^{(k)}=A \mathbf{v}^{(k)}-\sum_{i=1}^{(k)} h_{i k} \mathbf{v}^{(i)} & \mathbf{w}^{(k)}=\mathbf{w}^{(k)}-\gamma_{k} \mathbf{v}^{(k)} \\
\quad h_{k+1, k}=\left\|\mathbf{w}^{(k)}\right\| & \beta_{k+1}=\left\|\mathbf{w}^{(k)}\right\| \\
\quad \text { If } h_{k+1, k}=0, \text { stop } & \text { if } \beta_{k+1}=0, \text { stop } \\
\mathbf{v}^{(k+1)}=\mathbf{w}^{(k)} / h_{k+1, k} & \mathbf{v}^{(k+1)}=\mathbf{w}^{(k)} / \beta_{k+1} \\
\text { End } & \text { End } \\
& \text { Set } T_{m}=\operatorname{tridiag\{ \beta _{k},\gamma _{k},\beta _{k+1}\} }
\end{array}
$$

Thus, the vectors $\mathbf{v}^{j}$ satisfy a three-term recursion:

$$
\beta_{i+1} \mathbf{v}^{i+1}=A \mathbf{v}^{i}-\gamma_{i} \mathbf{v}^{i}-\beta_{i} \mathbf{v}^{i-1}
$$

## Lanczos algorithm to solve symmetric linear systems

| Given: | $\mathbf{x}^{(0)}$ |
| :---: | :---: |
| Compute | $\mathbf{r}^{(0)}=\mathbf{b}-A \mathbf{x}^{(0)}, \beta=\left\\|\mathbf{r}^{(0)}\right\\|, \mathbf{v}^{1}=\mathbf{r}^{(0)} / \beta$ |
| Set | $\beta_{1}=0$ and $\mathbf{v}^{0}=\mathbf{0}$ |
| For | $j=1: m$ |
|  | $\mathbf{w}^{j}=\boldsymbol{A} \mathbf{v}^{j}-\beta_{j} \mathbf{v}^{j-1}$ |
|  | $\gamma_{j}=\left(\mathbf{w}^{j}, \mathbf{v}^{j}\right)$ |
|  | $\mathbf{w}^{j}=\mathbf{w}^{j}-\gamma_{j} \mathbf{v}^{j}$ |
|  | $\beta_{j+1}=\left\\|\mathbf{w}^{j}\right\\|_{2}$, if $\beta_{j+1}=0$, go out of the loop $\mathbf{v}^{j+1}=\mathbf{w}^{j} / \beta_{j+1}$ |
| End |  |
| Set | $T_{m}=\operatorname{tridiag}\left\{\beta_{i}, \gamma_{i}, \beta_{i+1}\right\}$ |
| Compute | $\mathbf{y}^{m}=T_{m}^{-1}\left(\beta \mathbf{e}_{1}\right)$ |
|  | $\mathbf{x}^{m}=\mathbf{x}^{0}+V^{m} \mathbf{y}^{m}$ |

## Direct Lanczos: the factorization of $T_{m}$

The coefficients on the direct Lanczos algorithm correspond to the following factorization of $T_{m}$ :

$$
T_{m}=\left[\begin{array}{llll}
\gamma_{1} & \beta_{2} & & \\
\beta_{2} & \gamma_{2} & \beta_{3} & \\
& & \ddots & \\
& & \beta_{m} & \gamma_{m}
\end{array}\right]=\left[\begin{array}{cccc}
1 & & & \\
\lambda_{2} & 1 & & \\
& & \ddots & \\
& & \lambda_{m} & 1
\end{array}\right]\left[\begin{array}{llll}
\eta_{1} & \beta_{2} & & \\
& \eta_{2} & \beta_{3} & \\
& & \ddots & \\
& & & \eta_{m}
\end{array}\right]
$$

where

| $i$ | $\lambda_{i}$ | $\eta_{i}$ |
| :--- | :--- | :--- |
| $i=1$ |  | $\eta_{1}=\gamma_{1}$ |
| $i=2, \cdots m$ | $\lambda_{i}=\beta_{i} / \eta_{i-1}$ | $\eta_{i}=\gamma_{i}-\lambda_{i} \beta_{i-1}$ |

Leads to three-term CG.

Direct Lanczos

Instead of factorizing at the end, Gauss factorization without pivoting can be performed while constructing $T$.
Recall $\mathbf{x}^{m}=\mathbf{x}^{0}+V^{m} L^{-T} L^{-1} \beta \mathbf{e}_{1}$ and let $G=V^{m} L^{-T}$ and $\mathbf{z}=L^{-1} \beta \mathbf{e}$
Compute $\quad \mathbf{r}^{(0)}=\mathbf{b}-A \mathbf{x}^{(0)}, \xi_{1}=\beta=\left\|\mathbf{r}^{(0)}\right\|, \mathbf{v}^{1}=1 / \beta \mathbf{r}^{(0)}$
Set $\quad \lambda_{1}=1, \beta_{1}=1, \mathbf{g}^{0}=\mathbf{0}, \beta_{1}=0$ and $\mathbf{v}^{0}=\mathbf{0}$
For $\quad j=1,2, \cdots$ until convergence
$\mathbf{w}=A \mathbf{v}^{j}-\beta_{j} \mathbf{v}^{j-1}$
$\gamma_{j}=\left(\mathbf{w}, \mathbf{v}^{j}\right)$
if $j>1, \lambda_{j}=\beta_{j} / \eta_{j-1}, \xi_{j}=-\lambda_{j} \xi_{j-1}$
$\eta_{j}=\gamma_{j}-\lambda_{j} \beta_{j}$
$\mathbf{g}^{j}=\left(\eta_{j}\right)^{-1}\left(\mathbf{v}^{j}-\beta_{j} \mathbf{g}^{j-1}\right)$
$\mathbf{x}^{j}=\mathbf{x}^{j-1}+\xi_{j} \mathbf{g}^{j}$, stop if convergence is reached
$\mathbf{w}=\mathbf{w}-\gamma_{\mathbf{v}} \mathbf{v}^{j}$
$\beta_{j+1}=\left\|\mathbf{w}^{j}\right\|$;
$\mathbf{v}^{j+1}=\mathbf{w} / \beta_{j+1}$
End

## Lanczos algorithm to solve symmetric linear systems

Compute $\quad \mathbf{y}_{m}=T_{m}^{-1}\left(\beta \mathbf{e}^{(1)}\right) \Longleftarrow \Longleftarrow \Longleftarrow$ Why is that?
$\mathbf{x}_{m}=\mathbf{x}_{0}+V_{m} \mathbf{y}_{m}$
Recall: $\quad \mathbf{y}=\left(W^{\top} A V\right)^{-1} W^{\top} \mathbf{r}^{(0)}$
Here $W=V, A V^{m}=V^{m} H_{m}$ and $H_{m} \equiv T_{m}$.
Thus, $W^{T} A V=T_{m}$ and
$W^{\top} \mathbf{r}^{(0)}=V^{\top} \mathbf{r}^{(0)}=\left\|\mathbf{r}^{(0)}\right\| V^{\top} \mathbf{v}^{(1)}=\beta V^{\top} \mathbf{v}^{(1)}=\beta \mathbf{e}^{(1)}$,
due to the orthogonality of the columns of $V$.

## Lanczos algorithm to solve symmetric linear systems

```
Given: \(\quad \mathbf{x}^{(0)}\)
Compute \(\quad \mathbf{r}^{(0)}=\mathbf{b}-A \mathbf{x}^{(0)}, \beta=\left\|\mathbf{r}^{(0)}\right\|, \mathbf{v}^{(1)}=\mathbf{r}^{(0)} / \beta\)
Set \(\quad \beta_{1}=\mathbf{0}\) and \(\mathbf{v}^{(0)}=\mathbf{0}\)
For \(\quad k=1: m\)
\(\mathbf{w}^{(k)}=A \mathbf{v}^{(k)}-\beta_{k} \mathbf{v}^{(k-1)}\)
\(\gamma_{k}=\left(\mathbf{w}^{(k)}, \mathbf{v}^{(k)}\right)\)
\(\mathbf{w}^{(k)}=\mathbf{w}^{(k)}-\gamma_{k} \mathbf{v}^{(k)}\)
\(\beta_{k+1}=\left\|\mathbf{w}^{(k)}\right\|\), if \(\beta_{k+1}=0\), go out of the loop
\(\mathbf{v}^{(k+1)}=\mathbf{w}^{(k)} / \beta_{k+1}\)
End
Set \(\quad T_{m}=\operatorname{tridiag}\left\{\beta_{k}, \gamma_{k}, \beta_{k+1}\right\}\)
Compute \(\mathbf{y}_{m}=T_{m}^{-1}\left(\boldsymbol{\beta e}^{(1)}\right) \Longleftarrow \Longleftarrow \Longleftarrow\) Why is that?
\(\mathbf{x}_{m}=\mathbf{x}_{0}+V_{m} \mathbf{y}_{m}\)
```

